24

27

2

3

4

5

6

7

8

 \ddot{q}

10

11

Double diffractive cross-section measurement in the forward region at LHC

G. Antchev,¹ P. Aspell,² I. Atanassov,^{2,1} V. Avati,² J. Baechler,² V. Berardi,^{3,4} M. Berretti,^{5,6} E. Bossini,^{5,6}

U. Bottigli,⁶ M. Bozzo,^{7,8} E. Brücken,^{9, 10} A. Buzzo,⁷ F. S. Cafagna,³ M. G. Catanesi,³ M. Csanád,^{11,*}

T. Csörgő,¹¹ M. Deile,² K. Eggert,¹² V. Eremin,¹³ F. Ferro,⁷ A. Fiergolski,^{14,3} F. Garcia,⁹ S. Giani,² V. Greco,⁶

L. Grzanka,^{2,[†](#page-3-1)} J. Heino,⁹ T. Hilden,^{9, 10} A. Karev,² J. Kašpar,^{15,2} J. Kopal,^{15,2} V. Kundrát,¹⁵ K. Kurvinen,⁹

S. Lami,⁵ G. Latino,⁶ R. Lauhakangas,⁹ T. Leszko,¹⁴ E. Lippmaa,¹⁶ J. Lippmaa,¹⁶ M. Lokajíček,¹⁵

L. Losurdo,⁶ M. Lo Vetere,^{7, 8} F. Lucas Rodríguez,² M. Macrí,⁷ T. Mäki,⁹ A. Mercadante,³ N. Minafra,^{3,4}

S. Minutoli,^{2,7} F. Nemes,^{11,*} H. Niewiadomski,² E. Oliveri,⁶ F. Oljemark,^{9, 10} R. Orava,^{9, 10} M. Oriunno,^{2,[‡](#page-3-2)}

K. Österberg, ^{9, 10} P. Palazzi, ⁶ J. Procházka, ¹⁵ M. Quinto, ^{3, 4} E. Radermacher, ⁶ E. Radicioni, ³ F. Ravotti, ²

E. Robutti,⁷ L. Ropelewski,² G. Ruggiero,² H. Saarikko,^{9,10} A. Scribano,⁶ J. Smajek,² W. Snoeys,² J. Sziklai,¹¹

C. Taylor,¹² N. Turini,⁶ V. Vacek,¹⁷ M. Vítek,¹⁷ J. Welti,^{9, 10} J. Whitmore,¹⁸ and P. Wyszkowski^{2, [§](#page-3-3)}

¹² (The TOTEM Collaboration)

¹ INRNE-BAS, Institute for Nuclear Research and Nuclear Energy,

¹⁴ Bulgarian Academy of Sciences, Sofia, Bulgaria.

¹⁵ ²CERN, Geneva, Switzerland.

3 ¹⁶ INFN Sezione di Bari, Bari, Italy.

4 ¹⁷ Dipartimento Interateneo di Fisica di Bari, Bari, Italy.

5 ¹⁸ INFN Sezione di Pisa, Pisa, Italy.

 6 Università degli Studi di Siena and Gruppo Collegato INFN di Siena, Siena, Italy.

⁷ INFN Sezione di Genova, Genova, Italy.

 8 Università degli Studi di Genova, Genova, Italy.

⁹Helsinki Institute of Physics, Helsinki, Finland.

¹⁰ Department of Physics, University of Helsinki, Helsinki, Finland.

 11 MTA Wigner Research Center, RMKI, Budapest, Hungary.

¹² Case Western Reserve University, Dept. of Physics, Cleveland, OH 44106, USA.

¹³ Ioffe Physical-Technical Institute of Russian Academy of Sciences, St Petersburg, Russian Federation

 14 Warsaw University of Technology, Warsaw, Poland.

¹⁵ Institute of Physics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic.

¹⁶ National Institute of Chemical Physics and Biophysics NICPB, Tallinn, Estonia.

¹⁷ Czech Technical University, Praha, Czech Republic.

¹⁸ Penn State University, Dept. of Physics, University Park, PA 16802, USA.

(Dated: September 2, 2013)

The first double diffractive cross-section measurement in the very forward region has been carried out by the TOTEM experiment at the LHC with center-of-mass energy of $\sqrt{s} = 7$ TeV. By utilizing the very forward TOTEM tracking detectors T1 and T2, which extend up to $|\eta|=6.5$, a clean sample of double diffractive pp events was extracted. From these events, we measured the cross-section $\sigma_{\text{DD}} = (116 \pm 25)$ µb for events where both diffractive systems have $4.7 < |\eta|_{min} < 6.5$.

³⁶ which cannot be calculated with perturbative QCD. Var-³⁷ ious model calculations predict diffractive cross-sections ³⁸ that are markedly different at the LHC energies [\[1](#page-3-4)[–3](#page-3-5)].

 Double diffraction (DD) is the process in which two colliding hadrons dissociate into clusters of particles, and the interaction is mediated by an object with the quan- tum numbers of the vacuum. Experimentally, DD events ⁵⁹ telescopes to detect charged particles in the forward re- are typically associated with a rapidity gap that is large compared to random multiplicity fluctuations. Rapid- ity gaps are exponentially suppressed in non-diffractive ⁶² Electron Multipliers that detect charged particles with 46 (ND) events [\[4\]](#page-3-6), however when a detector is not able to $\frac{63}{P}$ >40 MeV/c at pseudo-rapidities of 5.3<| η |<6.5 [\[8\]](#page-3-10). α_7 detect particles with the transverse momentum (p_T) of α_8 . The T1 telescope consists of Cathode Strip Chambers 48 a few hundred MeV, the identification of double diffrac- ϵ sthat measure charged particles with $p_T > 100 \text{ MeV/c}$ at 49 tive events by means of rapidity gaps becomes very chal- $\frac{66}{10}$ 3.1 < |n| < 4.7.

33 Diffractive scattering represents a unique tool for inves- so lenging. The excellent p_T acceptance of the TOTEM tigating the dynamics of strong interactions and proton ⁵¹ detectors makes the experiment favorable for the mea- structure. These events are dominated by soft processes ⁵² surement. Previous measurements of DD cross-section are described in [\[5](#page-3-7), [6](#page-3-8)].

> The TOTEM experiment [\[7\]](#page-3-9) is a dedicated experiment to study diffraction, total cross-section and elastic scat- tering at the LHC. It has three subdetectors placed sym- metrically on both sides of the interaction point: Roman Pot detectors to identify leading protons and T1 and T2 gion. The most important detectors for this measure-ment are the T2 and T1 telescopes. T2 consists of Gas

 τ_3 the minimum pseudorapidy of all primary particles pro- τ_2 sample corresponds to one signature type j. 74 duced in the diffractive system. Although these events $_{130}$ η_{min} range was divided into two sub-regions on each ⁸⁰ side, providing four subcategories for the measurement.

 The analysis is structured in three steps. In the first step, the raw rate of double diffractive events is esti- mated: the selected sample is corrected for trigger ef- ficiency, pile-up and T1 multiplicity, and the amount of background is determined. In the second step, the visible cross-section is calculated by correcting the raw rate for acceptance and efficiency to detect particles. In the last step, the visible cross-section is corrected so that both 89 diffractive systems have $4.7<|\eta|_{min}<6.5$.

 This measurement uses data collected in October 2011 ⁹¹ at \sqrt{s} =7 TeV during a low pile-up run with a special ⁹² β^* =90 m optics. The data were collected with the T2 minimum bias trigger. The trigger condition was that 3 94 out of 10 superpads in the same $r - \phi$ sector fired. A su- perpad consists of 3 radial and 5 azimuthal neighbouring pads, and it is sufficient that one out of 15 pads registered a signal for a superpad to be fired.

⁹⁸ After the offline reconstruction [\[10\]](#page-3-12), the DD events ⁹⁹ were selected by requiring tracks in both T2 arms and ¹⁰⁰ no tracks in either of the T1 arms (2T2+0T1). T2 ¹⁰¹ tracks with a χ^2 -fit probability smaller than 2\% and ¹⁰² tracks falling in the overlap region of two T2 quarters, i.e. tracks with $80^{\circ} < \phi < 100^{\circ}$ or $260^{\circ} < \phi < 280^{\circ}$, ¹⁰⁴ were removed. The tracks in the overlap region were ¹⁰⁵ removed because simulation does not model well their ¹⁰⁶ response. In the paper, this full selection for visi-107 ble cross-section is named I_{track}. The four subcate-¹⁰⁸ gories for the visible cross-section measurement were de-109 fined by the T2 track with minimum $|\eta|$ on each side, ¹¹⁰ $|\eta^+_{track}|_{min}$ and $|\eta^-_{track}|_{min}$. The subcategory D11_{track} in includes the events with $5.3<|\eta_{track}^{\pm}|_{min}<5.9$, $D22_{track}$ ¹¹² the events with $5.9<|\eta_{track}^{\pm}|_{min}<6.5$, $D12_{track}$ the events 113 with $5.3<|{\eta_{track}^+}|_{min}<5.9$ and $5.9<|{\eta_{track}^-}|_{min}<6.5$, and 114 $D21_{\text{track}}$ the events with $5.9<|\eta_{\text{track}}|_{\text{min}}<6.5$ and 115 $5.3<|\eta_{track}^{-}|_{min}<5.9$.

¹¹⁶ Two additional samples were extracted for background ¹¹⁷ estimation. A control sample for single diffractive (SD) ¹¹⁸ events has at least one track in either of the T2 arms ¹¹⁹ and no tracks in the opposite side T2 arm nor in T1 ¹⁶⁷ where $N_{DD}^{2T2+2T1}$ and $N_{SD}^{2T2+2T1}$ were taken from MC for $_{120}$ (1T2+0T1). A control sample for ND events has tracks $_{168}$ the first iteration. Pythia was used as the default gen-¹²¹ in all arms of T2 and T1 detectors (2T2+2T1). Four ¹⁶⁹ erator throughout the analysis. The ratio, R_{ND}^j , of ND

⁶⁷ In this novel measurement, the double diffractive cross-¹²³ the background model validity: tracks in both arms of T2 $\frac{68}{100}$ section was determined in the forward region. The $\frac{124}{100}$ and exactly in one arm of T1 (2T2+1T1), tracks in either ⁶⁹ method is as model-independent as possible. The DD ¹²⁵ of T2 arms and in both T1 arms (1T2+2T1), tracks in ⁷⁰ events were selected by vetoing T1 tracks and requir-¹²⁶ T2 and T1 in one side of the interaction point (1T2+1T1 π ing tracks in T2, hence selecting events that have two π same side) and tracks in T2 and T1 in the opposite side ⁷² diffractive systems with $4.7 < |\eta|_{min} < 6.5$, where η_{min} is 128 of the interaction point (1T2+1T1 opposite side). Each

⁷⁵ are only about 3% of the total σ_{DD} , they provide a pure $_{131}$ trigger efficiency and pile-up. The trigger efficiency cor-⁷⁶ selection of DD events and the measurement is an impor- $_{132}$ rection c_t was calculated from zero-bias triggered sample π tant step towards determining if there is a rich resonance π ₁₃₃ in the bins of number of tracks. It is described in detail ⁷⁸ structure in the low mass region [\[9\]](#page-3-11). To probe further, $_{134}$ in [\[11\]](#page-4-0). The pile-up correction was calculated using the The number of selected data events was corrected for ¹³⁵ formula:

$$
c_{pu}^{j} = \frac{1}{1 - \frac{2p_{pu}}{1 + p_{pu}} + \frac{2p_{pu}}{1 + p_{pu}} \cdot p^{j}}
$$
(1)

¹³⁶ where j is the signature type, $p_{pu} = (1.5 \pm 0.4)\%$ is the ¹³⁷ pile-up correction factor for inelastic events [\[11\]](#page-4-0), and ¹³⁸ p^j is the correction for signature type changes due to ¹³⁹ pile-up. The correction p^j was determined by creating ¹⁴⁰ a MC study of pile-up. A pool of signature types was ¹⁴¹ created by weighting each type with their probability ¹⁴² in the data. Then a pair was randomly selected, and ¹⁴³ their signatures were combined. After repeating the se-¹⁴⁴ lection and combination, the correction was calculated ¹⁴⁵ as $p^j = N_{combined}^j/N_{original}^j$. $N_{combined}^j$ is the number of ¹⁴⁶ selected combinations that have the combined signature ¹⁴⁷ of j. The uncertainty in p^j was determined by taking the ¹⁴⁸ event type weights from Pythia 8 [\[12\]](#page-4-1) and recalculating ¹⁴⁹ p^j . The corrected number of data events were calculated ¹⁵⁰ with the formula $N^j = c_t c_{pu}^j N_{raw}^j$.

 The simulated T1 track multiplicity distribution pre- dicts a lower number of zero-track events than what was observed in the data. The number of T1 tracks in the simulation was corrected to match with the data by ran- domly selecting 10% (2%) of one-(two-)track events and changing them to zero-track events.

 Three kinds of background were considered for the analysis: ND, SD and central diffraction (CD). ND and SD background estimation methods were developed to minimize the model dependence, and the values of esti- mates were calculated iteratively. Since the CD back- ground is significantly smaller than the ND and SD ones, μ ¹⁶³ its estimate (N_{CD}) was taken from simulation, using the ¹⁶⁴ acceptance and $\sigma_{CD} = 1.3$ mb from Phojet [\[13\]](#page-4-2).

¹⁶⁵ The number of ND events in the ND dominated control ¹⁶⁶ sample, 2T2+2T1, has been determined as:

$$
N_{ND}^{2T2+2T1} = N_{data}^{2T2+2T1} - N_{DD}^{2T2+2T1} - N_{SD}^{2T2+2T1} - N_{CD}^{2T2+2T1},\tag{2}
$$

 $_{122}$ additional exclusive data samples were defined for testing $_{170}$ events expected in the sample j and in the control sam-

¹⁷¹ ple, was calculated from MC as

$$
R_{ND}^{j} = \frac{N_{ND,MC}^{j}}{N_{ND,MC}^{2T2+2T1}}.\tag{3}
$$

¹⁷² The number of ND events within the signal sample was ¹⁷³ estimated as

$$
N_{ND}^{j} = R_{ND}^{j} \cdot C^{j} \cdot N_{ND}^{2T2 + 2T1},
$$
\n(4)

 $_{174}$ where C^j is the normalization factor deduced from the ¹⁷⁵ relative mismatch between the data and the total Pythia ¹⁷⁶ prediction in the signal sample:

$$
C^{j} = \frac{N_{data}^{j}}{N_{MC}^{j}} \cdot \frac{N_{MC}^{2T2 + 2T1}}{N_{data}^{2T2 + 2T1}}.\tag{5}
$$

 The SD background estimation starts from the calcu- lation of the number of SD events in the SD dominated control sample, $1T2+0T1$, by subtracting the number of other kind of events from the number of data events:

$$
N_{SD}^{1T2+0T1} = N_{data}^{1T2+0T1} - N_{DD}^{1T2+0T1} - N_{ND}^{1T2+0T1} - N_{CD}^{1T2+0T1},
$$
\n(6)

¹⁸¹ where $N_{ND}^{1T2+0T1}$ was calculated with the ND estimation ¹⁸² method and $N_{DD}^{1T2+0T1}$ was taken from Pythia for the first iteration. To scale the number of SD events to the signal ¹⁸⁴ region, the ratio R_{SD}^j was calculated from data. The SD dominated data events that were used in the calculation of the ratio have exactly one leading proton seen by the RPs, in addition to the sample selections based on T2 and T1 tracks. By using the ratio

$$
R_{SD}^{j} = \frac{N_{data}^{j+1proton}}{N_{data}^{1T2+0T1+1proton}},\tag{7}
$$

¹⁸⁹ the expected number of background SD events was cal-¹⁹⁰ culated as

$$
N_{SD}^{j} = R_{SD}^{j} \cdot N_{SD}^{1T2+0T1}.
$$
 (8)

 $\frac{1}{192}$ SD and CD background estimates described above. The 210 timate, the ratio R_{ND}^{j} was calculated from Phojet and ¹⁹³ background estimations were repeated with redefined ¹⁹⁴ values of $N_{DD}^{2T2+2T1}$, $N_{SD}^{2T2+2T1}$, $N_{DD}^{1T2+0T1}$, $N_{ND}^{1T2+0T1}$: ¹⁹⁵ the numbers of DD events were scaled with the ratio ²¹³ The visible DD cross-section was calculated using the ¹⁹⁶ of $\sigma_{DD}^{measured}/\sigma_{DD}^{MC}$, and the numbers of SD and ND ²¹⁴ formula ¹⁹⁷ events were calculated using their estimation methods. ¹⁹⁸ Next, the three steps were repeated until $N_{ND}^{2T2+0T1}$ and $N_{SD}^{2T2+0T1}$ converged. The final numbers of estimates in 200 the I_{track} control samples are shown in Table [I,](#page-2-0) and the 215 where E is the experimental correction and the integrated ²⁰¹ estimated numbers of background events in the signal ₂₁₆ luminosity $\mathcal{L}=(40.1\pm1.6) \mu b^{-1}$. The experimental cor-²⁰² sample are shown in Table [II.](#page-3-13)

²⁰⁴ ined in the validation samples. In these samples, the total ²¹⁹ of events with only neutral particles within detector ac-²⁰⁵ estimated number of events is consistent with the num-²²⁰ ceptance, and bin migration. The correction was esti-²⁰⁶ ber of data events within the uncertainty of the estimate, ²²¹ mated using Pythia, and the largest difference with re-

TABLE I. Estimated numbers of ND, SD, CD and DD events in the ND and SD background control samples. The numbers correspond to the full selection I_{track} .

	ND control sample	SD control sample	
	$2T2 + 2T1$	$1T2+0T1$	
ND.	$1,178,737 \pm 19,368$	$659 + 65$	
SD.	74,860±6,954	60.597 ± 12.392	
CD	$2,413 \pm 1,207$	$2,685 \pm 1,343$	
DD	$54,563 \pm 19,368$	$15,858 \pm 1,123$	
Total	$1,310,573 \pm 20,614$	79,798±12,465	
Data.	1,310,573	79,798	

FIG. 1. Validation of background estimates for the full selection I_{track} . Each plot shows the corrected number of events in data (black squares) and the combined estimate with background uncertainties. The combined estimate is the sum of ND estimate (cyan), CD estimate (green), SD estimate (blue) and DD estimate (red). The shaded area represents the total uncertainty of the background estimate.

The first estimate of σ_{DD} was calculated with the ND, 209 same side. To determine the uncertainty in the ND es-²⁰⁷ see Figure [1.](#page-2-1) The uncertainty in the SD estimate was de-²⁰⁸ termined with an alternative control sample: 1T2+1T1 ²¹¹ N_{ND}^{j} estimated with it. A conservative uncertainty of ²¹² 50% was assigned for the CD estimate.

$$
\sigma_{DD} = \frac{E \cdot (N_{data}^{2T2 + 0T1} - N_{bckg}^{2T2 + 0T1})}{\mathcal{L}} \tag{9}
$$

²⁰³ The reliability of the background estimates was exam-²¹⁸ struction efficiencies of T2 and T1 detectors, the fraction ²¹⁷ rection includes the acceptance, the tracking and reconData 8,214 5,261 375 1,350 1,386

TABLE II. Expected number of background events and observed number of data events passing the signal event selection 2T2+0T1.

²²³ uncertainty. An additional correction was introduced for ²⁴⁹ sured cross-section. The difference between the nominal ²²⁴ the selections with $5.9 < |{\eta}_{track}|_{min} < 6.5$ to scale the ra- 250 and recalculated cross-section was taken as the system-²²⁵ tio $N_{5.9<|\eta_{track}|min<6.5}/N_{total}$ to be consistent with data. 251 atic uncertainty. ²²⁶ 2T2+2T1 and 1T2+1T1 same side selections were used ²²⁷ to achieve the scale factor. The value of the additional ²²⁸ correction is 1.22 ± 0.03 (1.24 ± 0.03) for the positive (neg-
²²⁹ ative) side. ative) side.

²³⁰ The visible cross-section was then corrected to the ²³¹ true η_{min} cross-section. Pythia and Phojet predict a ²³² significantly different share of visible events that have 233 their true η_{min} within the uninstrumented region of ²³⁴ 4.7< $|\eta|$ < 5.3. Therefore, the visible η range was extended ²³⁵ to $|\eta|=4.7$ to minimize the model dependence. This final ²⁶⁰ ²³⁶ correction was determined from generator level Pythia ²⁶¹ for the design and the successful commissioning of the 237 by calculating the ratio of $N_{4.7 \leq |\eta^{\pm}|_{min} \leq 6.5}/N_{visible}$. 262 high β^* optics and to the LHC machine coordinators for ²³⁸ The uncertainty was estimated by comparing the ²⁶³ scheduling the dedicated fills. We thank P. Anielski, M. ²³⁹ nominal correction to the one derived from Phojet. ²⁶⁴ Idzik, I. Jurkowski, P. Kwiecien, R. Lazars, B. Niemczura 240 In this paper, the true η_{min} corrected cross-section 265 for their help in software development. This work was $_{241}$ $(4.7<|\eta^{\pm}|_{min}<6.5)$ is called I, and the subcategories $_{266}$ supported by the institutions listed on the front page and ²⁴² as D11 $(4.7<|\eta^{\pm}|_{min}<5.9)$, D22 $(5.9<|\eta^{\pm}|_{min}<6.5)$, 267 partially also by NSF (US), the Magnus Ehrnrooth foun-²⁴³ D12 (4.7< $|\eta^+|_{min}$ <5.9 and 5.9< $|\eta^-|_{min}$ <6.5), and D21 ²⁶⁸ dation (Finland), the Waldemar von Frenckell foundation ²⁴⁴ (5.9< $|\eta^+|_{min}$ <6.5 and 4.7< $|\eta^-|_{min}$ <5.9).

²⁴⁶ summarized in Table [III.](#page-4-4) For each source of system-²⁷¹ Fund), the OTKA grant NK 101438, 73143 (Hungary) ²⁴⁷ atic uncertainty, the value was calculated by varying the ²⁷² and the NKTH-OTKA grant 74458 (Hungary).

²²² spect to QGSJET-II-03 [\[14](#page-4-3)] and Phojet was taken as the ²⁴⁸ source within its uncertainty and recalculating the mea-

²⁵² In summary, we have measured the DD cross-section $_{253}$ in an η range where it has never been determined be-²⁵⁴ fore. The TOTEM measurement is $\sigma_{DD}=(116\pm25) \mu b$ ²⁵⁵ for events that have both diffractive systems with ²⁵⁶ 4.7< $|\eta|_{min}$ < 6.5. The values for the sub-categories are ²⁵⁷ summarized in Table [IV.](#page-4-5) The measured cross-sections ²⁵⁸ are between the Pythia and Phojet predictions for corre- $_{259}$ sponding η ranges.

245 The sources and values of systematic uncertainties are 270 of Science and Letters (The Vilho, Yrjö and Kalle Väisälä We are grateful to the beam optics development team ²⁶⁹ (Finland), the Academy of Finland, the Finnish Academy

- ∗ ²⁷³ ^{*} Department of Atomic Physics, Eötvös University, Bu-²⁷⁴ dapest, Hungary.
- † ²⁷⁵ Institute of Nuclear Physics, Polish Academy of Science, ²⁷⁶ Krakow, Poland.
- ‡ ⁷ SLAC National Accelerator Laboratory, Stanford CA, ²⁷⁸ USA.
- § ²⁷⁹ AGH University of Science and Technology, Krakow, ²⁸⁰ Poland.
- ²⁸¹ [1] M. Ryskin et al., Eur. Phys. J. C 54, 199 (2008)
- ²⁸² [2] E. Gotsman et al., Eur. Phys. J. C 57, 689 (2008)
- 283 [3] S. Ostapchenko *et al.*, Phys. Lett. B **703**, 588 (2011)
- 284 [4] V.A. Khoze *et al.*, Eur. Phys. J. C 69 , 85 (2010)
- 285 [5] T. Affolder *et al.*, Phys. Rev. Lett. **87**, 141802 (2001)
- 286 [6] B. Abelev et al., $arXiv:1208.4968$, submitted to ²⁸⁷ Eur.Phys.J. C
- ²⁸⁸ [7] V. Berardi et al. (TOTEM Collaboration), CERN-²⁸⁹ LHCC-2004-002 (2004); addendum: CERN-LHCC-2004- 290 020 (2004); G. Anelli et al. (TOTEM Collaboration), ²⁹¹ JINST, 3, S08007 (2008)
- 292 [8] $\eta = -\ln[\tan(\theta/2)]$ where θ is the polar angle.
- ²⁹³ [9] L. Jenkovszky et al., [arXiv:1211.5841,](http://arxiv.org/abs/1211.5841) submitted to ²⁹⁴ Eur.Phys.J. C
- $_{295}$ [10] V. Avati *et al.*, Proceedings of 11th ICATPP Conference

		D11	D22	D ₁₂	D21
Statistical	$1.5\,$	$1.1\,$	0.7	0.9	0.9
Background estimate	9.0	6.0	3.5	2.7	2.2
Trigger efficiency	2.1	1.2	1.0	0.9	0.9
Pile-up correction	2.4	2.1	0.4	1.1	$1.0\,$
T1 multiplicity	7.0	3.9	0.7	$1.6\,$	1.7
Luminosity	4.7	2.6	0.5	1.1	1.1
Acceptance	14.7	14.1	2.6	2.0	$2.0\,$
True η_{min}	15.4	11.0	1.5	2.9	2.9
Total uncertainty	24.8	19.6	4.8	5.1	4.9

TABLE III. Summary of statistical and systematic uncertainties (μb) .

TABLE IV. Double diffractive cross-section measurements (μ b) in the forward region. Both visible and true η_{min} corrected cross-sections are given. The latter is compared to Pythia and Phojet predictions. Pythia estimate for total $\sigma_{DD}=8.1$ mb and Phojet estimate σ_{DD} =3.9 mb.

²⁹⁶ (World Scientific Publishing) 2010

³⁰⁰ (2008)

297 [11] G. Antchev et al. (TOTEM Collaboration), EPL, 101 , 301 [13] R. Engel, Z. Phys. C, 66, 203 (1995)

 (2006)

²⁹⁸ 21003 (2013) ²⁹⁹ [12] T. Sjostrand et al., Comput. Phys. Commun. 178, 852

³⁰² [14] S. Ostapchenko, Nucl. Phys. Proc. Suppl. B, 151, 143