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ABSTRACT
Multiplicity distributions of charged particles for inelastic, non singie-
-diffractive events in proton-antiproton collisions at a centre of mass energy
of 540 GeV are presented for various pseudorapidity (Am) intervals. The
widths of the multiplicity distributions, scaled to their means, increase as
Amn is made smaller, and the deviation from a Poisson distribution becomes
progressively more pronounced. It is found that the data are remarkably well
described by a negative binomial distribution, when the centre of the interval
coincides with m = 0 in the c.m.s. and reasonably well also for intervals with
centres somewhat displaced from m = 0. The parameters of the distributions

vary smoothly with the size and position of the acceptance interval.
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1. INTRODUCTION

The experimental study of charged particle multiplicity distributions in

high energy inelastic collisions has been the subject of many

investigations [1]. Such distributions are sometimes described in terms

of the scaled variables <n>Pn and n/<n> (where Pn is the probability

for an event with n charged prongs and <n> is the average number of charged
particles). KNO-scaling {2] implies a universal form, ~<n>Pn = y(z=n/<n>),

for the multiplicity distribution at sufficiently high energy. Thus there
would be only one energy dependent parameter, the average multiplicity <m>.
Approximate KNO-scaling was found to hold, e.g. for inelastic, non single-
~diffractive proton-proton reactions from c.m. energy Vsas10 GeV up to the
maximum ISR energies (Vs=63GeV) [3]. However, at the CERN collider, at

a c.m.s energy of 540 GeV, our collaboration has reported violation of KNO-
scaling [4] in the inelastic, non single-diffractive data, in which an
increased probability for large multiplicities was observed. On the other
hand, approximate KNO-scaling was reported to hold up to the same energy
for a limited central region of phase space by UAl (5] and UA5 (4]

However, as shown in this paper the shape of the multiplicity distribution
depends on the size of the acceptance interval. Furthermore the shape also
changes when the sampie is truncated by imposing the condition that at
least one charged particle is observed in the region considered, as has been

done by some investigators {4.5].

several theoretical models like the dual parton model [6], models for
soft QCD bremsstrahlung {7}, a medel invoiving production of independent
"fireballs" (8], and the quantum statistical or chaotic source model

[9] have predicted that KNO-scaling would be broken. Some models predict
narrower distributions at increased energy but the dual parton model and
the "fireball" model predict wider distributions, in qualitative agreement
with observations of the UA5 collaboration [4]. |

In this paper we report on a systematic study of the shapes of the
multiplicity distributions in different intervals of pseudorapidity, |ni< n,
(n = - In tan ©/2 where © is the c.m.s. emission angle). We have

also studied the distributions in different non-central intervals. The data
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used are non single-diffractive events obtained at the CERN SPS collider at
540 GeV c.m.s. energy. The procedures for correcting and analysing the data
are given in section 2. Corrected multiplicity distributions are given in
section 3.1 for the case with m-intervals centred at m = 0 in the c.m.
system. Parametrizations of the distributions in the same m-intervals are
presented in section 3.2. Results for multiplicity distributions in
n-intervals with centres displaced from M, ms. - O are presented in

section 3.3.

Remarkably good fits to the data are obtained with a set of

probability distributions, one for each choice nc, using:

n+k-1 [<n>/k]“ 1

P(n;<n> k) = [ K - 1 fr<n>/k] @<k @

This distribution is known as the negative binomial distribution in the
variable n, where the first parameter <n> determines the position, being
equal to the expected average of n, and k influences the shape of the
distribution. In pbysics this distribution is known as the generalized
Bose-Einstein distribution when k is an integer [10,11]. It becomes

a Poisson distribution in the limit k -+ o and a simple Bose-Einstein
(i.e geometric) distribution for k=1. Such distributions have applications

in many areas of science.

One example of the appearance of the negative binomial distribution in
physics is photon counting in quantum optics. The number n of identical
bosons, in one phase space cell, with mean <n> follows a Bose-Einstein
distribution (negative binomial with k=1) [11]. This was observed in

photon counting experiments in 1965 [12] with a He-Ne laser operated well
below threshold. High above threshold the laser light fluctuations approach
a Poisson distribution. The number of identical photons from k independent
sources of equal strength <n>/k fluctuates according to the generalized
Bose-Einstein distribution with the parameters <n> and k (integer) [10].
Under certain conditions photon counting from a thermal source.is expected
to follow a negative binomial distribution with k not necessarily an

integer [13].



In particle physics this kind of distribution was applied many years ago
{14] and its usefulness was emphasized by several authors [15,16] and
was recently revived [17]. When the parameter k has been taken as an
integer, the interpretation was often similar tc that used in photon

counting i.e. equal to the number of independent phase space cells. We
emphasize that in this paper we do not restrict k to be an integer, for

which case the binomial coefficient in {1) is given by k(k+1).....(k+n-1)/nl

Finally, we mention that the asymptotic form of (1) (when <n> is large)
can be written as a gamma distribution in the scaled variable z = n/<n>

[18], namely

k
<n>P(m;k) = —% z K1 gkz (2)

For KNO-scaling to hold in this approximation k has to be energy
independent. Application of this form (with k=2) to multiplicity
distributions at high energy has been made [8].

2. EXPERIMENTAL PROCEDURE
2.1 Detector and data

The UA5 detector consists of two large streamer chambers, placed above and
below the SPS beam pipe, respectively. Each chamber is viewed by a set of
three cameras and tracks are reconstructed in space from point measurements
on the fiim. The geometrical acceptance of the detector is about 95% in the
plateau region |n| < 3 where the particle density is high, falling to

Zzero at |n| > 5 where the number of produced particles is low. The jarge
acceptance makes the results for the multiplicity distributions reliable
since the corrections are small. The apparatus was equipped with a beam

pipe of beryliium in order to minimize electromagnetic interactions.

The trigger system was based on two large scintillation counter hodoscopes
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placed at each end of the streamer chambers. They cover a pseudorapidity
range 2 < n| < 5.6. For the sample of events used here the trigger
required at least one hit in each arm. This trigger rejected essentially
all elastic and most single diffractive events but accepted about 95% of
non single-diffractive events as determined by Monte Carlo simuiations. The
detector and the analysis procedures are described in more detail in the

references [19,20].

The data sample used in this analysis consists of 7344 non single-

-diffractive events containing 168656 observed primary tracks and was taken
during the run in 1982 at the CERN SPS collider. The analysis was performed for
different cuts in the c.m.s pseudorapidity (nc} such that only particles

emitted in the interval N <n<n, were counted. This study was supplemented

by another one for which the centre of the acceptance interval was

displaced from m = 0. in the c.m.s. No further requirement, such as observing

at least one track in the accepted region, was made.

2.2 Analysis method

Differences between observed and true mulitiplicities are caused by
limitations in the geometrical acceptance, and by contamination of
primary tracks by secondaries, e.g. charged particles from strange
particle decays and from hadronic interactions and electron positron pairs
from photons converting in the beam pipe. These effects were corrected for

using a Monte Carlo simulation.

The event generator used in the Monte Carlo was adjusted to reproduce the
observed features of real events. Particies were produced in clusters with
a cluster size of two charged particles on average [21] and the yield of
strange particles [22] and photons [23] as well as the shape of the
rapidity distribution were reproduced as a function of charged multiplicity
[19]. The generated tracks were followed through the detector, allowing
interactions and scattering to take place. The Monte Carlo events were then

treated in the same way as the measured events.

The trigger efficiency was determined in the Monte Carlo simulations using
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non single-diffractive events. For events with high multipiicity the
efficiency is 100%. For events with a few charged particles the efficiency
varies with the number of particles and with the pseudorapidity range
considered and in some cases it is as low as 30 %. There may be systematic
errors at the lowest multipiicities (n = 0,1,2) since the corrections for
trigger efficiency are sensitive to the input model. The trigger efficiency

Gn was determined in each pseudorapidity interval for each true
multiplicity n.

The Monte Carlo simulations were used to produce a set of probabilities

mn
the number of events observed to have m tracks and Tn is the true numbepr

P that a true n prong event is observed as an m prong event, If Om is

of n-prong events we have:

0 = Z P T, &  (m=012.) (3)
n

The matrix elements Pmn’ depending on the m-interval considered and its
position, represent the knowledge of the detector and the measurement

procedure.

A. Corrected multiplicity distribution

When correcting a multiplicity distribution in full phase space one gets an
overdetermined system of equations, since the true number of charged

particles must be even due to charge conservation.

When considering a limited pseudorapitity range the true number of charged
particles can be both odd and even and eq. 3 is no longer an
overdetermined system. It is underdetermined or at most just determined. In
the latter case eq. 3 could in principle be solved by calculating the
inverse matrix. This method, however, gives unstable results. We prefer an
iterative method to find the true multiplicity. Also in this case the

solution becomes stable for n, > 1 only after reducing the number of

unknowns by grouping into bins of 2 or 3 particles.
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For the corrected distributions neighbouring peoints are highly correlated.
Therefore the best way to fit a model to the data is to use the method

described below.

B. Fitting the observed distribution

For the true multiplicity distribution Tn we assume a negative binomial
distribution according to eq. 1, with two free parameters <n> and k, and

we emphasize again that we do not assume the parameter k to be an integer.

The two parameters are varied until the best fit to the observed distribution

Om is obtained, using minimum X2 as a criterion. Here

(0 —NEP & T )2
2 j: m mntnon n
m Gm

where N is a factor which normalizes to the number of observed events. The
statistical errors appearing in the weight factors 0';2 have two
contributions: one from the finite numbers of observed events and one from

the finite numbers of Monte Carlo generated events.

3. RESULTS

3.1 THE CORRECTED MULTIPLICITY DISTRIBUTIONS FOR m-INTERVALS
CENTRED AT m = O IN THE CM.S.

The corrected multiplicity distributions were determined for a set of
central acceptance intervals defined by the pseudorapidity cut n, from
0.5 to 5.0 in steps of 0.5 with a smaller interval added for which nc is
0.2. Figure 1a shows some of the corrected multiplicity distributions. The
errors shown are statistical only. Systematic errors, due to uncertainties
in the precise assignment of charged particles to the primary vertex and
due to uncertainties in trigger efficiency, are about as large as

statistical ones for each data point, except for the lowest multiplicity
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events where they are somewhat larger for reasons discussed in the previous

section.

The multiplicity distributions have different shapes in the different
pseudorapidity intervals with relative fluctuations increasing with
decreasing size of the interval. This is clearly seen when the
distributions are plotted as a function of the variables <n>Pn versus

z = n/<n> shown in fig 1b. In our sample of about 7000 events we observe
fluctuations as large as z = 8 for n, = 0.5 but only to z = 4 for

'ﬂc = 5.0.

The shape of the distributions is quantified by the moments. The
C-moments, where Cq = <nq>/<n>q, are plotted in figure 2 and given in
table 1. All moments increase as the r-intervai is decreased. The

changes are especially large for the smaller pseudorapidity intervais.

3.2 FITTING THE NEGATIVE BINOMIAL DISTRIBUTION TO DATA FOR m-INTERVALS
CENTRED AT m = 0 IN THE C.M.S.

The negative binomial that is taken to represent the true multiplicity
distribution is transformed by the matrix P. The transformed distribution
is fitted to the uncorrected data using the method described in the
previous section. This is repeated for the selected c.m.s. pseudorapidity
intervals m _=0.2 and from n,=0.5 up to n =5.0 in steps of 0.5 . Examples

of the resulting distributions are given in figure la together with the
corrected distribution. The fact that the fits seem to be good is born out
by the values of minimum X2 given in table 2. Also given is y = V2X?

~ V'2DF - 1 (where DF is the number of degrees of freedom) which is
expected to be approximately normally distributed with mean 0 and standard
deviation 1 for large enough values of DF. The largest contribution to Xz
comes from the first two bins (n=0,1), the remaining X? never deviates

from expectation by more than two standard deviations which is remarkably
good, considering that X2 as defined in (4) depends only on statistical
errors and may be too large due to the presence of systematic errors. Since,
as discussed in the previous section, systematic errors are expected to be

larger for small multiplicities we do not claim that the large contribution
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to X2 from to zero- and one-prong events is serious. We can conclude that
the negative binomial distribution describes the data remarkably well. Also
given in table 2 are the values of the parameters <n> and k. The parameter
<n> grows smoothly with the size of pseudorapidity interval as expected
from our corrected pseudorapidity distribution [19]. The parameter k
increases almost linearly with the sjize of the pseudorapidity intervals as
seen in figure 3a. In figure 3b the inverse of k is plotted. A Poisson
distribution corresponds to k"1=0. The figure shows that all
distributions differ clearly from a Poisson, the more sc the smaller the
acceptance region. The other extreme, k=1, corresponds to the Bouse-Einstein
distribution which is expected for identical bosons from one phase space
cell.

3.3 PSEUDORAPIDITY INTERVALS NOT CENTRED AROUND ZERO

All the results discussed in the previous sections concern pseudcrapidity
intervals centred at n = 0 in the c.m. system. Multiplicity distributions
in limited pseudorapidity intervals with the centre shifted from n = O
have also been studied for the three smallest intervals An = 0.4, 1 and 2
with the centres positioned at |n| = 0.5, 1, ... 8. Moments of the
corrected distributions are given in table 3. Negative binomial
distributions fitted te these non-central data give acceptable X2 for

An = 0.4 for all positions of the centre in the investigated range |n|

< 3. For An = 1 and An = 2, the fit is acceptable judged from X2, if

the interval is centred in |mj < 2. The parameter <n> is again in
agreement with the known pseudorapidity density distribution {19] and the
other parameter k is given in table 4 and fig. 4. This parameter is minimum

for intervals at m = 0 and increases slowly with the position of the centre.

4. DISCUSSION AND CONCLUSIONS

In our systematic study of inelastic, non single-diffractive reactions at
the CERN SPS collider with 540 GeV c.m.8. energy a new regularity has been
found for the multiplicity distributions in limited intervals of

pseudorapidity. In all cases the data are very well represented by a
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negative binomial distribution, which deviates progressively more from a
Poisson distribution when the pseudorapidity interval is made smaller. Thus
the correlation between charged particles becomes stronger at smaller
pseudorapidity intervals. The parameter <n>, i.e. the average charged

particle multiplicity, increases with the size of the pseudorapidity
interval in agreement with the known shape of the density distribution

dn/dn vs m [19]. The other parameter, k, increases aimost linearly with
the interval size M., from an extrapolated value of 1.5 at N~ 0 to

3.2 at nc = 5.0.

An interpretation of the integer values of the parameter k as the number of
independent phase space cells, as in photon counting, may seem supported by
the fact that k increases when the pseudorapidity interval is made larger.
Several difficulties remain unexplained, however. Firstly, the best fits
require k to deviate from integer values. Alse since at least two kinds of
indentical bosons {rt" and n¢") are involved one wouid expect k = 2, but

in fact k approaches 1.5 for small m~intervals. Qur detector has no
magnetic field, so we cannot study each charge separately, which obviously
would be of interest. Another difficulty with the interpretation is that

the parameter Kk decreases with energy, whereas one would expect it to
increase. From published data of inelastic, non single-diffractive pp and

pp events we find that k‘1 is an approximately linear function of In s

[24]. An increase of k1 (denoted g?) was reported earlier [16] at

lower energies for several different inelastic reactions {(diffractive

included).

The negative binomial distribution implies strong correlated emission of
particles, as is seen from its non-zero f2~parameter. f2= <n(n-1)>-<n>? =
<n>?/Kk. Besides the stimulated emission of bosons inherent in the
above—mentioned Bose-Einstein distribution, there are other mechanisms
explicitly incorporating correlated emission of particles, in particular
those involving the production and decay of resonances and clusters. Our
collaboration has reported observations based on a study of
forward-backward multiplicity correlations [21] and a study of short
range two-particie correlations [25], which indicate an average cluster

size of about two charged particles.
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Finally, we mention the possibility that the agreement with negative
binomial distributions is only approximate. Arguments, based on an analysis
of forward-backward multiplicity correlations, have been advanced that the
parent cluster multiplicity itself follows a negative bhinomial distribution
{26]. The distribution of particle multiplicities will then depend con the
parameters of this parent distribution and on the type of cluster size
distribution. A separate Monte Carlo study shows that this case cannot be
excluded, since the resulting distribution for particles may follow a
negative binomial distribution sufficiently closely, not showing
significant differences {except at n=0,1) in samples of less than 10000

events.
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TABLE CAPTIONS

The moments of the corrected multiplicity distributions in a
central interval |n| < m_. The errors given are statistical.
The systematic errors are about equal within a factor of 0.5 - 3.
D2=m and the C-moments are defined by Cq=<nq>/<n>q .
It should be noted, that the values of the moments change when at
least one observed charged particle is reguired in the acceptance
interval [4,5].

"
The results of fitting the negative binomial distribution with
parameters <n> and k to the multiplicity distribution in a

central interval |n| < m_. For the definition of y, see the text.

The moments of the corrected multiplicity distributions in the
pseudorapidity intervals of size An = 0.4, 1 and 2 in non-

central intervals. The errors given are statistical. We estimate the
systematic error to be 1-3 times the statistical one. The systematic
error is largest for the interval An = 2 centred at i = 3,

decreasing with interval size and centre of interval.

The results of fitting the negative binomial distribution with
parameters <n> and k to the multiplicity distribution in non-
central intervals of size An = 0.4, 1 and 2. For those values
of <n> and k marked with * the fit to the negative binomial
distribution is less satisfactory, and the resulting value of k
is not plotted in figure 4.
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_TABLE 1
ﬂc <n> D2 <r1>/D2 02 C3 C4 05
0.2 1.161+0.01 1.4210.02 0.8210.01 2.48+0.03 8.5x0.4 394 23040
0.5 3.01%0.03 2.90x0.04 1.04+0.01 1.93+0.02 5.2+0.2 18+1 80+10
1.0 6.1710.06 5.2210.07 1.18*%0.01 1.72x0.02 4.0+0.1 12.1+0.7 44+ 5
1.5 9,49+0.08 7.46+0.09 1.27+0.01 1.62+0.01 3.55+0.08 9.91+0.5 33 3
2.0 12.8+0.1 9.5+0.1 1.34+0.01 1.56+0.01 3.2410.07 8.410.4 26+ 2
2.5 15.920.1 11.3%0.1 1.40+0.01 1.51+0.01 3.0010.06 7.4+0.3 21+ 1
3.0 18.930.2 12.9+0.1 1.47+0.01 .1.4620.01 2.79%0.05 6.4+0.2 17+ 1
3.5 21.430.2 14.1+0.2 1.5240.01 1.43x0.01 2.62%0.04 B.8x0.2 14.8+0.7
4.0 23.6+0.2 14.9+0.2 1.58+0.01 1.40%+0.01 2.49+0.04 5.3+0.1 12.9%0.6
4.5 25.2+0.2 15.5%0.2 1.63+0.01 1.38+0.01 2.37+0.03 4.9+0.1 11.420.5
5.0 26.4x0.2 15.7+0.2 1.68x0.01 1.35+0.01 2.28+0.03 4.6+0.1 10.3+0.4
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TABLE 2

All data points

n=0 and n=1

All data points

inciuded excluded included

n, X2 /DF v x2 /0F  y <> k

0.2 100/ 9 0.3 87/ T 0.6 1.16+0,02 1.57+0.09
0.5 8.1/ 16 -1.5 74 / 14 -1.3 3.00+0.04 1.68+0.06
1.0 41.8 / 27 1.9 295 / 25 0.7 6.14+0.06 1.80+£0.05
1.5 45.2 / 37 1.0 26.0 / 35 ~1.1 9.47+0.08 1.95+0.05
2.0 80.8 / 46 3.2 62.3 / 44 1.8 12.8+0.1 2.12+0.05
2.5 57.3 / 53 0.5 49.8 / 51 0.0 15.93+0.1 2.27+0.05
3.0 78.7 / 59 1.7 71.5 / 57 1.3 18.8+0.1 2.47+0.05
3.5 78.5 / 63 1.3 73.9 / 61 1.2 21.4%0.1 2.6410.05
4.0 70.9 / 66 0.5 68.0 / 656 0.3 23.5%0.1 2.82+0.05
4.5 87.5 / 65 0.3 67.4 / 64 0.3 25.3x0.1 3.01£0.05
5.0 74.0 / 65 0.8 72.4 / 64 0.8 26.4£0.3 3.19%0.05
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TABLE 3
An = 0.4
interval
centre <n> D2 <n> /D2 C 2 C 3 Cy c5
0.5 1.224+0.01 1.4540.01% 0.8410.01 2.42+0.02 8.1+0.2 351 18010
1.0 1.30+0.01 1.51+0.01 0.86+0.01 2.36x0.02 T.720.2 31x2 176+20
1.5 1.30£0.01 1.49+0.01 0.87+0.01 2.31+0.02 7.2+0.1 28+}1 13018
2.0 1.27+0.01 1.44+0.03 0.88+0.01 2.2940.02 7.0£0.1 27T+1 12919
2.5 1.21+0.01 1.38+0.01 0.88+0.01 2.30£0.02 6.9+0.1 26x1 110£10
3.0 -1.1020.01 1.27+0.01 0.87+0.01 2.3310.02 7.1x0.2 2812 140220
An = 1.0
interval
centre <n> D2 <n>/D, C, Cq c, Cs
0.5 3.0710.02 2.9410.03 1.05+0.01 1.92+0.01 5.1%0.1 17,.3%0.8 727
1.0 3.21+0.02 3.0210.02 1.06+0.01 1.88+0.01 4.9+0.1 16.2+0.7 65+3
1.5 3.27+£0.02 3.01+0.02 1.0910.01 1.85+0.01 4.8210.08 14.4%0.5 B3+3
2.0 3.18%+0.02 2.8910.02 1.10x0.01 1.82x0.01 4.44+0.06 13.0+0.3 4612
2.5 3.01x0.02 2.7010.02 1.11+0.01 1.81+0.01 4.31£0.07 12.6+0.5 44+4
3.0 2.75+0.02 2.45+0.01 1.12+0.01 1.7920.01 4.17+0.06 11.8+0.4 3912
An = 2.0
interval
centre <n> D2 <n>/D2 C, Cy Cy Cg
0.5 6.2430.06 5.21%x0.06 1.20+£0.01 1.70+£0.01 3.92%0.09 11.4+0.6 40+4
1.0 6.37+£0.04 5.28%0.04 1.21+0.01 1.6910.01 3.87+£0.07 11.240.4 39x3
1.5 6.4210.04 95.23%0.04 1.23+0.01 1.6610,01 3.70+£0.05 10.2+0.3 33£2
2.0 6.2910.04 5.02+0.04 1.25%0.01 1.64+0.01 3.51x0.04 9.13+0.2 27%1
2.5 5.93+0.04 4.64%0.03 1.28+0.01 1.61+0.01 3.35+0.04 8.3x0.2 23.430.8
3.0 5.3310.03 4.11+0.02 1.30+0.01 1.600.01 3.23x20.04 7.8+0.2 21.6+x0.9
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TABLE 4
An=0.4 An=1.0 An=2.0
interval
centre <n> k <n> k <n> k

0.5 |1.22¢0.01 1.65:0.06 | 3.06%0.03 1.6840.04 | 6.23+0.07 1.84%0.05
1.0 {1.30£001 167+0.06 | 3.2130.08 1.73:0.04 | 6.35:0.03  1.86+0.02
15 |1.30%0.01 1.78+0.07 | 3.2740.02 1.8120.02 | 6.41:0.04  1.92+0.03
20 127001 1932009 | 3.17+0.02  1.93+0.04" | 6.25:0.04° 2.10+0.04"
25 |[1.213001 1.99$0.09 | 3.0120.02° 2.07+0.05 | 5.92+0.03 2.29:0.05"
3.0 | 1112001  2.130.1 2.76£0.02° 2.24%0.06" | 5.39:0.04° 2.57+0.05
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FIGURE CAPTIONS

Figure 1. Corrected charged multiplicity distributions in the pseudorapidity
intervais |n| < 0.5, 1.5, 3.0 and 5.0, plotted in the variables
Pn versus n {fig. 1a) and in the variables <n>i=‘n versus z = n/<n>
(fig. 1b). The curves in fig la illustrate the negative binomial

distributions with the parameters <n> and k given in table 2.

Figure 2. Values of the moments Cq=<nq>/<q>q, g=2-5, plotted as a function
of the size of the pseudorapidity interval |nj < n,.

Figure 3. The negative binomial parameter k and its inverse l<_1 plotted as

a function of the size of the pseudorapidity interval .

Figure 4. The k-values for An = 0.4, 1 and 2 plotted versus the centre of

the intervals. We only show the k values for the cases with
acceptable fits (see table 4)
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Fig. 1a
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