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ABSTRACT

We propose a very simple model of inflation
having essentially one free parameter, the value
of which is fixed by the amplitude and scale
independence of energy density fluctuations.
The model, based on the maximally symmetric
supergravity with SU(un,l1) manifeld, has
asymptotically flat inflaton potential. All
inflationary conditions can be satisfied without
any fine-tuning and all mass parameters can be
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R X 1
Cosmological inflation ) 1s conceptually a very attractive idea; yet no

particle physics model exists in which one can implement both inflation and

reheating of the universe in a simple way. The shortcomings of the “new

2)

inflation""’, based on the Coleman—Weinberg type flat potentials, led people to
consider supersymmetric model of inflation3). Simplest versions, based on the
so-called minimal supergravity or trivial Kidhler metric, were also shown to
suffer from some diseases . In addition, minimal supergravity has a gravitino
of mass my , = O(MW)’ which in the absence of inflation is a cosmological

6)

embarrassment” ‘. Inflation can dilute ¢ any primordial gravitino number deasity,

but unfortunately gravitinos will be regenerated after inflation by 2 > 2

7)

scatterings. Recently, it has been shown that if the regenerated gravitino
density is to be suppressed below levels where the cosmic abundances of light
elements will not be disrupted by gravitine decays, one finds a very low

reheating temperature T < 10¥ GeV. Such a low reheating temperature is

problematic for particle Rghysics, especially for obtaining a correct baryon

asymmetry while suppressing unwanted nucleon decays due to dimension 5 baryon-

number violating operatorss). This constraint is an obvious difficulty for

models having a 0(1022 GeV gravitino, and although it is possible by clever
)

choices to rotate away the d = 5 AB # 0 operators, the resulting models lack

all aesthetic appeal.

The decoupling of the gravitino mass from the scale of SUSY breaking, as
felt by the light fields, can be achleved omnly in “"non-minimal” wversions of N = 1
supergravity with non-trivial Kihler metric. Here the efforts to write down an
acceptable model of inflation and particle physics have focused on the no-scale

modelslo)’ll).

These have a maximally symmetric Kihler manifold with an SU(n,1)
global symmetry, where n is the number of chiral fields. Such models have flat
tree level potentials and can lead to interesting low-enexgy particle physics as
well as to a dynamical determination of all mass scales below the Planck mass.

L

It can also give raise to a novel mechanisml , whereby the QCD vacuum angle
relaxes dynamicélly to @ = 0. In the no-scale models the source of the
low—energy SUSY breaking is the gaugino masses, whereas the gravitino can be very
heavylo) or very lightll). The various cosmological and particle physics
constraints for a very low mass gravitino in no-scale models have recently been

congidered inm Ref. 11).

The SU(n,l) structure of the Kihler wmanifold has also recently heen
) 13)

advocated12 in the context of superstrings . The compactification of the

effective ten—dimensional theory to N = 1 supergravity in four dimensions
14

dictates ) the compact internal manifold to have SU(3) holonomy. Calabi~Yau

manifolds have such a property, but otherwise little is known of them. Therefore
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it has been suggestedlz)

that a simple truncation of ten-dimensional supergravity
preserving an SU(3) subgroup of the rotation group of the six—dimensional
internal space may serve to mimic the properties of compactification on
Calabi-Yau manifold. It is remarkable that the resulting effective theory can be
shown to possess SU(n,l) Kidhler manifold such as has been studied in Refs. 10)

and 11).

To obtain an acceptable inflationary scemario, the SU(n,l) symmetry must
however be broken; otherwise there would be no vacuum energy to drive inflation.

A suitable generalization of the SU(n,l) manifold, which can be shown to fulfil

15)-18)

all requirements for inflation » 15 given by the KiZhler potential

G = - Bl (2427 ~ K141 ~4 44! YmaKlbg®) +F +E+

(L)

G, ~aK+F+F~T

o

Here z 1s a gauge singlet field responsible for SUSY breaking, yi are the matter
fields, ¢ is a gauge singlet inflaton field and F = F(¢,yi) is the
superpotential. The function K can be assumed to be a function of ¢¢%, and a
is the parameter responsible for SU(n,l) breaking with a + 0 corresponding to the
limit where one recovers the SU(n,l) structure of the Kidhler manifold. The
choice a # 0 is thus dictated by the requirement of non-zero vacuum energy.

The scalar potential corresponding to (1) can be written as

3 .
V X &F+F ak |

z
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where D* refers to a correctly normalized D-term and x = expG;/3 [for a
discussion on normalizations of fields and Lagrangian terms in non-minimal
supergravities, see Ref.19)}. In the domain of positive kinetic energies where
3x-a > 0 and K¢¢+ > 0 the potential (2) is positive semi-definite. The properly

normalized kinetic emergy terms are obtained after a point transformation

4 ((ox-adger]” o, ¢

X=X,
2 ;;Vi a 3
4= X 4
X=X,
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valid at the minimum (¢0,x0). The minimization of the potential (2) leads to
g

Fi =D = 0, and at the metastable minimum with non-zero vacuum energy one also

has the condition

X= a/2. (4)

i 19),20)
At very high temperatures, all non-singlet fields y have been shown to
choose their symmetric minima s¢ that for the purposes of inflation, we will

consider the case yi = 0, which, together with (4), leads to
= [aY: _FeETL 2,
V= (L) e awK |5y ~aky )" Kqgr )

where now F = F(¢). However, at the global minimum F¢ = aK¢, x, and the
gravitinc mass, is no longer restricted by (4) but only by the positivity

condition x > a/3.

The potential (5) is attractive for inflationary purposes because of irts
simple structure and because of its positive definitenress. A model based on this
generalization of maximally symmetric Kihler manifold is defined once F{$) and

15)-19),21) rather complicated forms were

K(l¢|) are given. In previous attempts
used, leading to a potential suitable for inflation but bearing no relation to
the $U(n,l) manifold. Here we will consider the extremely simple possibility of
potentials that are globally flat in the sense that V + 0 as |¢| » =, but show
local deviations from flatmess. Surprisingly enough, although such potentials
are very constrained, having only one free parameter, we are able to obtain an
inflationable potential inm a natural way for a large ranmge of this one para-

meter.

The aim of this paper is to show that, even in the simplest of the models
described by (5), all inflation conditions are satisfied and scale-independent
energy density fluctuation with the correct amplitude can be made counsistent with

all mass parameters being O(MPR)'
We will take the simplest imaginable ansatz for the function K:

K= ‘H; (6)

so that the inflaton field has canonical kinetic terms wp to an irrelevant

numerical factor (a/2)l’2. The superpotential can be written as



F) = £i0) +3¢ 1._;_-(6‘__52)4,14_ %P¢3+___ ()

Hexe F(0) = log my and §& # 0 are related to the Hubble constant during the
inflation and the particular form of the coefficient of the quadratic term is
dictated by the condition of having a stationary point at the origin. Here we do
not consider higher order than cubic terms. The curvature along the real and

imaginary directions at the origin is given by

2

Mg = Moy (p-252)

M = Mg (4o 6ag) —my ®

If p # 0O the global minimum is not unique: there are two complex—conjugate
global minima with

W= ‘2_5(’*‘ (gz—za)
(92)

2
Vi 43 Ra-z* -2} 2
F) (1 + ~—?;§ ) -+ P j) j{z

where ¢ = 1/YZ(u+iv). If p < 1/282, there are two real (v=0) minima given by the

solutions of

-_3 2 _
1 ELL+ Z,%“ 0 on)

The most economical assumption is, however, that p = 0. In that case one

finds a unique real minimum at

‘$o = ﬁ/g (10)
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The potential will now be flat at large Re¢, independently of §, and globally
flat in the whole complex plane if 52 { 2a. Moreover, if 52 < a, the origin
becomes a wminimum along the imaginary direction and the path followed by the

inflaton will be along the real direction.

Let us now examine the conditions on inflation assuming for the moment
that the initial distribution of the inflaton field is such that at the beginning
of inflation ¢ = 0. We will return to this question at the end of the paper.

A slow roll-over of the inflaton field can be achieved ifzz)

V'@ € 9w e
ORISR

(11b)
where the Hubble parameter is

He) = 4 L vy +46%] (12)

Equation (lla) is satisfied for 0 < ¢ < ¢; provided § < 3/2. Inflation ends when
}V"(¢f)i = 9H2(¢f) which translates in our case to

5 Li- a1 7 |ae gy -2 ppean g s o

During the slow roll-over, the semi-classical equation of motion of the inflaton

b+(2H+0 ) ¢ V() =0 (1)

and the Hubble parameter (12) can be approximated by
3Hci> + V\(‘t’) =0 (15a)
e = 4 VIp)

{15b)

In that case, the number of e-foldings of the scale factor R(t} as ¢ rolls from

¢a to ¢b can be calculated exactly and is



d’b (1— z_%d’b)
(16)
d)“ (1- :?%'—f 4’5\)

b
N(a,b) = § Heodt = jiz Log

A sufficient amount of inflation is obviously obtained for values of £ that are
less than 0O{l). The most stringent constraint on the parameters of inflationary
potentials comes, however, from the magnitude of the energy density fluctuations,
&p/p = 107" on galactic scales. The amplitude of such perturbations, when they

re~enter the Friedman horizon after the inflatiomary epoch, is given by

% = =1 WA, b an

2

where ¢, = ¢, (t,) and t, is the time of the first horizon crossing during
inflation. We estimate the number of e-foldings between ¢* and ¢f, the end of

inflation, to be
Nyg & 43+ -:‘;(xra M/M@ (18)

where MO is the solar mass, M is the mass contained in the comoving volume, and a
reheating temperature TRH = 5x10'° GeV, consistent with our further results, has
been used. For the scales M = 1012M0 (galaxy mass), M, = 1015Me (supercluster
mass) and M3 = 1022M0 (presgnt horizon mass), N, takes the values 52, 55 and 60,
respectively. Therefore the deviation from exact scale invariance is very small
but will in general depend on £. We can obtain é* from the equations of motion
(15a), whereas ¢, can be expressed as a function of ¢f and N, by using (16).

Then energy density perturbations can be written as

222 v
sp. [1-Fb - d)e 0] "y ag,
p (ﬂac)a{"g"" ¢5 (1- 5%:&5) (19)

where H, = H(t,} is the Hubble parameter at the time of the first horizon

crossing.
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From now on, we will proceed in the following way: for a given value of
£, we obtain the value of the inflaton field at the end of inflation ¢f’ solving
Eq. {(13), and at the time of horizon crossing, ¢,, using (16) with N, = N3 = 60.
The Hubble parameter at t, can be deduced from {(19) and using the condition (17).
From the very definition of H(¢) and the values of H, , 9, and ¢f’ we can deduce
Hg £ H($) and Hf = H(¢f) and thus the energy V;/“ and Vé’“- Finally the total
amount of e—foldings which the cosmic scale undergoes during the whole

inflationary period can be read off from (16) as

Log 4’5(4 - %L 4’&)
Ko

The deviation of 8p/p from scale invariance 1s given by

- L
Ny = g (20)

3
-27%0 2
A= (SP/P)z i 1- (5§4>5_(1— 5%__'@)@, §72 o~ (Nz-pq)(

Bep 0y L1- V254, (1- 3 4) o %W

213

In Fig.l we show ¢ _, b, Oy, vé“‘, v;/“, N and 4 for M = 101214@ and
M, = 1022M® as functions of £. We see that Nt > 60, which is the minimum amount
of inflation needed to solve the cosmological problems of horizon and flatness,
for the whole considered interval of E. However, the deviation from scale
invariance is A < 0(3), which is probably allowed, for § < 0.24 which is, as can
be seen from Fig.l, the interesting range. On the other hand ¢, becomes << MPR
for ¥ 3 0.2. This can be understood analytically as follows: for 52 b 1/2N*,

i.e., £ > 0,1, ¢, can be approximated by

: 2
cb* - 4)5‘ U’f}'z&’f) e8P (22)

which approaches zero asymptotically as £? increases.

The reheating temperature TRH

end of the inflation V;/“, in the case of good reheating, by

is related to the available energy at the



"o\ Y
30 4 (23)
Tzn = (ﬁ?'g,t V&

where g, is the effective number of relativistic degrees of freedom. Typically
g, = 0(10?) and Tey = (0.4—0.5)v;"'. In this way one can obtain 10!° Gev < Tog S
1046 Gev for g £ 0.2. This range overlaps with the range of scale-invariant

density fluctuations, and it is the interesting one.

For very small wvalues of £, H, and Hf behave like

He ~ 24 x 0™ GeV
H§ a A% x 10 GeV

(24)

V;/‘-l ¥ Fvx [05 GeV

while Hy and V;’“ increase as
\% -4

Ho o 1.%5 xip” GeV z

(25)
Y.
Vo 'e Fusx10® GV 3“/‘

For the sake of completeness we have tabulated, in the Table, the numerical

values of ¢, = Hg, 6,, ¢, 0, V;/“ = (nzg*IBO)l’”TRH, A and N_ corresponding to
a typical set of values of the parameter §.

It is astonishing that we really can obtain a successful description of
inflation by using a one-parameter model {with m; being only an over-all scale
factor which, as we will see, can be set equal to MPR) and that the condition on

£, as dictated by A, is only the mild § ¢ 0.2.

Therefore, having now established the feasibility of inflation and scale-
independent energy density fluctuations with the correct amplitude for small Z,
we now come to the value of the over—all mass scale my. In mest inflatiomary
models my; has to be adjusted to a very small value my = 0(10'5—10"6) dictated by

bplp = 10~*. However in our nodel, using the expression (25) for small values of

£, we get

-5 -2,
My > 107 % 26)
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so that my gets small values only for values of £ ruled out by scale independent

energy demnsity fluctuatioms; but my = 0(1l) for & = 3x1073,

In conclusion, we have considered the simplest model of inflation based on
maximally symmetric supergravity. The model has two free parameters: & and mg.
All requirements needed for a successful inflationary scenario are satisfied
without any fine tuning of parameters. Energy density fluctuations are scale-~
independent for £ < 0.24. The correct amplitude 6p/p = 10~* determines the
Hubble constant.at the end of the inflationary period Hf [and hence the reheating
temperature for the case of good reheating as in the two—component inflationary
model proposed in Ref. 16)] and at the origin Hy. The further requirement of

large reheating temperature (T 2 101° GeV) - needed to generate, after the

RH
inflation, the cosmological baryon asymmetry by out—of-equilibrium decays of

heavy (MH 2 1016 GeV) colour triplets - leads to the mild constraint £ < 0.2.

In this paper we have not addressed the question of the imnitial pre-
inflationary conditions. Two different mechanisms have been so far proposed: the

24
high-temperature phase transition23) and the chaotic inflation )

scenario. The
feasibility of a high-temperature phase transition depends on the value of the
typical relaxation time (At ~ L1/mjT) as compared to the age of the (radiation-—
dominated) Universe (tU ~ 1/T?2). 1In fact, as has been argued by Lindeza), if
At 2 tU for T Tc’ then any initial distribution of the inflaton field may
remain effectively frozen and the theory of temperature phase transitions does
not apply. In that case one should consider some chaotic initial distribution
for ¢ and assume that in some domain of the Universe the field ¢ was initially
near the origin 0 < ¢ < H;.

On the other hand, if At < t,. then any initial distribution will have the

time to relax dynamically to the %rigin at Tc and temperature corrections are
relevant. In our model, small values of &, 1.e., large values of m;, seem to
favour this possibility. Not only that, recently Mazenko et al.zs) have argued
that large field fluctuations would form domains where the inflaton lies at the
global minimum ¢ = ¢, and no slow roll-over would take place. However, as was

26), the domain formation rate will

pointed out by Albrecht and Brandenberger
depend on the strength of the inflaton interaction rate as compared to the rate
of the Hubble expansion which will red-shift large fluctuations. According to
Albrecht and Brandemberger the correct initial state will be obtained for small
enough coupling of the inflaton, which entails that the position of the global

minimum should be larger than O(M Also our simple model with small E will

PR.)'
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favour the formation of a correct initial state: in particular for § = 3x10-3 we
get ¢p = 104 MPX' The problem of initial conditions in inflationary models based
on maximally symmetric supergravity is presently under investigation27).
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g o, My OFMyy G My, 6 My, (nzg*/soJiTRH A N,
0.35 2.8x1074L 1.7x107/  0.66 0.81 2.2x1043 Gev 11.5 95
0.30 1.3x10"7 8.8x107® 0.79  0.94 1.3x10"% Gev 6.1 109
0.25 2.8x10~8 2.8x10™*  0.97 1.13 5.6x10" Gev 3.5 133
0.20 3.6x1077 5.7x107%  1.25 1.41 1.8x10%° Gev 2.2 183
0.15 2.2x107% 5.9x107% 1.70  1.86 3.9x10*° Gev 1.6 281
0.10 8 x107° 0.44 2.63  2.79 6.2%10*° gev 1.3 588
0.05  2.7x107° 2.74 5.46  5.62  7.2x10%° Gev 1.14 2.5%10°

TABLE Numerical values of ¢i = Hy, 94 ¢f, ¢m, (TRH)max’

A and Nt for a sample of values of E.
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FIGURE CAPTION

Graphs of ¢m, ¢f’ by yl/s oyl/sk, Nt and A as functions of £ (for definitions,

f

- 19
see text); ¢m, ¢f and ¢, are in units of MPR = 1,2x10 GeV, and the total

roll—over scale Nt is expressed in units of (N ) = 60,

t 'min
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