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(Received 31 July 2013; published 10 October 2013)

Event-by-event fluctuations in the initial conditions for a hydrodynamical description of heavy ion collisions are
characterized. We propose a Bessel-Fourier decomposition with respect to the azimuthal angle, the radius in the
transverse plane, and rapidity. This allows for a complete characterization of fluctuations in all hydrodynamical
fields including energy density, pressure, fluid velocity, shear stress, and bulk viscous pressure. It has the
advantage that fluctuations can be ordered with respect to their wavelength and that they can be propagated
mode by mode within the hydrodynamical formalism. Event ensembles can then be characterized in terms of a
functional probability distribution. For the event ensemble of a Monte Carlo Glauber model, we provide evidence
that the latter is close to Gaussian form, thus allowing for a particularly simple characterization of the event
distribution.
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I. INTRODUCTION

In recent years, data from ultrarelativistic nucleus-nucleus
collisions at the CERN Large Hadron Collider [1–4] and
at BNL Relativistic Heavy Ion Collider [5–7] have been
understood as giving strong support to a dynamical picture
according to which the produced soft hadronic distributions in
transverse momentum, azimuthal orientation, centrality, and
particle species are determined by the fluid dynamic response
to fluctuating initial conditions [8–12]. A detailed dynamical
exploration of this picture has the potential of addressing
central questions in the study of hot and dense QCD matter
with nucleus-nucleus collisions. In particular, one expects that
fundamental transport properties of dense QCD matter, such
as the ratio of shear viscosity to entropy density [13–16], can
be constrained with unprecedented accuracy from the fluid
dynamic propagation of fluctuations [17,18]. Moreover, to the
extent to which the fluid is almost perfect and therefore almost
transparent to the propagation of fluid dynamic perturbations,
fluctuation analyses may provide information about the initial
conditions of ultrarelativistic nucleus-nucleus collisions and
their evolution towards equilibrium [19,20]. As we shall
shortly recall below, and as summarized in several recent
reviews [21–23], a large number of recent works address this
program or parts of it.

To fully exploit these physics opportunities of fluctuation
analyses, one may require that a fluid dynamic formulation
of ultrarelativistic nucleus-nucleus collisions should be as
complete and as differential as possible with respect to the
characterization of fluctuating initial conditions, their fluid
dynamic propagation, and their decoupling at freeze-out. In
the present work, we propose to decompose fluctuating initial
conditions in a complete, orthonormal basis of fluctuating
modes that can be propagated individually, mode by mode,
as fluid dynamic perturbations on a smooth event-averaged
background. To this end, we employ in the following a Bessel-
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Fourier expansion that—with the exception of one remarkable
work [24]—has not been explored for the characterization of
initial conditions so far.

On the level of single events, this can provide, for instance,
a more differential understanding of how fluctuating modes
that differ, e.g., with respect to wavelength are attenuated
or enhanced differently during the evolution, thus providing
input to the question of whether structures arising on some
spatial scales in the initial conditions can leave signatures
in experimental observables or whether they will remain
experimentally inaccessible because they are washed out in
the course of the evolution.

On the level of event ensembles, the orthonormal basis
makes it possible to determine a functional probability distri-
bution that characterizes weights and eventwise correlations of
all fluctuating modes in the initial conditions. This probability
distribution can actually be evolved fluid dynamically by
evolving each mode. The additional control we gain by this
program can help, for example, to relate subclasses of events
defined by cuts on experimental data [25] to subclasses of
initial conditions, thus opening further possibilities for testing
the dynamical relation in between.

The present paper is devoted to a detailed discussion of the
Bessel-Fourier expansion for scalar, vector, and tensor fields,
the ensuing characterization of event ensembles by probability
distributions formulated in this basis, and the relation of this
approach to other characterizations of initial conditions for
individual events and event samples. As emphasized above,
one important motivation for the choice of a Bessel-Fourier
expansion is that its basis modes can be propagated individu-
ally as fluid dynamic perturbations. A detailed discussion of
this fluid dynamic propagation will be left to a subsequent
publication, but some first results are given already in a recent
letter [26], and we comment in the following on properties that
make the Bessel-Fourier expansion particularly suited for such
a mode-by-mode fluid dynamic propagation of fluctuations.

By far the most common characterization of fluctuating
initial conditions is in terms of a cumulant expansion of the
initial (entropy) density distribution [27] that underlies the
characterization of spatial azimuthal anisotropies in terms of
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eccentricities. We discuss in Sec. II how the coefficients in a
Bessel-Fourier expansion of initial conditions are related to
eccentricities. Eccentricities have been determined for initial
conditions from simple model distributions [17,20,28–34], as
well as for full dynamical models of ultrarelativistic heavy ion
collisions (such as the URQMD [35], BAMPS [36], and AMTP

codes [37]). Eccentricities and closely related cumulant-based
formulations have also been used to characterize angular
correlations between different harmonics [38–40], and they
play currently an important role in discussing the specific
initial geometry and expected fluid dynamic response of colli-
sions between deformed nuclei (e.g., U + U) and nonidentical
nuclei (e.g., Cu + Au) and of p-Pb collisions [41–45]. The
fluid dynamic responses that result from initial conditions
with characteristic eccentricities have been studied in much
detail both on the level of single events or event averages
[17,29,32,35], as well as on the level of event ensembles
characterized by their probability distributions [18,28,30,33,
36,37,46]. By demonstrating that data on soft hadronic spectra
and correlations can be reproduced in viscous relativistic fluid
dynamic simulations supplemented by realistic freeze-out and
by constraining the transport properties of matter, these studies
have established and are now further exploiting the paradigm
that heavy ion collisions produce an almost perfect fluid.

Despite the obvious use and success of a dynamic frame-
work that relates via fluid dynamic simulations a cumulant
expansion of initial conditions to hadronic observables, there
are questions that one may want to address within a fluid
dynamic treatment of fluctuations and for which a cumulant
expansion may not provide an optimal parametrization of
initial conditions. In particular, any given (positive) transverse
density can, in principle, be determined fully by the infinite
set of its moments or cumulants. However, given a finite set of
cumulants beyond the ones that determine a Gaussian, it is not
possible to find a positive transverse density corresponding
to them such that higher cumulants vanish. In particular,
one cannot find positive transverse density configurations that
correspond to a single cumulant only, as one may want to do
if one is interested in studying the propagation and attenuation
of single modes. Reference [27] had understood this problem
and had devised a pragmatic approach to work around it
by regulating the reconstructed densities to avoid negative
values. However, introducing a regulator introduces further
nonzero cumulants, and therefore, in principle, one still cannot
formulate initial positive transverse densities to correspond to
one cumulant only. Nevertheless, this approach has been very
useful for understanding how specific structures in the initial
conditions propagate fluid dynamically, in particular when
applied to small deviations from a Gaussian transverse density
distribution [27]. However, the Bessel-Fourier expansion of
initial conditions that we discuss here (see Sec. IV) may be
better suited for studying the fluid dynamic propagation of
fluctuations individually mode by mode, because it avoids this
problem. For a dynamical treatment of individual fluctuations,
it is also advantageous that this is an expansion in an orthonor-
mal basis, while the cumulant expansion is not. Moreover,
as we discuss in Sec. V, the Bessel-Fourier expansion is
easily extended to the characterization of initial fluctuations in
vector and tensor fields and to their fluid dynamic propagation.

To the best of our knowledge, an extension of the cumulant
expansion to vector and tensor fields has not been attempted
so far. While essentially all currently used models of initial
conditions neglect fluctuations in the initial fluid velocity and
shear viscous tensor, they seem to be a natural possibility, and
we regard it as an advantage to set up a formulation that treats
them on an equal footing with fluctuations in the transverse
density.

We have mentioned above that it can be useful to decompose
initial fluctuations in an orthonormal basis. Such formulations
have been explored so far, in particular, in studies that formu-
late fluid dynamic perturbations on top of simple, analytically
given background fields [47–50]. For these special choices
of the background field, the orthogonality of the basis modes
is then preserved by the fluid dynamic evolution. However,
such a simplification of mode-by-mode fluid dynamics can
be expected only in the presence of additional symmetries.
In particular, for the case of conformal symmetry, the basis
functions used in Ref. [49] do not mix in the fluid dynamic
evolution. For the case of translational invariance in the
transverse plane as it is realized for a background field with
Bjorken flow, a two-dimensional Fourier expansion of modes
has this property [50]. We note that also the orthonormal
modes of the Bessel-Fourier expansion discussed here will
not mix during fluid dynamic evolution if embedded as
fluctuations of a Bjorken background field with transverse
translational invariance. This feature may be helpful, for
instance, if one plans to check the numerical accuracy of
the fluid dynamic simulation of fluctuations against simple
analytically known limiting cases. In general, however, we
want to characterize fluctuations in all fluid dynamic fields as
eventwise perturbations of smooth realistic background fields
that do not share such special symmetries. For this realistic
case, the modes of fluid dynamic fields will mix under time
evolution, and a differential understanding of how this mixing
occurs may provide additional physics insights.

The present paper is organized as follows. In Sec. II we
introduce the Bessel-Fourier transform for scalar fields, we
explain how the coefficients of an expansion in this basis
can be determined in a CPU-inexpensive way via Lemoine’s
method of discrete Bessel transformation, and we explain how
these coefficients are related to eccentricities. In Sec. III,
we illustrate first the accuracy and use of this expansion by
applying it to a simple model of fluctuating initial conditions.
We then turn to the question of how event ensembles can
be characterized in terms of probability distributions, and we
show that the latter take a particularly simple and explicit
form if expressed in the expansion coefficients of the Bessel-
Fourier transform. In particular, we emphasize that a Gaussian
ansatz for the probability distribution, specified in terms of
event-averaged two-mode correlations only, can account with
high accuracy for the event distributions in a model of initial
conditions that is currently used in phenomenological studies.
In this sense, realistic event ensembles of initial conditions
are very well approximated by simple, analytically known
expressions depending on a finite number of event-averaged
input data. While the Bessel-Fourier expansion of initial
densities, discussed in Sec. III, does not remain positive
everywhere if truncated after a finite number of modes, we
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show in Sec. IV that this problem does not exist if the expansion
is applied to normalized density fluctuations. Because this
approach underlies our dynamical treatment of fluctuations in
Ref. [26], we discuss it here in some detail. Section V is finally
discussing the extension of the Bessel-Fourier expansion to
vector and tensor fields. Some general properties of Bessel
transformations in continuous and discrete form are given
in Appendixes A and B, while Appendix C discusses some
properties of functional probability distributions for event
samples.

II. CHARACTERIZING FLUCTUATING
INITIAL CONDITIONS

The hydrodynamical description of heavy ion collisions is
normally initialized on some space-time hypersurface shortly
after the collision, at the end of a regime with early nonequi-
librium dynamics. In Bjorken coordinates τ , r , φ, and η,
related to the laboratory coordinates t , x, y, z by t = τ cosh η,
x = r cos φ, y = r sin φ, z = τ sinh η, the initialization hyper
surface is usually taken to correspond to fixed τ = τ0. In this
section, we consider the initial transverse enthalpy density
w(r, φ) that characterizes the matter distribution at τ = τ0.
To keep notation simple, we do not denote explicitly the
dependence of w on time or its possible dependence on the
longitudinal position along the beam direction (see Sec. V for
a generalization). In practice, one might want to replace w
with the initial transverse energy density ε, entropy density
s, pressure p, or some charge density associated to a single
event. Our discussion focuses first on how to characterize the
fluctuating density w of single arbitrary events in terms of a
Bessel-Fourier transformation, and we turn to the discussion
of event averages and event distributions later.

A. Radial decomposition of w: Motivation
and Lemoine’s method

Our starting point is the harmonic Fourier decomposition of
the azimuthal dependence of w(r, φ) in terms of the harmonics

w(m)(r) = 1

2π

∫ 2π

0
dφ ei mφ w(r, φ). (1)

We recall that the commonly used event eccentricities εn,m can
be defined [51] as the normalized moduli

εn,m = |ε̃n,m|/|ε̃n,0| (2)

of the radial moments of w(m)(r),

ε̃n,m = 2π

∫
dr rn+1 w(m)(r) = |ε̃n,m|ei m ψn,m . (3)

In recent phenomenological studies, one often focusses on one
radial moment per mth harmonic, selecting, for instance, the
subset of eccentricities {ε2,m} or {εm,m} that is then denoted
by the shorthand {εm}. As we see in the following, this
practice may be justified to some extent by the observation
that the eccentricities εn,m for phenomenologically relevant
density profiles tend to change only gradually and smoothly
with increasing n. However, while the subset of eccentricities

{εm} provides an incomplete characterization of w, the set
of all |ε̃n,m| supplemented by the angular orientations ψn,m

is complete: The shape of the transverse density w(r, φ) of a
single event can, in principle, be reconstructed unambiguously
from the complete set of complex-valued εn,m’s.

The azimuthal decomposition (1) of w(r, φ) provides a
natural ordering of the azimuthal dependence that character-
izes increasingly finer azimuthal structures with increasing
azimuthal wave number m. In comparison, the connection
between the nth moments εn,m of w(m)(r) and fluctuating
modes of particular radial wavelength is arguably less direct.
Here we ask how to write an alternative decomposition of
the radial dependence of w(r, φ) that orders fluctuating radial
modes more explicitly in terms of functions of increasingly
smaller radial resolution scale. Because we expect that dy-
namics changes the wavelength of a fluctuation only gradually
and over a sufficiently long time scale, we may hope that
the modes of such an alternative expansion will mix only
weakly under dynamical evolution, thus facilitating studies of
the relation between modes of characteristic radial wavelength
in the initial distribution and measurements that are differential
in transverse momenta.

A Fourier transformation of w provides arguably the
simplest decomposition of a function in terms of modes of
increasing resolution scale. However, in the neighborhood of
r = 0, an expansion of w in Fourier modes eikr is not possible,
because these do not satisfy the boundary condition w(m)(r) ∝
rm for small r . In radial coordinates, a two-dimensional Fourier
transformation is an expansion in modes ∝eikr cos φ and the mth
harmonic moment of this Fourier mode is a Bessel function,∫ 2π

0 dφ eikr cos φ cos(mφ) = 2πJm(kr). The Bessel functions
Jm do have the desired limiting behavior ∝rm for r → 0.
These considerations prompt us to seek an expansion of the
mth moment w(m)(r) in a series of Bessel functions Jm(z) [24],1

w(m)(r) =
∫

dkkw(m)(k) Jm(kr). (4)

This continuous expansion becomes discrete if restricted to a
finite region r ∈ [0, R] with boundary condition

w(m)(r) = 0 for r > R and all m. (5)

One can write then

w(m)(r) =
∞∑
l=1

w
(m)
l Jm

(
k

(m)
l r
)
, (6)

with the complex coefficients w
(m)
l given by the integral

expressions

w
(m)
l = 2

R2
[
Jm+1

(
k

(m)
l R

)]2
∫ R

0
drrw(m)(r)Jm

(
k

(m)
l r
)
. (7)

1To minimize notation, we distinguish here the moment w(m)(r)
from its Bessel transform w(m)(k) by its argument only. No confusion
should arise because most of the following discussion is in terms of
the coefficients w

(m)
l instead of w(m)(k); see Eq. (6).
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The discrete set of wave numbers k
(m)
l is defined in terms of

the lth zero crossings z
(m)
l of the Bessel function Jm(z),

k
(m)
l = z

(m)
l

1

R
. (8)

By construction, the expansion (6) satisfies the boundary
condition (5), and the terms with increasing l correspond
to modes of smaller and smaller radial resolution 1/k

(m)
l . In

this way, the characterization of the azimuthal dependence
of w(r, φ) in terms of a discrete set of azimuthal harmonics
(labeled by m) can be paralleled by a characterization of its
radial dependence in terms of a discrete set of radial modes
labeled by l.2

Lemoine’s method [52] of discrete Bessel transformation
simplifies the determination of the weights w

(m)
l of the Bessel

expansion because it allows one to replace the integral in
Eq. (7) with a finite sum,

w(m)(r) ≈
Nl∑
l=1

w
(m)
l Jm

(
k

(m)
l r

)
. (9)

Here, w
(m)
l are complex-valued expansion coefficients, and

the approximation (9) can be improved systematically by
including a larger number of terms Nl . Remarkably, according
to Lemoine’s method [52], the determination of the coefficients
w

(m)
l does not involve integrations but can be done by matrix

multiplication of the function w(m)(r) evaluated at a discrete
set of radii

r (m)
α = R

z(m)
α

z
(m)
Nl

. (10)

The coefficients w
(m)
l take then the form

w
(m)
l ≈

Nl∑
α=1

M(m)
lα w(r (m)

α ,m), (11)

where the matrix M(m)
lα is independent of the properties of

w(m)(r) and reads

M(m)
lα = 4 Jm

(
k

(m)
l r (m)

α

)
(
z

(m)
Nl

)2
J 2

m+1

(
z

(m)
l

)
J 2

m+1

(
z

(m)
α

) . (12)

The value of R is a parameter in the analysis that can be
chosen freely as long as Eq. (5) is satisfied. In practice, it
is useful to choose R as small as possible to ensure that
the expansion (9) does not need to account for regions of r
in which the function w vanishes. In the numerical studies
for Pb-Pb collisions, discussed in later sections, we choose

2We remark that instead of using a Bessel expansion as in Eq. (1)
directly for the transverse density w(m)(r), it may be advantageous
for some questions to expand a normalized version,

w̃(m)(r) = w(m)(r)/wBG(r).

Here, wBG(r) denotes an appropriately normalized “background
function” that depends only on the radius r and that can be defined,
e.g., as the event-averaged density 〈w(r, φ)〉. The motivations for this
formulation and some properties are discussed in Sec. IV.

R = 8 fm. Once R is fixed, one can tabulate the matrix (12)
and determine the complex expansion coefficients w

(m)
l . If one

wants to change the number Nl of terms in the expansion, both
the matrix M in Eq. (12) and all the coefficients w

(m)
l need to

be reevaluated.
From the expansion coefficients w

(m)
l , the spatial density

distribution can then be reconstructed,

wreco(Nm,Nl )(r, φ) =
Nl∑
l=1

w
(m=0)
l J0

(
z

(0)
l r/R

)

+ 2
Nm∑

m=1

Nl∑
l=1

∣∣w(m)
l

∣∣ Jm

(
z

(m)
l r/R

)
× cos

[
m
(
φ − ϕ

(m)
l

)]
. (13)

Here we have made the phase dependence of the complex-
valued Bessel coefficients explicit,

w
(m)
l = ∣∣w(m)

l

∣∣ exp
[
im ϕ

(m)
l

]
. (14)

As we illustrate with examples in the next section, the recon-
structed spatial transverse density becomes an increasingly
better approximation of w(r, φ) if one increases the numbers
Nm and Nl of azimuthal and radial modes included in Eq. (13).

We finally note that by inserting Eq. (9) into Eq. (3), one
can express the eccentricities ε̃n,m in terms of a complete set
of coefficients w

(m)
l ,

ε̃n,m ≈ Rn+2
Nl∑
l=1

Kn l
(m)w

(m)
l , (15)

where

Kn l
(m) = 2π(

z
(m)
l

)n+1

∫ z
(m)
l

0
dr̄ r̄n+1 Jm(r̄). (16)

For finite Nl , relation (15) is approximate and can be viewed as
including all contributions to ε̃n,m that result from fluctuating
modes of wavelength 1/k

(m)
Nl

and larger. With increasing Nl ,
this expression becomes more and more accurate.

III. CHARACTERIZING INITIAL CONDITIONS WITH
LEMOINE’s METHOD: A NUMERICAL EXAMPLE

The relations (15) and (16) illustrate that the information
about w contained in the Bessel coefficients w

(m)
l and in the

eccentricities ε̃n,m is complete and mathematically equivalent.
It then depends on the physics problem under consideration
to decide which of these two equivalent characterizations is
better suited. In particular, the relation (15) makes it explicit
that for any given mth moment, the nth radial moments
ε̃n,m receive, in general, contributions from fluctuating modes
of various different radial wavelengths 1/k

(m)
l , l ∈ [1, Nl].

In contrast, the expansion (9) of the fluctuations in Bessel
functions is explicitly an expansion in modes of increasing
radial resolution, and it is an expansion in an orthonormal
basis. This can be helpful. To illustrate the use of organizing
fluctuating modes of w with the help of a discrete Bessel
transformation, we turn now to an explicit numerical example.

044906-4



CHARACTERIZATION OF INITIAL FLUCTUATIONS FOR . . . PHYSICAL REVIEW C 88, 044906 (2013)

A. A simple wounded nucleon model for the
initial transverse density

For illustrative purposes, we consider a simple MC Glauber
model for the initial conditions in Pb-Pb collisions, similar to
the one described in Ref. [34]. In the simplest version, this
model determines the enthalpy density w(r, φ) as proportional
to the number of wounded nucleons. Nucleons in the incoming
projectiles are distributed event by event randomly in the trans-
verse plane according to the two-dimensional projection of a
standard spherically symmetric two-parameter Woods-Saxon
nuclear density profile. Nucleon-nucleon correlations in the
incoming projectiles are neglected. The condition for collision
between nucleons i and j of different nuclei is the simple
geometric one, namely that the transverse positions (xi, yi)
of both nucleons are closer than (xi − xj )2 + (yi − yj )2 �
σNN/π . Here we choose for the inelastic nucleon-nucleon
cross section a value corresponding to

√
sNN = 2.76 TeV,

namely, σNN = 63 mb. The transverse enthalpy density in
this model is then obtained by centering at the transverse
position of each participating nucleon an enthalpy contribution
of Gaussian shape and with width σB ,

w(x, y) = N
Npart∑
i=1

ci exp

(
− (x − xi)2 + (y − yi)2

2σ 2
B

)
. (17)

Here the factors ci give weights to the contributions
from individual participating nucleons i. In the model of
Ref. [34], ci = 1. Instead, we use a MC Glauber model
that determines for each participating nucleon the number of
collisions that this nucleon undergoes. The prefactors ci are
then chosen such that the total entropy of the system scales
with [(1 − x)Npart/2 + x Ncoll], where x = 0.118. This model
extension is consistent with the initial conditions used in recent
fluid dynamic simulations of flow [17]. It is unimportant for
the arguments made in the present paper, but because the
present paper serves us also to further document the input
in our recent fluid dynamic study [26], and because this study
is based on state-of-the-art initial conditions, we adhere to it
here. The normalization N in Eq. (17) is then fixed by the total
enthalpy of the system. For numerical studies, we associate to
the position of each participating nucleon a Gaussian of width
σB = 0.4 fm, except where stated otherwise. We position the
center of mass (the center of enthalpy) of each event at the
origin of the coordinate system.

B. Reconstructing transverse density of a single event
from Bessel data

We first establish the efficiency of Lemoine’s method in
reconstructing the transverse enthalpy w of a single event
from its Bessel coefficients w

(m)
l . To this end, we have chosen

one particular Pb-Pb collision simulated with the wounded
nucleon model of Sec. III A for impact parameter b = 0. The
corresponding density distribution is shown in the top left
plot in Fig. 1; it is nonvanishing in a transverse extension
of radius ∼6 fm, characteristic of a Pb-Pb collision, and
it shows significant fluctuations. We have determined the
Bessel coefficients w

(m)
l of this distribution as discussed in

Sec. II, and we have reconstructed the density distribution
wreco(Nm,Nl )(r, φ), including a varying number of modes Nm,
Nl in the azimuthal and radial direction. As one sees clearly
from the various plots in Fig. 1, with increasing number of
modes, wreco(Nm,Nl ) reconstructs increasingly finer details of
the transverse density of this single event. A larger number
of modes is needed to resolve smaller scales. In general,
we observe that for a relatively small number of expansion
coefficients, the main features of the transverse density can be
characterized and that the approximation of the true w in terms
of the reconstructed density (13) improves rapidly in accuracy
with increasing number of modes Nm, Nl .

C. Characterizing event averages of single fluctuating modes

As seen from Fig. 1, the MC Glauber model for the initial
density distribution w generates spatial distributions with
significant eventwise variations. We aim at quantifying these
as fluctuations around an event-averaged density distribution.
To this end, we first determine the event-averaged density
distribution by averaging over the densities wi of a large
number of events, i ∈ [1, Nevents],

waverage(x, y) ≡ 〈w(x, y)〉

≡ lim
Nevents→∞

(1/Nevents)
Nevents∑
i=1

wi(x, y). (18)

Here and in the following, the brackets 〈· · ·〉 define the event
average. The event-averaged density waverage of a Pb-Pb colli-
sions at impact parameter b = 0 is shown in Fig. 2. At b = 0,
this average is azimuthally symmetric. As a consequence, all
eccentricities of waverage with m �= 0 vanish and, similarly, the
event-averaged Bessel coefficients satisfy〈

w
(m)
l

〉 = w
(0)
l,average δm0. (19)

The coefficients w
(0)
l,average quantify the shape of waverage com-

pletely. As seen from Fig. 2, w
(0)
l,average has significant nonzero

entries only for the first few radial modes l = 1, 2, 3, 4. This
reflects the fact that the shape of waverage is smooth and hence
only long radial wavelengths (i.e., modes with small l) are
needed to characterize its radial dependence.

As a first step towards quantifying fluctuations on top of the
event-averaged background distribution waverage, we display in
Fig. 2 the dispersion D(w(m)

l ) of the event distribution of w
(m)
l

around its average,

D2
(
w

(m)
l

) = 〈w(m)
l w

(m)∗
l

〉− 〈w(m)
l

〉 〈
w

(m)
l

〉
. (20)

Because fluctuations around waverage break the azimuthal
symmetry, one finds nonvanishing values for 〈w(m)

l w
(m)∗
l 〉,

even for m �= 0, when the event average 〈w(m)
l 〉 vanishes.

Because fluctuations vary on smaller scales than the variation
of waverage, this dispersion has nonzero entries also for larger
mode number l. For a physical understanding of the dispersion
D(w(m)

l ) shown in Fig. 2, it is useful to relate the mode number
l to the physical scale of the corresponding radial wavelength
1/k

(m)
l . For R = 8 fm, used in Fig. 2, and for m = 2, one finds,

for instance, the following radial wavelengths associated with
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FIG. 1. (Color online) (Top left plot) Transverse enthalpy density distribution w(x, y) for one randomly chosen central Pb-Pb collision,
simulated according to the model described in Sec. III A. (Remaining five plots) Reconstruction wreco(Nm,Nl ) of this particular density distribution
from the data of a discrete Bessel transformation of w(x, y), involving an increasing number of modes in the azimuthal (Nm) and in the radial
(Nl) direction. The point-by-point differences between the truth w(x, y) and the reconstruction wreco(Nm,Nl ) are less than 1% of the maximal
density for a reconstruction with Nm = Nl = 30.

some modes l: 1/k
(2)
1 = 1.56 fm, R/k

(2)
5 = 0.45 fm, R/k

(2)
15 =

0.16 fm. The fact that for l > 15, the dispersions D(w(m)
l )

around 〈w(2)
l 〉 = 0 are very small translates then directly into

a statement that within the present model, event-by-event
fluctuations do not induce significant variations at radial scales
below 0.16 fm. In the present case, we know this, of course, be-
cause the calculation of Bessel coefficients in Fig. 2 was done

for a MC Glauber model with smearing factor σB = 0.4 fm;
see Eq. (17). We further note that in physical units, the radial
wavelengths 1/k

(m)
l = R/z

(m)
l decrease for increasing m at

fixed l. This is a consequence of the dependence of the Bessel
zero crossings z

(m)
l on m and l, and it explains why with

increasing m, less and less modes l give numerically significant
contributions to w

(m)
l . In this way, the model discussed here
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l

1

2
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5

wl,average
m 0 wl

m 0

FIG. 2. (Color online) (Top row) The event-averaged density distribution waverage for Pb-Pb collision at impact parameter b = 0 fm and
the Bessel coefficients w

(m=0)
l,average characterizing it. (Bottom row) Left-hand side, the dispersion of the eventwise distribution of w

(m)
l around the

mean 〈w(m)
l 〉 characterizes event-by-event fluctuations in the initial density. Right-hand side, characterization of the average event-by-event

fluctuations by the event-averaged eccentricities 〈εn,m〉. Data are simulated with the wounded model of Sec. III A for a sample of O(1000)
Pb-Pb collision at b = 0 fm.

illustrates the generic fact that higher modes m correspond
to increasingly finer azimuthal resolution and higher Bessel
modes l correspond to increasingly finer radial resolution.

Figure 2 shows also the average eccentricities 〈εn,m〉
calculated for the same sample of 1000 central Pb-Pb events.
One sees that εn,m tends to increase smoothly with increasing n.
In principle, if one would know precisely the n-dependence of
εn,m for all infinitely many n’s, then one could reconstruct from
this information the radial dependence of w(m)(r) analogously
to the reconstruction given from the Bessel coefficients in
Fig. 1. However, the radial dependence of w(m)(r) is arguably
much less directly characterized by the εn,m than by the
w

(m)
l . This is so, because a mode characterized by w

(m)
l can

be associated with a characteristic radial wavelength 1/k
(m)
l ,

while a mode εn,m will, in general, receive contributions from
vastly different length scales.

D. Characterizing correlations between two fluctuating modes

The Bessel coefficients w
(m)
l that characterize the transverse

density distribution w of a single event are complex valued.

In principle, a complete characterization of event samples
amounts to knowing all n-mode correlators 〈w(m1)

l1
· · ·w(mn)∗

ln
〉.

As we argue in Sec. III E, knowledge of the two-mode
correlators 〈w(m1)

l1
w

(m2)∗
l2

〉 can provide a satisfactory character-
ization for practical purposes. For the model studied here, we
have checked numerically that correlations between different
azimuthal harmonics m1, m2 vanish.3 Therefore, we focus
in the following discussion on two-mode correlators that are
diagonal in the azimuthal mode m,〈

w
(m)
l1

w
(m)
l2

∗〉 = 〈∣∣w(m)
l1

∣∣ ∣∣w(m)
l2

∣∣ exp
[
im
(
ϕ

(m)
l1

− ϕ
(m)
l2

)]〉
.

(21)

Histograms of the event distribution of w
(m)
l w

(m)
l

∗
are shown

for m = 2 and l = 1, 2 in the top row of Fig. 3. One observes
a distribution that does not peak at the event average, but that
is of approximately exponential shape. We discuss this shape
in the following section.

3This feature is actually related to a statistical azimuthal rotation
invariance; see Appendix C .
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FIG. 3. (Color online) Event distributions of two-mode correlators w
(2)
l1

w
(2)
l2

∗
for the transverse enthalpy density distribution of 2000 Pb-Pb

events simulated with b = 0. (Top row) Distribution of diagonal two-mode correlators w
(2)
l w

(2)
l

∗
for the same radial wavelength l = 1, 2. The

simulated event distribution (blue histogram) is compared to the analytical expectation (32) for a Gaussian probability distribution (red dots).
(Bottom row) Event distribution of off-diagonal two-mode correlators w

(2)
l1

w
(2)
l2

∗
. The complex phase measures the difference ϕ

(m)
l1

− ϕ
(m)
l2

in the
angular orientation of two modes in a single event. More details are provided in text.

For individual events, two fluctuations characterized by
the modes (l1,m) and (l2,m) can be oriented along different
azimuthal directions ϕ

(m)
l1

�= ϕ
(m)
l2

. This shows up in the com-

plex phase exp[im (ϕ(m)
l1

− ϕ
(m)
l2

)] of the product w
(m)
l1

w
(m)
l2

∗

between different radial modes l1 �= l2; see Fig. 3. If on
average two radial modes are completely decorrelated in
azimuth, then the event distribution shows statistical azimuthal
symmetry around the origin in the complex w

(m)
l1

w
(m)
l2

∗
-plane,

and the event average 〈w(m)
l1

w
(m)
l2

∗〉 vanishes. This case of
azimuthal decorrelation is (approximately) realized for the
distribution 〈w(m)

1 w
(m)
3

∗〉 displayed in Fig. 3. However, for
second azimuthal harmonics m = 2, the radial modes l1 = 1,
l2 = 2 show a significant positive correlation, characterized by
a nonvanishing real value of 〈w(m)

1 w
(m)
2

∗〉. The plot illustrates
also that there is a significant dispersion in phase and norm
around this nonvanishing event-averaged correlation.

We have inspected the event distributions of off-
diagonal two-mode products w

(m)
l1

w
(m)
l2

∗
for azimuthal modes

1 � m � 5 and for a large number of radial modes 1 � l1 �
l2 � 9. Some results for the event-averaged mean 〈w(m)

l1
w

(m)
l2

∗〉
are shown in Fig. 4. We observe a simple and generic
pattern: For fixed m, there is a significant azimuthal correlation
between fluctuations of neighboring radial resolution, l1, l2 =
l1 ± 1. As the difference between radial resolutions increases
a bit (next-to-neighboring modes, l2 = l1 ± 2), the azimuthal
correlation decreases, and modes with even larger differences
in radial resolution l2 = l1 ± n, n � 3 show essentially no
azimuthal correlation. We have observed the same pattern
for m = 1, 4, 5 and for higher radial modes l1, l2 (data not
shown). The observed pattern is characteristic of the nature of
the fluctuations in the Glauber model of Sec. III A. In fact, all

fluctuations of this model are built up of elementary uncor-
related Gaussian-shaped building blocks of transverse spatial
width σB = 0.4 fm. Event by event, this generates fluctuations
with a variety of different radial wavelengths, but the model
does not introduce correlations between widely separated
radial scales. For instance, for m = 2, radial wavelengths
1/k

(2)
2 = R/z

(2)
2 = 0.95 fm and 1/k

(2)
2+1 = R/z

(2)
2+1 = 0.68 fm

may be expected to show correlations because the model will
result in some fluctuations of transverse scale around 0.8 fm
and because fluctuations of this scale will contribute to modes
of both radial wavelengths 1/k

(2)
2 = 0.95 fm and 1/k

(2)
2+1 =

0.68 fm, thus leading to an azimuthal correlation between
them. However, modes of higher wave number l receive
contributions from structures on smaller scales, and because
the model of Sec. III A does not implement correlations
among fluctuations of different scale, the pattern observed in
Fig. 4 appears to be a natural consequence. We expect that a
similar pattern emerges also for alternative models of initial
state fluctuations that do not implement correlations among
fluctuations of very different scale.

E. Characterizing event ensembles via functional
probability distributions

Event samples can be characterized fully via the probability
distribution P[w] of their initial transverse densities, where
P[w] is a functional over the space of all functions w. Here
we discuss what can be said about the structure of P . In
the previous sections, we have seen that the initial transverse
density w of each event can be characterized completely in
terms of the set of complex-valued Bessel coefficients {w(m)

l }.
Therefore, one can characterize an event sample also by a
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FIG. 4. (Color online) The two-mode correlator 〈w(m)
l1

w
(m)
l2

∗〉 for
m = 2 (top plot) and m = 3 (bottom plot). The position of the brackets
〈l1 l2〉 in these plots indicates the value taken by 〈w(m)

l1
w

(m)
l2

∗〉.

probability distribution P[{w(m)
l }] that is a function of the set

of all {w(m)
l }. Event averages of the coefficients w

(m)
l and its

correlators are then defined by〈
w

(m1)
l1

· · ·w(mi )
li

w
(m′

1)∗
l′1

· · ·w(m′
j )∗

l′j

〉
=
∫
D
[{

w
(m)
l

}]
w

(m1)
l1

· · ·w(mi )
li

w
(m′

1)∗
l′1

· · ·w(m′
j )∗

l′j
P
[{

w
(m)
l

}]
,

(22)

where D[{w(m)
l }] defines the integration measure

D
[{

w
(m)
l

}] ≡
Nm∏

m=−Nm

Nl∏
l=1

dw
(m)
l . (23)

1. Gaussian probability distribution

For the case of a Gaussian distribution P[w], one has (see
also Appendix C)

P
[{

w
(m)
l

}] = N exp

⎡
⎣−1

2

Nm∑
m1,m2=−Nm

Nl∑
l1,l2=1

(
w

(m1)
l1

− 〈w(m1)
l1

〉)∗

× T
(m1)(m2)
l1 l2

(
w

(m2)
l2

− 〈w(m2)
l2

〉)⎤⎦ . (24)

Here, N is an appropriate normalization factor. The matrix
T and the averages 〈w(m)

l 〉 in (24) are determined by

〈
w

(m1)
l1

〉 = ∫ D
[{

w
(m)
l

}]
w

(m1)
l1

P
[{

w
(m)
l

}]
, (25)

〈
w

(m1)
l1

w
(m2)∗
l2

〉 = ∫ D
[{

w
(m)
l

}]
w

(m1)
l1

w
(m2)∗
l2

P
[{

w
(m)
l

}]
= (T −1)(m1)(m2)

l1 l2
+ 〈w(m1)

l1

〉 〈
w

(m2)
l2

〉
. (26)

For collisions at vanishing impact parameter, the azimuthal
symmetry of event averages implies that〈

w
(m)
l

〉 = δm0 w
(0)
l,average . (27)

At finite impact parameter, also nontrivial azimuthal modes
can have nonvanishing event averages, 〈w(m)

l 〉 �= 0 for m �= 0.
However, because event-averaged distributions do not display
structures at small wavelength, one expects generically that
〈w(m)

l 〉 is non-negligible only for very small l.
In general, because P is real, the matrix T in Eq. (24) is

Hermitian, and a nonvanishing complex phase of off-diagonal
elements (T −1)(m1)(m2)

l1 l2
measures the difference ϕ

(m1)
l1

− ϕ
(m2)
l2

between the azimuthal orientations of different modes. How-
ever, the matrix T is real and symmetric if the ensemble
is symmetric with respect to the transformation ϕ → −ϕ.
The statistical azimuthal rotation symmetry for b = 0 implies
further that the matrix T is diagonal in the azimuthal
modes m,

(T −1)(m1)(m2)
l1 l2

= δm1 m2 (T −1)(m1)
l1 l2

. (28)

Within the MC Glauber model we observe in Fig. 4 that two-
mode correlations decrease quickly with increasing difference
in the radial wavelengths of the two modes, that is,∣∣(T −1)(m)

l ,l

∣∣ > ∣∣(T −1)(m)
l ,l+1

∣∣ > ∣∣(T −1)(m)
l ,l+2

∣∣ > · · · , (29)

and we expect that this feature is shared by other models as
well.

2. Testing the validity of the Gaussian approximation of P
The Gaussian probability distribution (24) is fully specified

in terms of the event averages 〈w(m1)
l1

〉, 〈w(m1)
l1

w
(m2)∗
l2

〉, and
it provides a simple ansatz for the eventwise distribution

of arbitrary products w
(m1)
l1

· · ·w(mi )
li

w
(m′

1)∗
l′1

· · · w(m′
j )∗

l′j
. Here we

derive within the Gaussian approximation explicit expressions
for some of these eventwise distributions, and we establish for
the model of Sec. III A that these eventwise distributions are
correctly described by the ansatz (24). The practical interest
in this statement is that to the extent to which the Gaussian
approximation (24) holds, the small set of numbers 〈w(m)

l 〉 and
〈w(m1)

l1
w

(m2)∗
l2

〉 provides then complete information not only
about all event averages, but also about the functional shapes
of all event distributions.

In the recent letter [26], we have shown that experimentally
measurable flow coefficients in nucleus-nucleus collisions can
be written as the fluid dynamic response to diagonal and
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FIG. 5. (Color online) The event distributions of off-diagonal products of two modes χab = w
(m)
la

w
(m)
lb

, shown in the lower column of Fig. 3,
projected on the real and imaginary axis, respectively. Results from the simulation of 2000 events (blue histogram) are compared to analytical
results (red dots) obtained from integrating Eq. (34).

off-diagonal products of two modes,

ξa ≡ w
(m)
la

w
(m)∗
la

, χab ≡ w
(m)
la

w
(m)∗
lb

,

and their event averages. We are therefore particularly in-
terested in the event distributions of ξa and χab around
the averages 〈w(m)

la
w

(m)
la

〉, 〈w(m)
la

w
(m)
lb

〉. Here la and lb denote
arbitrary but fixed radial wave numbers. For an arbitrary
probability distribution P [{w(m)

l }], the distribution in ξa and
χab can be calculated from

Pξ (ξa) =
∫

D
[{

w
(m)
l

}]
P
[{

w
(m)
l

}]
δ
(
ξa − w

(m)
la

w
(m)∗
la

)
, (30)

Pχ (χab) =
∫

D
[{

w
(m)
l

}]
P
[{

w
(m)
l

}]
δ(2)
(
χab − w

(m)
la

w
(m)∗
lb

)
.

(31)

These are probability distributions in the real variable ξa and
the complex variable χab, respectively. For the Gaussian ansatz
(24), the integrals in (30) and (31) can be done analytically.
For the diagonal product ξa , one finds

Pξ [ξa] = σwe−σwξa I0
(
2
√

ξ σw

〈
w

(m)
l

〉)
e−σw〈w(m)

la
〉2

�(ξa), (32)

where the inverse width σw is given by

σw = 1〈
w

(m)
la

w
(m)∗
la

〉 = 1

〈ξa〉 . (33)

In this section, we focus on the case of vanishing impact
parameter, for which all averages 〈w(m=2)

l 〉 vanish, and Eq. (32)
reduces to an exponential Pξ [ξa] = σw exp(−σwξa) �(ξa). In
Fig. 3, we demonstrate that once the event average 〈w(m)

la
w

(m)∗
la

〉
is specified, this provides a parameter-free and accurate
description of the eventwise distribution of ξa in the model
of Sec. III A.

For the event distribution in the complex variable χab =
χr

ab + i χ i
ab, we find for vanishing impact parameter (i.e., for

〈w(m=2)
l 〉 = 0),

Pχab

(
χr

ab, χ
i
ab

) = detT
2π

K0
(√

Tla laTlblbχabχ
∗
ab

)
× exp

[− Tla lb χr
ab

]
. (34)

Here, T denotes the two-dimensional submatrix obtained from
Tl1l2 , l1, l2 = la, lb. In this way, both distributions (33) and
(34) are specified completely in terms of the one-mode and
two-mode correlators Eqs. (25) and (26). For the model studied
here, the finite number of relevant event averages is shown in
Fig. 4.

To visualize the comparison of (34) to event distributions
simulated in the model of Sec. III A, we show in Fig. 5
histograms of one-dimensional projections of the off-diagonal
two-mode event distributions plotted in Fig. 3. These are
compared to the corresponding projection of Eq. (34). We
find that the Gaussian approximation (24) accounts very sat-
isfactorily for the shape of event distributions of off-diagonal
two-point correlators χab, too. For the case of vanishing impact
parameter, these studies indicate that, in practice, a small
number of two-mode correlations is sufficient to specify fully
the shape of event distributions of all products of two modes
around these averages.

F. Lemoine’s mode decomposition at finite impact parameter:
A numerical study for b = 6 fm

So far, we have focused on heavy ion collisions at vanishing
impact parameter, for which event averages are azimuthally
symmetric. In this section, we show that Lemoine’s method
applies equally well to characterizing initial conditions at
finite impact parameter. To demonstrate this, we repeat in the
following the study of Secs. III C–III E for Pb-Pb collisions
at impact parameter b = 6 fm. Our discussion is brief, and
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FIG. 6. (Color online) Same as Fig. 1 but for one randomly chosen Pb-Pb collision at finite impact parameter b = 6 fm. (Top left plot)
Transverse density distribution w(x, y) simulated according to the Glauber model as described in the text. (Remaining five plots) Reconstruction
wreco(Nm,Nl ) of this particular density distribution from the data of a discrete Bessel transformation of ρ(x, y), involving an increasing number
of modes in the azimuthal (Nm) and in the radial (Nl) direction.

we focus only on those points that arise anew at finite impact
parameter.

In Fig. 6, we show the density distribution of a randomly
chosen Pb-Pb collision at b = 6 fm. In comparison to the
collision at vanishing impact parameter, seen in Fig. 1, the
active transverse area is clearly smaller. We have checked
that Lemoine’s method characterizes the simulated densities
with comparable accuracy irrespective of impact parameter.

In particular, the point-by-point differences between the true
enthalpy density w(x, y) and the reconstruction wreco(Nm,Nl ) are
less than 1% of the maximal density for a reconstruction with
Nm = Nl = 30.

Figure 7 shows some elementary characterizations of event
averages at finite impact parameter when the event-averaged
density waverage has an approximately ellipsoidal shape that
breaks azimuthal symmetry. As a consequence, there are
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FIG. 7. (Color online) Same information as Fig. 2 but for event averages of Pb-Pb collisions at impact parameter b = 6 fm. (Top row)
Event-averaged density distribution waverage and corresponding one-mode averages 〈w(m)

l 〉. (Bottom row) Event-averaged eccentricities and
dispersions around 〈w(m)

l 〉.

nonvanishing one-mode event averages 〈w(m)
l 〉 also for even

integers m �= 0. The elliptic variation of the average involves
only long wavelengths, and therefore 〈w(m)

l 〉 takes nonvanish-
ing values only for small l. The event-averaged eccentricities
〈εn,m〉 can be understood as being composed of a fluctuating
component that is comparable to the one shown for b = 0
in Fig. 2, and an event-averaged nonfluctuating component
that contributes to m = 2 (and slightly to m = 4) for all
values of n and that increases these coefficients significantly.
In the dispersion

√
〈w(m)

l w
(m)∗
l 〉 − 〈w(m)

l 〉2, the nonfluctuating
contribution is subtracted by construction. Comparing this plot
to the corresponding one in Fig. 2, one see that the fluctuations
around 〈w(m)

l 〉 are similar at vanishing and nonvanishing
impact parameter, although the event averages 〈w(m)

l 〉 are
characteristically different.

Also the two-mode correlators 〈w(m1)
l1

w
(m2)∗
l2

〉 show remark-
able similarities between collisions at finite impact parameter
(see Fig. 8) and collisions at vanishing impact parameter
(see Fig. 3). The overall normalization of all 〈w(m1)

l1
w

(m2)∗
l2

〉
increases with the total enthalpy of the distribution, and it
is thus larger for the case b = 0. Compared to the case
for b = 0, however, the relative weight of 〈w(m=2)

l1
w

(m=2)∗
l2

〉
is significantly increased in the longest wavelength modes

l1, l2 = 1, 2 that characterize the event-averaged azimuthal
anisotropy of waverage.

At finite impact parameter, there can be nonvanishing event-
averaged two-mode correlators 〈w(m1)

l1
w

(m2)∗
l2

〉 also for modes
corresponding to different azimuthal harmonics m1 �= m2.
In particular, the event-averaged shape of waverage at finite
impact parameter contributes not only to the second but
also to the fourth azimuthal harmonics and this leads to
nonvanishing correlations 〈w(2)

l1
w

(4)∗
l2

〉. As seen in Fig. 9, such
correlations vanish for b = 0 within statistical uncertainties,
but they are found at finite impact parameter in the model
studied here. The strength of these correlations is weak if
compared to correlations for modes at the same azimuthal
harmonics.

Figure 10 shows event distributions for diagonal and
nondiagonal two-mode products of the types ξa = w

(m)
la

w
(m)∗
la

and χab = w
(m)
la

w
(m)∗
lb

, respectively. In the top part of Fig. 10,
we compare the simulated event distribution Pξ (ξa) to
the analytical expectation (32) for a Gaussian probabil-
ity distribution (24). This comparison is analogous to the
one shown in Fig. 3 for vanishing impact parameter, but
it involves now a nonvanishing expectation value 〈w(m1)

la
〉.

Figure 10 then illustrates that while the event distributions
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FIG. 8. (Color online) Same as Fig. 3 but for finite impact
parameter b = 6 fm.

Pξ of different modes can have rather different shapes, they
are all satisfactorily accounted for in a Gaussian probability
distribution (24) that is determined by a small number of easily
accessible event-averaged values, 〈w(m1)

l1
〉 and 〈w(m1)

l1
w

(m1)∗
l1

〉.
Figure 10 also shows examples of event distributions for off-

diagonal two-mode correlators χab = w
(m)
la

w
(m)∗
lb

. In Fig. 11,
we compare one-dimensional projections of these to analytical
expectations for a Gaussian probability distribution (24). For
finite impact parameter, when the expectations values 〈w(m)

l 〉
do not vanish, one finds from Eq. (31)

Pχ

(
χr

ab, χ
i
ab

)
= Det[T ]

4π

∫
dx

x
I0

[√
A2 χabχ

∗
ab

x
+ B2 x + 2Reχab AB

]

× exp

⎡
⎣−1

2

⎛
⎝Tla la x + Tlblbχabχ

∗
ab/x + 2Tla lb Reχab

+
∑

i,j=la ,lb

〈
w

(m)
i

〉
Tij

〈
w

(m)
j

〉⎞⎠
⎤
⎦ , (35)

where

A ≡ Tla lb

〈
w

(m)
la

〉+ Tlblb

〈
w

(m)
lb

〉
, (36)

B ≡ Tla la

〈
w

(m)
la

〉+ Tla lb

〈
w

(m)
lb

〉
. (37)

FIG. 9. (Color online) The two-mode correlators 〈w(m1)
l1

w
(m2)∗
l2

〉
for different harmonics m1 = 2, m2 = 4 vanish for vanishing impact
parameter (top plot) but can take nonzero values at finite impact
parameter (bottom plot).

For 〈w(m)
la

〉 = 〈w(m)
lb

〉 = 0, expression (35) reduces to the
simple analytical form (34). In general, however, the event
distribution Pχ depends on the two event averages 〈w(m)

la
〉,

〈w(m)
lb

〉, and on the three independent matrix elements Tij ,
i, j = la, lb. Determining the latter from (26), we confirm also
at finite impact parameter that the Gaussian approximation (24)
accounts very satisfactorily for the shape of event distributions
of off-diagonal products χab. At finite, as well as at vanishing
impact parameter, a very small set of event averages (25) and
(26) is therefore sufficient to specify fully the shape of all
two-mode event distributions.

IV. NORMALIZED DENSITY FLUCTUATION

So far, we have discussed in Sec. II general properties of the
Bessel-Fourier expansion (8) for transverse scalar densities,
and we have studied in Sec. III applications of this expansion to
a simple model of the transverse enthalpy density at vanishing
and at finite impact parameter. The full enthalpy density w is,
of course, positive everywhere and for each event. However,
each fluctuating mode w

(m)
l Jm(k(m)

l r) in the Bessel-Fourier
expansion will take negative values in some spatial regions.
Moreover, at large radial distance r , the maximal amplitudes
of the oscillating modes falls off with the root of the radial
distance ∝√

1/r only, while the enthalpy density of each
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FIG. 10. (Color online) Event distributions of several two-mode correlators. Same as Fig. 4 but for finite impact parameter b = 6 fm.

event is expected to fall off exponentially. Therefore, after
truncation at a finite number of modes, the Bessel-Fourier
expansion (9) of w is not guaranteed to be positive, and
it may show locally negative entries, in particular, at large
r . As we have seen in Sec. III, this is not a problem for
characterizing the initial conditions. However, it becomes an
unwanted feature if one wants to propagate single modes
w

(m)
l Jm(k(m)

l r) fluid dynamically. The propagation of locally
negative densities poses certainly problems in fluid dynamics,
and irrespective of whether one deals with those by “ad
hoc” regularizations of locally negative contributions or in
another way, the effort to ensure that the physical results
depend only sufficiently weakly on a chosen prescription

will be an unwanted complication. One way to bypass this
problem is to seek a Fourier-Bessel expansion of the enthalpy
density normalized by some conveniently chosen background
enthalpy wBG(r), such that for sufficiently small fluctuations
the truncated expansion remains positive by construction.
Here, we explore the ansatz

w(m)(r) = δm0 wBG(r) + wBG(r)
∞∑
l=1

w̃
(m)
l Jm(k(m)

l r), (38)

where w̃
(m)
l are the Bessel coefficients of the normalized den-

sity [w(m)(r) − δm0wBG(r)]/wBG(r). We chose the background

FIG. 11. (Color online) One-dimensional projections of the event distributions shown in Fig. 10 (blue histograms) compared to the analytical
expectation (35). Without any adjustment of parameters, the Gaussian ansatz (24) fixed in terms of event averages only can account for the
shapes of all event distributions Pχ .
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FIG. 12. (Color online) The two-mode correlators 〈w̃(m)
l1

w̃
(m)∗
l2

〉
for m = 2 (top plot) and m = 3 (bottom plot) of the Bessel-Fourier co-
efficients entering the normalized enthalpy density distribution (38).

enthalpy wBG(r) in terms of the ensemble average of w(0)(r),

wBG(r) ≡ 〈w(0)(r)〉, (39)

but other choices may be possible as well. By construction,
as long as the coefficients w̃

(m)
l of fluctuations are sufficiently

small, the density (38) is positive everywhere even if truncated.
Mainly for this reason, we have based a first recent study
[26] of the fluid dynamic propagation of single modes on
the expansion (38). Because of the interesting properties
of (38), and to fully document the starting point of the
dynamical study [26], we discuss this expansion now in some
detail.

We first note that the Bessel-Fourier expansion (8) and
the expansion (38) of the normalized enthalpy density share
significant commonalities. In particular, we have checked
numerically that both expansions account with comparable
accuracy for a given true density distribution if truncated at
the same number of modes (data not shown). This indicates
that it is not problematic for a good approximation in the
physical region r < R that the normalized enthalpy density
[in contrast to the un-normalized one; see Eq. (5)] does not
vanish at the boundary r = R. However, as seen in Fig. 12,
the two-mode correlators 〈w̃(m)

l1
w̃

(m)∗
l2

〉 of the normalized
density show an oscillating structure that is rather different
from that seen in Figs. 4 and 8. Technically, this oscillation
arises because, for the normalized density w(r, φ)/wBG(r),

fluctuations at large radius r take much larger values than for
the un-normalized case. The Bessel-Fourier expansion tends
to reproduce such structures at large r and the nonvanishing
values of w(r, φ)/wBG(r) at the boundary r = R by alternating
the sign of neighboring Bessel coefficients; see Fig. 12. In
general, we find that the structure of 〈w̃(m)

l1
w̃

(m)∗
l2

〉 in Fig. 12 still
follows for each m a simple pattern: The sign of the two-mode
correlator alternates, and its norm decreases for fixed m with
increasing l2 − l1, as expected for a density in which radial
modes decorrelate with increasing difference in wavelength.
Let us mention as an aside that we have illustrated already in a
first dynamical study [26] how to propagate fluid dynamically
event ensembles of small fluctuations characterized by the
two-point correlators 〈w̃(m)

l1
w̃

(m)∗
l2

〉 or single fluctuating modes

of weight w̃
(m)
l1

, and we have shown how to calculate the
contributions of these fluctuating modes to measured hadron
spectra; see also Ref. [53].

As we have seen in Sec. III, establishing that the prob-
ability distribution of event samples of initial conditions is
approximately Gaussian provides a significant simplification
for the characterization of event samples. Here we note that
this simplification holds also for the probability distribution
P({w̃(m)

l }) of the Bessel coefficients of the normalized density
distribution w(r, φ)/wBG(r): The information displayed in
Fig. 11 provides an almost complete characterization of
P({w̃(m)

l }). In particular, as discussed in Sec. III D already,
a Gaussian probability distribution is fully specified by the
two-mode correlators 〈w̃(m)

l1
w̃

(m)∗
l2

〉, but it makes nontrivial

statements about the event distributions of w̃
(m)
l1

w̃
(m)∗
l2

(and
higher order products) around these averages. In Eqs. (32) and
(34), we have derived explicit expressions for the relevant event
distributions of two-mode products. As we show in Fig. 13 for
the distributions of different products of two modes, and in
Fig. 14 for projections of complex-valued products w̃

(m)
la

w̃
(m)∗
lb

on the real and imaginary axis, these distributions around
event averages indicate that P({w̃(m)

l }) is a close to Gaussian
probability distribution of the form of Eq. (24).4

In both the Bessel-Fourier expansion (8) and the scheme
(38), the radius R must be chosen sufficiently large, so that the
area of radius R encompasses the entire physically relevant
range. However, R should not be chosen too large, because the
expansion scheme determines the Bessel-Fourier coefficients
with respect to the entire radial range r ∈ [0, R] without giving
more weight to the high-density region at small r that is
physically most relevant. Also, the Bessel-Fourier expansion
coefficients depend on the choice of R. One may wonder
whether it is possible to eliminate this unwanted R dependence
and to give in the expansion more weight to the physically most
relevant region of small and intermediate radii that contain
most of the enthalpy density. One idea in this context might be
to use a mapping of the complete range of radii r ∈ [0,∞] to
a compact interval. The outer boundary condition corresponds

4Strictly speaking, because the relation between w
(m)
l and w̃

(m)
l is

linear, the later are Gaussian distributed precisely when this holds
for the former. Nevertheless, one may expect that possible deviations
from Gaussianity are more pronounced in one of the cases.
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FIG. 13. (Color online) Event distributions of products of two modes w̃
(m)
l1

w̃
(m)∗
l2

for b = 0. Same as Fig. 3, but for the normalized enthalpy
density w(r, φ)/wBG(r).

then to r = ∞, and artificial boundary effects would disappear.
A natural mapping of this kind is induced, for instance, by the
background enthalpy density wBG(r) chosen such that it agrees
with an appropriate event average, wBG(r) = 〈w(r, φ)〉. Be-
cause wBG(r) is positive, monotonously decreasing with r and
integrable in the transverse plane (the total enthalpy is finite),
one can define the transformed radial coordinate such that

ρ(r) =
√ ∫ r

0 dr ′ r ′ wBG(r ′)∫∞
0 dr ′ r ′ wBG(r ′)

. (40)

The coordinate ρ is proportional to r for small r and it maps
the interval r ∈ [0,∞] onto ρ ∈ [0, 1]. A reformulation of the
expansion (38) in this new radial coordinate is straightforward,
but we do not further explore this point in the present work.

V. VECTOR AND TENSOR FLUCTUATIONS

In this section we extend the Bessel-Fourier representation
of the previous section to hydrodynamical fields that transform
as vectors and tensors under rotations. We also make the
dependence of these fields on spatial rapidity η and time τ
explicit, which has been omitted for notational simplicity so
far. Again we design the expansion such that in a situation
where the background field is independent of the coordinates
in the transverse plane the evolution equations for different
Bessel modes decouple. We discuss here fluctuations in
fluid velocity; the extension to other vector fields is then
straightforward.

In coordinates τ, r, φ, η it is sensible to choose the indepen-
dent components of the fluid velocity as ur , uφ , and uη. The

FIG. 14. (Color online) The distribution of real and imaginary values taken by complex-valued two-mode correlators 〈w̃(m)
l1

w̃
(m)∗
l2

〉, l1 �= l2.
Same as Fig. 3, but for the normalized enthalpy density w(r)/wBG(r).
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fourth component follows from the normalization condition
as uτ =

√
1 + (ur )2 + r2(uφ)2 + τ 2(uη)2. For a background

fluid field that satisfies rotational symmetry in the transverse
plane as well as Bjorken boost invariance, the background
components uφ and uη vanish, but the radial background
component ur

BG can be nonvanishing. We denote the fluctuating
part of the velocity fields with a tilde, and we rescale all field
components such that they are dimensionless in units with c =
1. Expressed with the help of transverse Cartesian coordinates
�v = (vx, vy), �s = (x, y), �s⊥ = (−y, x), the fluctuating part of
the velocity components takes then the form

ũr = �s · �v/|�s| − ur
BG = ur − ur

BG, (41)

ũφ = �s⊥ · �v/|�s⊥| = r uφ, (42)

ũη = τ uη. (43)

We now discuss how to set up the Bessel-Fourier repre-
sentation of these fields. Naively, one might think that an
expansion as in Eq. (9) would do for vector valued quantities
as well. However, this leads to problems, as can be seen,
for example, for the m = 0 modes. At r = 0 the Bessel
functions are nonzero, J0(0) = 1, and an expansion of ũr as in
Eq. (9) would thus contain parts that do not vanish for r → 0.
This is unphysical because the divergence of the fluid velocity
would have a 1/r singularity; the zeroth harmonic moment
of ũr must vanish at r = 0. However, the first harmonic
moments of ũr and ũφ can take finite values at r = 0, while the
expansion (9) does not allow for that. Instead of Eq. (9), one
can expand the mth moments of the velocity fields ũr and ũφ

as linear combinations of the Bessel functions Jm−1(k(m)
l r) and

Jm+1(k(m)
l r) that satisfy physical boundary conditions at r = 0.

Here the wave numbers k
(m)
l are the same as in Eq. (8). The

functions Jm−1(k(m)
l r) and Jm+1(k(m)

l r) form an appropriate
orthogonal set of functions; see Appendix A . Closer inspection
shows then that physical boundary conditions are realized for
the linear combinations5

ũr = 1√
2

(ũ− + ũ+), ũφ = i√
2

(ũ− − ũ+), (44)

where

ũ−(τ0, r, φ, η)

=
∞∑
l=1

∞∑
m=−∞

∫ ∞

−∞

dkη

2π
ũ

−(m)
l (τ0, kη) ei(mφ+kηη)Jm−1(k(m)

l r),

ũ+(τ0, r, φ, η)

=
∞∑
l=1

∞∑
m=−∞

∫ ∞

−∞

dkη

2π
ũ

+(m)
l (τ0, kη) ei(mφ+kηη)Jm+1(k(m)

l r).

(45)

5In general, the mth harmonic moments of ũr and ũφ vanish
for m �= 1 at r = 0, and for m = 1 they satisfy Re[ũ(1)

r (r = 0)] =
Im[ũ(1)

r (r = 0)] and Re[ũ(1)
φ (r = 0)] = −Im[ũ(1)

φ (r = 0)]. This can
also be seen from Fig. 16. One checks straightforwardly that these
physical boundary conditions are satisfied by the ansatz (44).

For ũη one can use the same expansion as in the scalar case,

ũη(τ0, r, φ, η)

=
∞∑
l=1

∞∑
m=−∞

∫ ∞

−∞

dkη

2π
ũ

η(m)
l (τ0, kη) ei(mφ+kηη)Jm(k(m)

l r).

(46)

Note that in Eqs. (45) and (46) we also expand the dependence
on rapidity η into an appropriate Fourier transform. In this
sense Eqs. (45) and (46) provide generalizations of Eqs. (1)
and (6).

To shortly illustrate properties of the Bessel-Fourier ex-
pansion of vector fields, we have generated initial conditions
with nonvanishing velocity fluctuations according to a model
described in Ref. [50]. This model supplements the MC
Glauber initial conditions of Sec. III with a velocity field by
associating a small random transverse velocity component v to
each of the participants and their individual enthalpy density
distributions. For the examples considered here, we draw the
random velocity components from a Gaussian distribution of
width 〈|v|〉 = 0.1c. Figure 15 shows the fluctuations in the
radial (ũr ) and azimuthal (ũφ) velocity components, generated
in such a model for a single event. We mention as an aside that
the initial velocity fluctuations of this model have divergent
and rotational (a.k.a. vorticity) components of similar size
[50]. It is an open question whether such initial velocity
fluctuations leave characteristic signatures in relativistic heavy
ion collisions, but at least some conceivable scenarios are
being explored [54,55]. However, even if velocity fluctuations
should turn out to be negligible at initial time τ0, they will be
generated at τ > τ0 in response to fluctuations in the enthalpy
density. Understanding how the Bessel-Fourier expansion
extends to vector and tensor fields is therefore relevant for
studying how single-density modes propagate. In particular,
our first exploratory study of the dynamical evolution of
single modes of the enthalpy density [26] was based on a
Bessel-Fourier expansion of all vector and tensor fields at times
τ > τ0.

Here we do not further discuss the physics of initial velocity
fluctuation, but we limit our discussion to the properties of
characterizing vector fields with the ansatz (44) and (45). It
is a general feature of vector fields that in the limit r → 0
their first harmonic moments can take nonvanishing values,
while all other harmonic moments vanish. Figure 16 shows the
harmonic moments ũr (m), ũφ (m) for the velocity fluctuations
of Fig. 15 and illustrates this point.

To determine the Bessel-Fourier coefficients of the expan-
sion (45) of vector fields, one can apply again Lemoine’s
method of discrete Bessel transformation. The only difference
to the scalar case is now that Jm(k(m)

l r) in (12) gets replaced
by Jm−1(k(m)

l r), Jm+1(k(m)
l r), respectively, so that

ũ
± (m)
l =

Nl∑
α=1

M± (m)
lα ũ±(m)

(
r (m)
α

)
, (47)
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FIG. 15. (Color online) Fluctuations in the initial radial (left) and angular (right) velocity fields ur and uφ of a single event. The event was
generated from MC Glauber initial conditions in which the enthalpy density attributed to each participant is associated with a small random
transverse velocity component, drawn from a Gaussian distribution of width 〈|v|〉 = 0.1c.

where the matrix M±(m)
lα is independent of the properties of

ũ± (m)(r) and reads

M± (m)
lα = 4 Jm±1

(
k

(m)
l r (m)

α

)
(
z

(m)
Nl

)2
J 2

m+1

(
z

(m)
l

)
J 2

m+1

(
z

(m)
α

) . (48)

Let us now turn to tensor-valued fields. The prime example
for this is the shear stress tensor πμν . If the event-averaged
background of this shear tensor has rotational symmetry in the
transverse plane and Bjorken boost invariance, then it depends
only on r and the only nonzero components are πττ

BG, πτr
BG, πrτ

BG,
πrr

BG, πφφ
BG, and π

ηη
BG. We note that only two of these components

are independent; the other are constrained by

πμν = πνμ, πμ
μ = 0, uμπμν = 0. (49)

FIG. 16. (Color online) The lowest harmonic moments ũr (m),
ũφ (m) of the fields ũr and ũφ of a single event plotted in Fig. 15.
The boundary values of these moments for r → 0 are consistent with
the choice of a Bessel-Fourier expansion in terms of Bessel functions
Jm+1, Jm−1; see Eqs. (44) and (45) and text.

Here, the last constraint is nonlinear in the fluid dynamical
fields. It is therefore not necessarily true for expectation values.
It may still be reasonable, however, to assume that the relation
(49) holds when uμ and πμν are replaced by their background
values u

μ
BG and π

μν
BG.

We now rescale again the components of the shear viscous
tensor so that they are dimensionless, and we denote their
fluctuating parts with a tilde:

π̃ rr = 1

wBG

(
πrr − πrr

BG

)
, π̃ rφ = π̃φr = r

wBG

(
πrφ− π

rφ
BG

)
,

π̃ rη = π̃ ηr = τ

wBG
πrη, π̃φφ = r2

wBG

(
πφφ − π

φφ
BG

)
,

π̃φη = π̃ ηφ = rτ

wBG
πφη, π̃ηη = τ 2

wBG

(
πηη − π

ηη
BG

)
. (50)

The components involving the temporal direction τ can be
inferred from these using uμπμν = 0. We note also that one
of the components in Eq. (50) can be expressed in terms of the
others owing to the traceless constraint πμ

μ = 0.
For the Bessel-Fourier expansion it is furthermore useful to

make the following change of variables:

π̃ rη = 1√
2

(π̃−η + π̃+η),

π̃φη = i√
2

(π̃−η − π̃+η),

(51)

π̃ rφ = 1√
2

(π̃−− + π̃++),

π̃φφ + 1

2
π̃ ηη = i√

2
(π̃−− − π̃++).
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As a fifth independent component we take π̃ ηη. One can then use the expansion scheme

π̃ ηη(τ0, r, φ, η) =
∞∑
l=1

∞∑
m=−∞

∫ ∞

−∞

dkη

2π
π̃

ηη (m)
l (τ0, kη) ei(mφ+kηη)Jm(k(m)

l r),

π̃−η(τ0, r, φ, η) =
∞∑
l=1

∞∑
m=−∞

∫ ∞

−∞

dkη

2π
π̃

−η (m)
l (τ0, kη) ei(mφ+kηη)Jm−1(k(m)

l r),

π̃+η(τ0, r, φ, η) =
∞∑
l=1

∞∑
m=−∞

∫ ∞

−∞

dkη

2π
π̃

+η (m)
l (τ0, kη) ei(mφ+kηη)Jm+1(k(m)

l r), (52)

π̃−−(τ0, r, φ, η) =
∞∑
l=1

∞∑
m=−∞

∫ ∞

−∞

dkη

2π
π̃

−− (m)
l (τ0, kη) ei(mφ+kηη)Jm−2(k(m)

l r),

π̃++(τ0, r, φ, η) =
∞∑
l=1

∞∑
m=−∞

∫ ∞

−∞

dkη

2π
π̃

++ (m)
l (τ0, kη) ei(mφ+kηη)Jm+2(k(m)

l r).

The inverse relations for π̃ ηη, π̃−η, and π̃+η are analogous to the vector case (48). For the components π̃−− and π̃++ one has
additional boundary terms,

π̃−−(τ0, l, m, kη) = 1

2π

2

R2
[
Jm+1

(
z

(m)
l

)]2
∫ R

0
rdr

∫ 2π

0
dφ

∫ ∞

−∞
dη π̃−−(τ0, r, φ, η) e−i(mφ+kηη)Jm−2

(
k

(m)
l r
)

+ 1

2π

2

z
(m)
l Jm+1

(
z

(m)
l

) ∫ 2π

0
dφ

∫ ∞

−∞
dη π−−(τ0, R, φ, η) e−i(mφ+kηη), (53)

π̃++(τ0, l, m, kη) = 1

2π

2

R2
[
Jm+1

(
z

(m)
l

)]2
∫ R

0
rdr

∫ 2π

0
dφ

∫ ∞

−∞
dη π̃++(τ0, r, φ, η) e−i(mφ+kηη)Jm+2

(
k

(m)
l r
)

+ 1

2π

2

z
(m)
l Jm+1

(
z

(m)
l

) ∫ 2π

0
dφ

∫ ∞

−∞
dη π++(τ0, R, φ, η) e−i(mφ+kηη).

The reason is the modified orthogonality relation for the
functions Jm−2 and Jm+2 in Eq. (A4). Again, these relations
can be inverted with Lemoine’s method. We emphasize that
the expressions given in this section are of practical use. In
particular, the calculation of the fluid dynamical propagation
of single fluctuating modes presented in Ref. [26] involves a
Bessel-Fourier decomposition of all scalar, vector, and tensor
fluid dynamic fields at each time step of the simulation.

VI. SUMMARY AND OUTLOOK

In summary, we have shown in the present work that a
Bessel-Fourier expansion provides a convenient orthonormal
basis for the characterization of fluctuating initial conditions
in all fluid dynamic fields. The form of the Bessel-Fourier
expansion explored in Sec. III was proposed for scalar fields
already in Ref. [24], where, in particular, results closely related
to Figs. 1 and 2 of the present work were presented. Here we
have extended these studies to the characterization of vector
and tensor fields, we have extended it to the characterization
of correlations between fluctuating modes, and we have
explained how the weights of these modes can be determined
in practice in a CPU-inexpensive way based on Lemoine’s
method. Moreover, in Sec. IV, we have introduced a variant
of the Bessel-Fourier expansion for normalized densities that

remains by construction positive definite if truncated after a
finite number of modes. As we have argued here on general
grounds, and as we have demonstrated in a first fluid dynamical
study of fluctuations recently [26], this property allows one
to propagate single modes fluid dynamically. The Bessel-
Fourier expansion, in the form given in Sec. IV is therefore
a suitable starting point for the program of mode-by-mode
hydrodynamics that we plan to pursue in future work.

We have also shown that the orthonormal Bessel-Fourier
expansion provides for a simple and efficient characterization
of the functional event-by-event probability distribution P . To
illustrate this point, we have characterizedP in Secs. III and IV
for the MC Glauber model of fluctuating initial conditions. We
have shown for this model in particular that event distributions
of single modes and distributions of products of two modes
are described by a Gaussian ansatz for P with high accuracy.
This is important because it allows for the discussion of
event distributions in terms of simple analytic expressions that
depend on a finite number of event-averaged quantities only.

For a general classification of the initial conditions of ultra-
relativistic nucleus-nucleus collisions, it would be interesting
to understand in the future to what extent the event probability
distributions P that characterize other models of fluctuating
initial conditions are also well approximated by a Gaussian
ansatz. We note in this context that the framework presented
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in Secs. III and IV need not be limited to the analysis of
event-distributions of single modes and of products of two
modes. In close analogy to our discussion of Eqs. (30) and
(31), one can also compare for event distributions of three
or more modes the true model distributions to the results of a
Gaussian ansatz. One can test, of course, whether higher-mode
correlators of the form (22) factorize into products of two-point
correlators, as expected for a Gaussian distribution. This would
establish to what extent non-Gaussianities arise in different
models of fluctuating initial conditions, and it could thus
contribute to a general classification of these initial conditions.
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APPENDIX A: BESSEL FUNCTIONS AND
BESSEL TRANSFORMATION

In this Appendix we gather some properties of Bessel func-
tions that we found useful in manipulating the representation
of fluctuating initial conditions proposed in the main text.

Denoting by z
(m)
l the lth zero of the Bessel function of

the first kind Jm(z), one can write the standard orthogonality
property as∫ R

0
dr r Jm

(
z

(m)
l

r

R

)
Jm

(
z

(m)
l′

r

R

)
= R2

2

[
Jm+1

(
z

(m)
l

)]2
δll′ .

(A1)

In essence this relation states that for given m one can use
the functions fl = Jm(z(m)

l r/R), with l = 1, . . . ,∞ as an
orthogonal set of functions on the interval 0, . . . , R when the
integration measure is r dr .

Particularly useful are also the following expressions for
derivatives and for multiplying with m/r:
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(A2)

From the Bessel differential equation one can also derive the
following relations:∫ R

0
dr r Jm−1
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Note that z(m)
l is here still the lth zero of Jm(x). The significance

of Eq. (A3) is that, in addition to Jm(z(m)
l r/R), also the set of

functions Jm−1(z(m)
l r/R) or Jm+1(z(m)

l r/R) for l = 1, . . . ,∞
constitute orthogonal sets of functions on the interval 0, . . . , R.
This feature is important for the Bessel expansion of vector
valued functions such as the fluctuations in the fluid velocity.

Finally, we note a related property for the sets of functions
Jm−2(z(m)

l r/R) and Jm+2(z(m)
l r/R). The orthogonality relations

are now slightly more complicated,∫ R
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(A4)

These relations can still be used for an expansion of tensor val-
ued fluctuations in terms of the set of functions Jm−2(z(m)

l r/R)
or Jm+2(z(m)

l r/R), l = 1, . . . ,∞ although some expres-
sions contain additional boundary terms, as discussed in
Sec. V.

APPENDIX B: DISCRETE BESSEL TRANSFORMATION

In this Appendix we discuss an efficient numerical scheme
owing to Lemoine [52] to do Bessel transformations by
converting integrals into finite numerical sums. In this scheme
r-dependent functions h are represented in position space by
their value on N discretization points,

h
(
r (m)
α

)
, α = 1, . . . , N, (B1)

where

r (m)
α = z(m)

α

z
(m)
N

R (B2)

and z(m)
α is the αth zero crossing of the Bessel function Jm(z).

Note that r
(m)
N = R is on the boundary where one assumes

h(R) = 0.
Consider now the Bessel function expansion

h(r) =
∞∑
l=1

hlJm

(
k

(m)
l r
)

(B3)

with

k
(m)
l = z

(m)
l

1

R
. (B4)

We truncate this expansion at l = N or for k
(m)
l = k

(m)
N =

z
(m)
N /R. Restricting also to the points r (m)

α ,

h
(
r (m)
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) ≈
N∑

l=1

hl Jm

(
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l r (m)

α

)
, (B5)
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thereby possibly cutting off the very fine structures of
the function h(r). The virtue of the spatial discretization
[Eqs. (B1) and (B2)] is now that one can efficiently approxi-
mate the inverse relation

hl = 2

R2
[
Jm+1

(
k

(m)
l R

)]2
∫ R

0
dr r h(r) Jm

(
k

(m)
l r
)

(B6)

by a finite sum

hl ≈
N∑

α=1

4[
z

(m)
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]2[
Jm+1

(
z
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)]2[
Jm+1

(
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×h
(
r (m)
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)
Jm

(
k

(m)
l r (m)

α

)
. (B7)

Note that the last term with α = N vanishes so that the sum
goes effectively over the range α = 1, . . . , N − 1. Note that
Eqs. (B5) and (B7) constitute matrix relations between the two
representations of the function h in position space (B1) and in
Bessel space represented by hl , l = 1, . . . , N .

We emphasize at this point that even in a situation where
hl = 0 for l > N so that Eq. (B5) is exact, this is not necessarily
the case for a discrete version of the inverse relation (B7).
This is in contrast to other relations of similar kind such as
the discrete Fourier transforms. Equation (B6) is exact and
Eq. (B7) is getting better and better as N → ∞.

APPENDIX C: PROBABILITY DISTRIBUTION
OF ENTHALPY DENSITIES

In this Appendix we discuss some general properties of the
event-by-event probability distribution of enthalpy density in
the transverse plane at time τ0 where hydrodynamics is initial-
ized. For notational simplicity we neglect the dependence on
the longitudinal rapidity coordinate.

Because the initial transverse enthalpy density w(r, φ) is a
function of radius r and azimuthal angle φ, the probability dis-
tribution that describes an ensemble of events is a functional,

P[w]. (C1)

It can be characterized in different ways, for example by the
expectation value

〈w(r, φ)〉 (C2)

and the set of n-point correlation functions,

〈w(r1, φ1) · · ·w(rn, φn)〉. (C3)

Note that the enthalpy density is real and positive definite,
which therefore has to be the case for the expectation values
and correlation functions as well.

If the event ensemble in question consists of events with
arbitrary orientation in the transverse plane, azimuthal rotation
invariance φ → φ + �φ and invariance under reflections φ →
−φ are realized as statistical symmetries. This means that
the transverse enthalpy distribution of a single event is not
invariant under these transformations but appropriate event
averages are. In particular, the expectation value in Eq. (C2) is
then independent of φ and the correlation functions in Eq. (C3)
depend only on differences between the azimuthal angles. The

statistical symmetry must also be realized for the probability
distribution (C1).

Let us now discuss the particularly simple and important
case of a functional probability distribution of Gaussian form
(N is an appropriate normalization factor),

P[w] = N exp

[
− 1

2

∫
dr1dr2dφ1dφ2 r1 r2

× (w(r1, φ1) − 〈w(r1, φ1)〉) M(r1, r2, φ1, φ2)

× (w(r2, φ2) − 〈w(r2, φ2)〉)
]
. (C4)

The statistical azimuthal rotation and reflection symmetry
would imply that M ∈ R depends on φ1 and φ2 only via the
difference |φ1 − φ2|. We expand now w(r, φ) in terms of the
Bessel-Fourier decomposition proposed in Sec. II,

w(r, φ) =
Nm∑

m=−Nm

Nl∑
l=1

w
(m)
l eimφ Jm

(
k

(m)
l r
)
. (C5)

The coefficients w
(m)
l are complex but fulfill w

(m)∗
l = w

(−m)
l

because w(r, φ) ∈ R. The Gaussian distribution (C4) becomes
in this basis

P[w] = N exp

[
− 1

2

Nm∑
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(C6)

with

T
(m1)(m2)
l1l2

=
∫

dr1dr2dφ1dφ2 r1r2 e−im1φ1eim2φ2

× Jm1

(
k

(m1)
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(
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M(r1, r2, φ1, φ2).

(C7)

The matrix T
(m1)(m2)
l1l2

is Hermitean because P is real. It also
fulfills

T
(m1)(m2)∗
l1l2

= T
(−m1)(−m2)
l1l2

. (C8)

For statistical rotation symmetry it is diagonal with respect to
the indices m1 and m2,

T
(m1)(m2)
l1l2

= δm1m2T
(m1)
l1l2

. (C9)

Statistical azimuthal reflection symmetry implies

T
(m1)(m2)
l1l2

= T
(−m1)(−m2)
l1l2

∈ R. (C10)

We finally note that general properties of Gaussian distribu-
tions imply

(T −1)(m1)(m2)
l1l2

= 〈w(m1)
l1

w
(m2)∗
l2

〉− 〈w(m1)
l1

〉〈
w

(m2)∗
l2

〉
. (C11)

The functional probability distribution (C6) is therefore com-
pletely determined by the expectation values and two-mode
correlators.
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