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We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions
differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we
introduce a background-fluctuation splitting and a Bessel–Fourier decomposition of the fluctuating
modes. We demonstrate how the fluid dynamic evolution of realistic events can be built up from the
propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics,
and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we
quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic
flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger
dissipative effects, but also due to a geometrical averaging over the freeze-out hyper-surface. In this way,
our study further substantiates the picture that harmonic flow coefficients give access to a coarse-grained
version of the initial conditions for heavy ion collisions, only.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
In nucleus–nucleus collisions at the LHC and at RHIC, the de-
pendence of soft hadron spectra on transverse momentum, on
azimuthal orientation, on centrality and on particle species is un-
derstood since recently as fluid dynamic response to fluctuating
initial conditions [1–5], for reviews see Refs. [6,7]. This success of
a fluid dynamic description is significant mainly for two reasons.
First, the high sensitivity of fluctuations to dissipative properties of
the produced fluid implies that fluctuations are promising tools for
constraining the transport properties of dense QCD matter with
unprecedented accuracy [8,9]. Second, since minimal dissipation
implies maximal transparency to fluctuations, fluctuations in the
initial stage of the collision can survive the time evolution. There-
fore, the analysis of fluctuations may give access to the initial
pre-equilibrium state and its fast evolution towards local equilib-
rium [10,11].

Motivated by these perspectives, many recent works have ex-
plored the dynamical relation between fluctuating initial condi-
tions and experimentally accessible data. One important line of
research is to characterize initial conditions for event averages and
event ensembles in terms of eccentricities or closely related cu-
mulants of the initial (entropy) density distribution [13,14], and to
propagate entire events in viscous fluid dynamic simulations to the
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hadronic final state [9,12,15–22]. To date, this approach provides
the most detailed test for the validity of a fluid dynamic descrip-
tion of heavy ion collisions. Despite this success of a cumulant-
based characterization of initial conditions, several reasons mo-
tivate to explore alternative ones [23–29]. First, it is a problem
well-known in probability theory that while any positive trans-
verse density distribution can be characterized uniquely in terms
of its infinite set of moments or cumulants, it is not possible to
find (beyond the cumulants that determine a Gaussian) a positive
density configuration corresponding to a finite set of cumulants
such that all higher ones vanish. Strictly speaking, this implies that
single cumulants cannot be propagated in fluid dynamics. Second,
it is unknown how to extend a cumulant expansion to vector and
tensor fields, as is needed e.g. if one wants to explore the natu-
ral possibility that fluctuations are manifest not only in the initial
densities but also in the velocity field and shear viscous tensor.
Finally, each cumulant receives typically contributions from fluc-
tuations on various different wavelengths. There are advantages in
decomposing initial fluctuations in an orthonormal basis of modes,
but such bases have been used so far only in studies that formulate
fluid dynamic perturbations on top of simple analytically known
background fields with extended symmetries [24–27,29].

In a compagnon work [23], we have discussed how to character-
ize initial conditions in an orthornormal basis for scalar densities
as well as vector and tensor fluctuations, constructed such that
single fluctuating modes define positive densities and can there-
fore be propagated individually, mode-by-mode. In the present
Letter, we provide the first application of such a mode-by-mode
fluid dynamics to realistic initial conditions, equation of state and
.
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transport properties. More specific, we characterize event samples
as probability distributions over a basis of modes, we propagate
each mode individually, and we build up experimental observables
as superpositions of the individually propagated modes. We com-
ment on how this can improve our understanding of why specific
fluctuations in the initial state survive or do not survive the dy-
namic evolution.

Initial conditions. The dynamical evolution is initialized by spec-
ifying fluid dynamic fields on some hyper-surface, usually taken
at fixed τ = √

t2 − z2 = τ0. Most generally, a model of the initial
conditions is then defined in terms of a (functional) probability
distribution pτ0 of the energy density ε or enthalpy w = ε + p,
the fluid velocity uμ , the shear stress πμν , the bulk viscous pres-
sure πbulk and possibly other fluid dynamic fields at τ0

pτ0

[
w, uμ,πμν,πbulk

]
. (1)

To discuss properties of the distribution pτ0 , we focus on one
fluid dynamic field only, the enthalpy w . We consider fluctua-
tions around a smooth background field wBG that is boost invariant
and azimuthally symmetric. Longitudinal and azimuthal fluctua-
tions in w are characterized by a standard Fourier expansion,

w(τ0, r, φ,η) − wBG(τ0, r)

=
∫

dkη

2π

∞∑
m=−∞

eikηη+imφ w(m)(τ0, r,kη). (2)

For notational simplicity, we assume in what follows longitudi-
nal boost invariance, i.e., we neglect any dependence on kη . If
needed, our discussion is extended easily to the case of a non-
trivial kη-dependence. The radial dependence is expanded in terms
of Bessel functions Jm that have appropriate boundary conditions
at r = 0,

w(m)(τ0, r) = wBG(τ0, r)
∞∑

l=1

Jm
(
k(m)

l r
)

w̃(m)

l . (3)

Here, the radial wave vectors k(m)

l = z(m)

l /R are set by the l-th ze-

roes z(m)

l of Jm(z) and an overall scale R (R = 8 fm for the results
presented here). The main difference between (3) and the Bessel–
Fourier expansion proposed first in [28] is that we include the
normalization factor wBG(τ0, r) on the right hand side. This en-
sures that the enthalpy density is positive everywhere even when
only one or a few of the coefficients w̃(m)

l are non-vanishing. The
azimuthal and radial wavenumber m and l can be restricted to the
ranges (−mmax, . . . ,mmax) and (1, . . . , lmax) when the spatial reso-
lution is bound. Lemoine’s discrete Bessel transformation provides
a CPU-inexpensive method for determining w̃(m)

l [30,23]. Fig. 1 il-
lustrates for a phenomenologically relevant enthalpy density that
fluctuations in a single event can be characterized satisfactorily in
terms of a small set of mmax = lmax � O (10) Bessel coefficients
w(m)

l in (2), (3).
Event samples can have statistical symmetries that are broken

by event-wise fluctuations. For instance, a sample at vanishing im-
pact parameter b = 0 will have statistical azimuthal symmetry. In
this case, we choose to identify the background field in (2) with
the event average wBG ≡ 〈w〉. Also at finite b, it can be advanta-
geous to choose an azimuthally symmetric wBG even though this
symmetry is not realized statistically; one can define e.g. wBG as
the average over azimuthally randomized events. The azimuthal
dependence of the event sample is then encoded in the event-
averaged Bessel coefficients w̄(m)

l = 〈w̃(m)

l 〉 that can take non-zero
values for even integers m when b 	= 0. We have tested in model
Fig. 1. Initial transverse enthalpy density w of the MC Glauber model of Ref. [12].
Contributions of single participants are smeared by Gaussians with σ = 0.4 fm and
reweighted by the number of collisions according to Ref. [15] (xcoll = 0.118). A finite
number of modes (mmax, lmax) in (2), (3) allows one to reconstruct w efficiently.

Fig. 2. Correlation of Fourier–Bessel components of the enthalpy density
〈w̃(m)

l1
w̃(m)∗

l2
〉 according to the Monte-Carlo Glauber model for central collisions. We

plot this for m = 2, different values of l1 and as a function of l2. The curves look
similar for m = 1 or m = 3.

studies that the ansatz (2), (3) is as accurate for classes of semi-
peripheral collisions, as for central ones [23].

Since the coefficients w̃(m)

l characterize single events fully, the
functional probability density pτ0 becomes a function of a set of

numbers w̃(m)

l . We have established [23] that for currently used
models of initial conditions, pτ0 satisfies to good approximation
the properties of a Gaussian probability distribution. For b = 0,

pτ0 = 1

N
exp

[
−1

2

mmax∑
m=−mmax

lmax∑
l1,l2=1

T (m)

l1l2
w̃(m)∗

l1
w̃(m)

l2

]
. (4)

Thus, pτ0 is fully characterized in terms of wBG ≡ 〈w〉 and the
two-point correlators(
T (m)

)−1
l1l2

= 〈
w̃(m)

l1
w̃(m)∗

l2

〉
. (5)

Fig. 2 shows the m = 2 two-point correlators (5) for the Monte
Carlo Glauber model described in [12,23]. From these data (for
all m < mmax), event samples of initial conditions can be gener-
ated easily. Since a mode w̃(m)

l corresponds to a radial wavelength

1/k(m)

l = R/z(m)

l that decreases with increasing l, Fig. 2 shows how
fluctuations on different radial length scale decorrelate as they are
separated in scale.

Dynamic evolution. The above classification of initial conditions in-
troduces naturally a background-fluctuation splitting w = wBG +
wF, uμ = uμ + uμ etc. of all fluid fields. Instead of solving the
BG F
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Fig. 3. Upper left: Freeze out curve of event-averaged background field for a central
Pb–Pb collision at LHC energy at T fo = 130 MeV and for different choices of the
shear viscosity to entropy ratio: η/s = 0 (dotted), η/s = 0.08 (solid) and η/s = 0.3
(dashed). The arrows indicate the direction of the fluid velocity at freeze-out for
the case η/s = 0.08. Upper right and lower panels: Time evolution of fluctuations
in the normalized enthalpy density w̃ = δw/wBG for η/s = 0.08 and three different
modes of initial conditions corresponding to azimuthal wave number m = 2 and
radial wave numbers l = 3, l = 6 and l = 9, respectively. At large r where wBG(r, τ )

is small, small fluctuations δw can be visually prominent in w̃ = δw/wBG.

relativistic fluid dynamic equations for the fields w , uμ etc. event-
by-event, we solve for the smooth non-fluctuating background field
once and for all, and we propagate the full basis of initial fluc-
tuating modes with wave-numbers (l,m) as perturbations on this
background field.

Relativistic viscous fluid dynamic solutions of event-averaged
background fields are well-documented. We follow Ref. [15] in us-
ing the equation of state s95p-PCE which combines lattice QCD
results at high temperatures with a hadron resonance gas at low
temperatures. It implements also a chemical freeze-out at T =
165 MeV/kB . The default value of the shear viscosity to entropy
ratio is η/s = 0.08h̄/kB and the corresponding relaxation time
τShear = 0.23h̄/(kB T ). The evolution is initialized at τ0 = 0.6 fm/c
with initial flow and shear stress fields corresponding to the
Navier–Stokes form of a longitudinal Bjorken expansion. The back-
ground enthalpy is initialized as wBG = 〈w〉 at b = 0. The entropy
in both background and fluctuations scale with (1 − x)Npart/2 +
xNcoll, x = 0.118, as in Ref. [15]. Fig. 3 shows the freeze-out curves
resulting from fluid dynamic evolution of this azimuthally sym-
metric background field. They are consistent with published bench-
marks.

The evolution equations for the fluctuations w F , uμ
F etc. depend

on the solution for the background fields. They become particularly
simple if treated as small perturbations that can be linearized. For
a given Fourier mode specified by m and kη , the evolution equation
becomes then 1 + 1 dimensional and with the Bessel expansion as
in Eq. (3) it reduces for all τ to a set of coupled ordinary differen-
tial equations which we solve numerically. This set-up extends the
strategy of Refs. [24,27] to arbitrary background fields and arbi-
trary classes of initial fluctuations, including initial fluctuations in
the fluid velocity [27] or shear. In Fig. 3, we show for the normal-
ized enthalpy density w̃ = δw/wBG the spatial evolution for three
modes of different radial wave number l. One sees that the viscous
damping increases significantly for shorter radial wave-length, thus
illustrating the importance of studying the effect of fluctuations
differentially in l. We also find that the viscous damping seen in
Fig. 3 increases strongly with η/s. On the other hand, modes with
larger l lead to more strongly oscillating patterns on the freeze-out
surface and have therefore less impact on particle spectra even for
η/s = 0.
Freeze-out and particle spectra. Hydrodynamics ceases to apply when
interaction rates become too small to maintain local kinetic equi-
librium. We assume that this happens when the background field
drops below T fo = 120 MeV. Particle distributions then freeze
out. We determine them using the standard Cooper–Frye prescrip-
tion neglecting resonance decays and hadronic rescatterings after
freeze-out. (In principle these effects could be incorporated by
solving the corresponding kinetic equations for the background
and, in linearized form, for the fluctuations.) The occupation num-
bers on the freeze-out surface are taken to be of ideal gas form
with chemical potentials according to the equation of state s95p-
PCE. Viscous corrections due to shear stress are approximated by
the quadratic ansatz [34]. Due to its azimuthal rotation invariance,
the background field contributes to the φ- and y-independent part
of the one-particle spectrum S(pT ) = dN/(pT dpT dφdy), only. If
fluctuations on top of this background are small enough, their ef-
fect on particle spectra can be linearized,

ln

(
dNsingle event

pT dpT dφdy

)
= ln S0(pT ) +

∑
m,l

w̃(m)

l eimφθ
(m)

l (pT ). (6)

Here, the functions θ
(m)

l (pT ) determine how the fluctuating modes
of wave-numbers (m, l) contribute to the hadronic spectrum. In
general, the θ

(m)

l depend also on rapidity and particle species. They
are calculated as follows: The linearized hydrodynamical evolution
equations on top of the background solution are solved for the ini-
tial condition corresponding to the mode (m, l) in enthalpy density.
All fluid fields resulting from this initialization are determined on
the freeze-out surface and the corresponding contribution to the
particle spectrum is determined from an appropriate linearization
of the Cooper–Frye formula. Dividing finally by the background
contribution to the particle spectrum yields θ

(m)

l (pT ).
One-particle spectra of event samples are obtained by averaging

(6) over the probability distribution pτ0 ({w̃(m)

l }). In close anal-
ogy, the calculation of two-particle correlations requires knowledge
about the initial correlations between pairs of modes w̃(m)

l1
w̃(m)∗

l2
whose contribution to the hadronic two-particle spectra is then
determined by the product θ

(m)

l1
(pa

T )θ
(m)

l2
(pb

T ). The double differ-
ential harmonic flow coefficient for event samples reads then to
lowest order in w̃(m)

l

v2
m{2}(pa

T , pb
T

) =
lmax∑

l1,l2=1

θ
(m)

l1

(
pa

T

)
θ

(m)

l2

(
pb

T

)〈
w̃(m)

l1
w̃(m)∗

l2

〉
. (7)

The single differential harmonic flow coefficients vm(pT ) can be
obtained from (7) as appropriately weighted pT integrals. Note
that in close analogy to the experimental procedure of extract-
ing harmonic flow coefficients, (7) does not invoke knowledge of
a reaction plane but determines vm from the azimuthal depen-
dence of two-particle correlations that have their dynamic origin
in the azimuthal correlations 〈w̃(m)

l1
w̃(m)∗

l2
〉 between different fluc-

tuating modes. In this way, once the functions θ
(m)

l are calculated
for a given smooth background and the finite set of wave numbers
(m, l), the fluid dynamic propagation of arbitrary samples of fluctu-
ations pτ0({w̃(m)

l }) can be studied by simple matrix multiplication,
see (6), (7). We note that this formulation assumes a linear rela-
tion between fluctuating modes at τ0 and hadronic distributions
at freeze-out. One could test the accuracy of such a linear relation
by comparing for selected events to results from full fluid dynamic
simulations. This may also allow to identify characteristic signa-
tures of non-linear fluid dynamic behavior in heavy ion collisions
which would be interesting in itself.

Another possibility to estimate the effects of non-linear terms
in the hydrodynamical evolution and at freeze-out is to treat them
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order-by-order in a perturbative expansion. The leading order in
this perturbation theory for small fluctuations around a smooth
but dynamically evolving background is the linear order presented
in this Letter. At next-to-leading or quadratic order one can study
for instance how an m = 2 and an m = 3 mode interact and how
this contributes to a signal for v5. A more detailed discussion of
this kind of perturbative treatment is left for a future publication.

In Fig. 4, we compare calculations of hadronic spectra and flow
coefficients from mode-by-mode hydrodynamics to data for cen-
tral Pb + Pb collisions taken by the ALICE Collaboration [31,32].
For the one-particle spectra of pions, kaons and protons, we find
that fluctuations make a very small contribution to (6), so that
the model results shown in Fig. 4 are very close to the result
for an initial condition defined by the smooth background field
without fluctuations. For the evolution of a smooth background
field, we have checked on the level of the freeze-out hyper-surface
and on the level of spectra that our simulations are quantitatively
consistent with the hydrodynamic benchmarks established by the
TECHQM Collaboration. Our study does not take into account res-
onance decays and hadronic rescatterings after freeze-out (we do
not switch to a hadron cascade model), and we made no attempt
to improve agreement with data by optimizing input parameters
of the fluid dynamic simulation such as η/s or the equilibration
time τ0. It is therefore no surprise that one sees some differences
between data and numerical results for one-particle spectra. How-
ever, these one-particle spectra are sufficiently well reproduced to
serve as baseline for the present study, whose purpose is to illus-
trate how in a mode-by-mode fluid dynamic analysis, results on
elliptic, triangular, 4-th and 5-th order flow are built up in terms
of the contributions of individual fluctuations of characteristically
different radial wavelength. With this respect, our main conclusion
is that the sum (7) converges quickly, for small radial wave num-
bers l � lmax ≈ 5. This means that only fluctuations of sufficiently
large radial wavelength matter for the dynamics of flow coeffi-
cients. For the density distribution of the specific event shown in
Fig. 1, for instance, it is then only the coarse-grained information
shown for lmax = mmax = 5 in the upper right panel of Fig. 1 that
affects the value of flow harmonics in Fig. 4. Since we observe this
rapid convergence in l for minimal dissipative effects (η/s = 1/4π ),
we expect this finding to be more general than the specific model
study in which we have established it here.

The precise numerical values for vn(pT ) will depend in general
on the weights and correlations 〈w̃(m)∗

l1
w̃(m)

l2
〉 of the different fluc-

tuating modes in the initial conditions, on the input parameters
of the fluid dynamic evolution, and on the treatment of rescat-
tering effects and resonance decays after freeze-out. The present
study does not optimize input parameters and it does not account
for physics effects after freeze-out. Also, it is limited to the one
set of fluctuating initial conditions characterized in Fig. 2. Within
this non-optimized setting, we find a very reasonable agreement
with data for v2, v3, v4 and v5 in the range pT � 1 GeV, while
experimental data for v2 in the range 1 � pT � 3 GeV lie sig-
nificantly below our calculation. A full exploration of this signif-
icant, and other smaller discrepancies between data and calcu-
lation will require to optimize the input parameters which lies
outside the scope of the present study. We note, however, that
a simple mild rescaling of the weight of one single fluctuating
mode in the initial conditions, w̃(2)

1 → 0.7w̃(2)
1 , can improve agree-

ment between simulation results and data for v2 over a much
increased pT -range. While this curious observation clearly does
not replace a full optimization of all input parameters, it illustrates
that mode-by-mode hydrodynamics offers the possibility of “back-
ward engineering” of initial conditions: for any given dynamics
and a set of data, Eqs. (6) and (7) allow to optimize the corre-
lators 〈w̃(m) w̃(m)∗〉, and thus the event distribution pτ0 . Further
l1 l2
Fig. 4. Comparison of data on central Pb + Pb collisions at
√

sNN = 2.76 TeV to fluid
dynamic simulation described in the text. Upper panel: Particle spectra for pions,
kaons and protons S(pT ) = dN/(2π pT dpT dy), calculated from (6) and compared
to data on 5% most central events [31]. Following panels: Elliptic (v2), triangular
(v3), 4-th and 5-th order flow of charged particles, calculated for contributions from
π±, K ±, p and p̄ from (7) with lmax = 1,2,5,10,20 and compared to data on 2%
most central events. The dashed curve in the plot of v2 shows results (for lmax = 20)
for a modified event sample in which the weight of one particular fluctuating mode,
w̃(2)

1 is decreased by a factor 0.7.
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Fig. 5. The transverse momentum dependent n-th order flow coefficients vn , as in
Fig. 4, but calculated differentially for contributions from π±, K ±, p and p̄ for cen-
tral events.

differential test of mode-by-mode fluid dynamics will also include
the study of particle-identified flow harmonics. Fig. 5 shows cor-
responding results for pions, kaons and protons. Close inspection
shows that the curves are ordered with the particle mass at small
pT according to vm(pT )Protons < vm(pT )Kaons < vm(pT )Pions, while
for larger pT the ordering is reversed.
The proposed set-up may also be interesting in the context
of the recently proposed “event shape engineering” [33]. Namely,
it allows easily for the calculation of event distributions in one-
and two-particle spectra from pτ0 , and it thus allows to study the
relations between cuts on event distributions and cuts on initial
conditions pτ0 . Since it offers such possibilities, we expect that the
proposed fully differential treatment of fluctuations will become
a helpful tool used to fully exploit the experimental precision in
heavy ion physics.
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