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Abstract: We explore tree-level amplitude relations for SU(N)×SU(M) bi-fundamental

matter theories. Embedding the group-theory structure in a Lie three-algebra, we derive

Kleiss-Kuijf-like relations for bi-fundamental matter theories in general dimension. We in-

vestigate the three-algebra color-kinematics duality for these theories. Unlike the Yang-Mills

two-algebra case, the three-algebra Bern-Carrasco-Johansson relations depend on the space-

time dimension and on the detailed symmetry properties of the structure constants. We find

the presence of such relations in three and two dimensions, and absence in D > 3. Surpris-

ingly, beyond six point, such relations are absent in the Aharony-Bergman-Jafferis-Maldacena

theory for general gauge group, while the Bagger-Lambert-Gustavsson theory, and its super-

symmetry truncations, obey the color-kinematics duality like clockwork. At four and six

points the relevant partial amplitudes of the two theories are bijectively related, explain-

ing previous results in the literature. In D = 2 the color-kinematics duality gives results

consistent with integrability of two-dimensional N = 16 supergravity: The four-point ampli-

tude satisfies a Yang-Baxter equation; the six- and eight-point amplitudes vanish for certain

kinematics away from factorization channels, as expected from integrability.
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1 Introduction

In the quest to formulate an action of multiple M2 branes, Bagger, Lambert and Gustavsson

(BLG) [1, 2] realized that the gauge-group algebra of the maximally supersymmetric N = 8

theory must have a novel structure given by a natural generalization of the Lie two-bracket,

[•, •], to a triple product [•, •, •]. Such algebraic structures are called three-algebras (in this

terminology two-algebras are ordinary Lie algebras), or triple systems in the mathematical

literature.

The N = 6 theory of multiple M2 branes was constructed by Aharony, Bergman, Jafferis

and Maldacena (ABJM) [3] as a Chern-Simons-matter (CSm) theory with the physical degrees

of freedom transforming in the bi-fundamental representation of a U(N)×U(N) Lie-algebra

gauge group. Subsequent work [4–6] revealed that such CSm theories, which can be gener-

alized to SU(N)×SU(M) [7, 8], are equivalent to theories constructed using three-algebras

whose structure constants enjoy lesser symmetry compared with that of the BLG theory.

Recently, the utility of the three-algebra formulation of CSm theory has become appar-

ent in the context of scattering amplitudes. In the work of Bargheer, He and McLough-

lin [9], it was shown that for six-point amplitudes in BLG and ABJM theories there exists a

three-algebra-based color-kinematics duality, in complete analogy with the two-algebra color-

kinematics duality for Yang-Mills theory, discovered by Bern, Carrasco and one of the current

authors (BCJ) [10]. As a consequence of the duality, when the S-matrix of the BLG or ABJM

theory is organized into diagrams constructed out of only quartic vertices, then one can find

particular representations such that the kinematic numerators of these diagrams satisfy the

the same symmetry properties and general algebraic properties as the color factors. In such

a representation the numerators acts as if they were part of a kinematic three-algebra, which

is dual to the gauge-group three-algebra.

The BCJ color-kinematics duality for Yang-Mills theory [10], which is known to hold at

tree-level [11, 12] and conjectured to be valid at loop-level [13], has several interesting con-

sequences. At tree level, it generates non-trivial relations between color-ordered partial am-

plitudes, so-called BCJ amplitude relations. And, more importantly, once duality-satisfying

numerators are found, gravity scattering amplitudes can be trivially constructed by simply

replacing the gauge-theory color factors by kinematic numerators of the appropriate theory.

This squaring or double-copy property of gravity was proven in ref. [14], for the case of squar-

ing Yang-Mills theory. It has been argued that the color-kinematics duality and double-copy

property are intimately tied to the improved ultraviolet behavior of maximal [13, 15], as well

as half-maximal [16] supergravity. Remarkably, the color-kinematics duality has interesting

consequences and echoes in string theory [17].

For the three-algebra-based color-kinematics duality the evidence is still being collected at

tree level. Thus far, only four- and six-point amplitudes have been analyzed in the literature.

In ref. [9], the authors obtained the first non-trivial amplitude relations among color-ordered

six-point amplitudes of ABJM. Furthermore, by appropriately squaring the duality-satisfying

numerators of the six-point amplitudes, they found gravity amplitudes that agree with those
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of N = 16 supergravity of Marcus and Schwarz [18]. In ref. [19], it was shown that the

three-algebra BCJ-relations exist up to six-points for a large class of CSm theories with

non-maximal supersymmetry, and each theory squares or double-copies to a corresponding

supergravity theory. The fact that three-dimensional supergravity amplitudes can be obtained

in this way is fascinating for a variety of reasons. As is already known, these three-dimensional

supergravity theories can alternatively be constructed from double copies of three-dimensional

super-Yang-Mills (sYM) theories, as follows from the two-algebra color-kinematics duality.

Although bewildering, by uniqueness of gravity theories, one should expect that these two

distinct constructions give the same answers, as was indeed shown in ref. [19]. Furthermore,

for the relevant CSm theories only even-multiplicity amplitudes are non-vanishing, while

both even and odd amplitudes exist in three-dimensional sYM theory. Naively, this leads

to a conflict between the two double-copy constructions; however, it is resolved by realizing

that odd-multiplicity amplitudes are killed by the enhancement of supergravity R-symmetry

in the double copy [19]. Lastly, since the work of Kawai, Lewellen and Tye (KLT) [21], it

has been known that supergravity amplitudes can be obtained from sYM via the relationship

between closed and open string amplitudes, in the low energy limit. Interestingly, there is

no string-theory understanding as to why such (weak-weak) relations should exist between

supergravity and CSm theory.

As mentioned, a theory with SU(N)×SU(M) bi-fundamental matter can be naturally

embedded in a three-algebra theory. Lessons learned from three-dimensional CSm theories

show that three-algebra embeddings can be extremely useful for organizing the color struc-

ture of tree-level amplitudes, as well as exposing hidden structures therein. This calls for a

systematic study of scattering amplitudes subject to such embeddings, in general classes of

bi-fundamental theories. In this paper we proceed with this analysis.

The four-indexed structure constants of the three-algebra famously satisfy a fundamental

identity, which is the direct generalization of the two-algebra Jacobi identity. Once the color

factors of bi-fundamental matter theories are embedded in a three-algebra, this identity allows

us to find Kleiss-Kuijf-like partial amplitude relations. These relations are simply a reflection

of the over-completeness of the color structures. Since the amplitude relations follow from the

algebraic nature of the color factors, they are valid for arbitrary spacetime dimensions. For

the special case of D = 3 BLG theory, or any SU(2)×SU(2) bi-fundamental theory with equal

and opposite gauge couplings, there is an important enhanced antisymmetry of the structure

constants. This color structure allows for a more refined notion of partial amplitudes, which

are inherently non-planar, and satisfy their own type of amplitude relations. Note that, while

it is known that SU(2)×SU(2) is the unique finite-dimensional Lie algebra of BLG theory

that is free of ghosts [20], much of our analysis for the BLG theory will proceed without any

assumption about the gauge group, other than the antisymmetry property and fundamental

identity of the structure constants.

In this paper we search for evidence of color-kinematics duality in general bi-fundamental

theories. Although simple counting at tree level reveals that one can always find kinematic

numerators that are dual to the color factors in these theories, the miraculous and useful
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properties of color-kinematics duality, such as BCJ amplitude relations and double-copy con-

struction of gravity, only emerge in special cases. We find that three-algebra BCJ amplitude

relations and corresponding double-copy formula for supergravity only exist for D < 4; fur-

thermore, the symmetry properties of the three-algebra structure constants plays a crucial

role in D = 3 and D = 2 dimensions. Contrary to previous expectations, we find that only

BLG-like theories (totally antisymmetric structure constants) admit BCJ relations for general

multiplicity, whereas general (three-dimensional) ABJM-like theories fail at this starting at

eight points. The mismatch is surprising given the close relationship between the theories;

as is well known, SO(4) BLG theory can be considered to be a special case of ABJM with

SU(2)×SU(2) Lie algebra [5]. Proper analysis of the generalized-gauge-invariant [10, 13] con-

tent reveals that the partial amplitudes of the two types of theories are drastically different

starting at eight points, whereas the four- and six-point partial amplitudes are simply related.

This explains the previous low-multiplicity results in the literature [9, 19], which were simply

observations that straightforwardly generalize for BLG-like theories, but not for ABJM-like

theories in three dimensions.

Nevertheless, since BLG amplitudes can always be obtained from the ABJM ones (i.e.

by restricting the gauge group to SU(2)×SU(2)), there is a direct path linking both theories

with supergravity: ABJM theory −→ BLG theory −→ D = 3 supergravity. For BLG theory,

and its supersymmetric truncations, we show that BCJ relations exists through at least ten

points. And by squaring the duality-satisfying BLG numerators, we have verified that the

resulting double-copy results give correct supergravity amplitudes up to at least eight points.

For kinematics restricted to D = 2 dimensions, the double copy of BLG theory gives

scattering amplitudes of two-dimensional maximal N = 16 supergravity. While these gen-

erally suffer from severe infrared divergences, even at tree level, there are many finite tree

amplitudes that we here consider. For two-dimensional supergravity theories, much like their

three-dimensional parents, the bosonic degrees of freedom reside in the scalar sector, whose in-

teractions are described by a non-linear sigma model. For the maximally supersymmetric the-

ory, which is non-conformal, the target space is E8(8)/SO(16) (same as its three-dimensional

parent). It was realized long ago that the non-linear equations of motion of this theory are

equivalent to integrability conditions for a system of linear equations [22], and the theory

enjoys a hidden infinite-dimensional global E9(9) symmetry [23].

At four and six points, we work directly with double copies of two-dimensional ABJM

amplitudes, where the kinematics correspond to color-ordered alternating light-like momenta.

Similarly, at eight points we use two-dimensional BLG amplitudes where we have correlated

the lightcone direction and superfield chirality. This choice of kinematics allows us to obtain

two-dimensional tree amplitudes without encountering explicit collinear and soft divergences.

Observing that the two-dimensional four-point tree amplitude in ABJM theory satisfies the

Yang-Baxter equation (even though two-dimensional ABJM is not integrable), the super-

gravity amplitude inherits this property via the double copy. At six and eight point, even

though the reduced ABJM and BLG amplitudes are non-vanishing, the gravity amplitudes

obtained from the double-copy construction manifestly vanish. This is consistent with inte-

– 4 –



grality, which implies that the S-matrix vanishes for all values of the momenta except for those

corresponding to factorization channels of products of four-point amplitudes. Indeed, all our

results are consistent with two-dimensional maximal supergravity theory being integrable.

Finally, we note that there are a number of interesting amplitude relations that do not

fit the usual pattern of such relations, Curiously, in D = 2 novel BCJ relations emerge

for ABJM theory, even beyond six points. Although, surprisingly, the ABJM double-copy

prescription generally does not giveD = 2 supergravity amplitudes, since some of the resulting

component amplitudes at eight points are nonvanishing, contrary to what the BLG double

copy and SYM double copy give. This raises intriguing questions as to what is the role of those

BCJ relations, and whether or not this suggest that two-dimensional N ≥ 12 supergravity

can be deformed, contrary to expectations. Furthermore, we observe that the so-called bonus

relations, which arise from improved asymptotic behavior of the amplitude under non-adjacent

Britto-Cachazo-Feng-Witten (BCFW) deformations, may give relations beyond those of BCJ.

For the six-point ABJM amplitudes, we identify one additional bonus relation that reduces the

basis down to three independent amplitudes, the same count as in BLG theory. Incidentally,

via supersymmetry truncation of the six-point BLG amplitudes one recover the same ABJM

amplitude identity in disguise as a BCJ relation valid for BLG. However, proper analysis

reveals that the true basis is even smaller than what BCJ and bonus relations give. Moreover,

the true basis of partial amplitudes is shown to be the of the same size in BLG and ABJM

theories up to eight points, suggesting that the amplitudes can be bijectively mapped, contrary

to irreversible relationship that is given by the gauge group structures.

The organization is as follows: we begin in section 2 with a review of the color structure

and partial amplitudes of Yang-Mills, bi-fundamental and three-algebra theories. In section 3,

we discuss the Kleiss-Kuijf-like relations for general bi-fundamental matter theories. In sec-

tion 4, we explore the BCJ relations for BLG- and ABJM-type theories, and in section 5, we

investigate the D = 2 consequences, including integrability of supergravity. In section 6, we

discuss additional amplitude relations that arises due to the improved large-z BCFW behavior

of ABJM.

2 Color structure and partial amplitudes of bi-fundamental theories

Scattering amplitudes of gauge theories are given in terms of color-algebra factors tangled

with functions of kinematic invariants. Although the color factor of an individual Feynman

diagram is readily identified, its kinematic factor is not gauge invariant. As a remedy, it is

useful to disentangle the color and kinematics, expressing the full amplitude as an expansion

over a basis of color factors with coefficients that are gauge invariant kinematic factors –

referred to as partial amplitudes. The disentanglement is most often done using a basis

that is larger than needed, leading to the existence of non-trivial relations among the partial

amplitudes. In this section we discuss these issues in the context of bi-fundamental theories.
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2.1 Color structure of bi-fundamental theories

We begin with a brief review of the color structure of tree-level scattering amplitudes in

Yang-Mills theory, with or without adjoint matter fields. All physical degrees of freedom are

in the adjoint representation of a Lie algebra, implying that the group-theory factors entering

an amplitude are built out of the three-indexed structure constants fabc = Tr([T a, T b]T c).

The structure constants are totally antisymmetric, and satisfy a three-term Jacobi identity,

f ca[bfde]c = 0 . (2.1)

An important consequence of this identity is that not all color factors are independent. It is

known that for an n-point amplitude, there are only (n− 2)! independent color factors. This

counting can be understood straightforwardly using a diagrammatic argument, as was done

by Del Duca, Dixon and Maltoni [24]. They showed that, starting with the color factor of an

arbitrary Feynman diagram, repeated use of the Jacobi identity allows one to rewrite it as a

sum over color factors in the following multi-peripheral form:

. . . . . . .

1 n

n−21 2

→ fa1aσ1b1f b1aσ2b2 · · · f bn−3aσn−2an ,

where the positions of legs 1 and n are fixed and the σi represent a permutation of the

remaining n − 2 legs. For example, color diagrams that have a Y-fork extending from the

baseline are reduced using the following diagrammatic Jacobi identity:

...1 n ...1 n...1 n

a b

a b a b
.

There are a total of (n−2)! possible terms in the multi-peripheral representation thus implying

the same number of independent color factors. Expanding all color factors in basis, the full

color-dressed amplitude is given as [24]

An =
∑

σ∈Sn−2

fa1aσ1b1f b1aσ2b2 · · · f bn−3aσn−2an An(1, σ1, σ2, . . . , σn−2, n) , (2.2)

where An are partial color-ordered amplitudes, and the sum is over all permutations act-

ing on (2, · · · , n − 1). For convenience, we have suppressed the explicit coupling-constant

dependence, as we will do frequently in this paper. The same partial amplitudes appear

in an alternative, manifestly crossing symmetric, representation that uses trace factors of

fundamental generators. In this trace-basis, the color-dressed amplitude is

An =
∑

σ∈Sn−1

Tr(T aσ1T aσ2 · · ·T aσn−1T an)An(σ1, σ2, . . . , σn−1, n) , (2.3)

where one sums over all permutations acting on (1, · · · , n − 1). Since this gives (n − 1)!

terms, the trace-basis is over complete. It implies that the color-ordered partial amplitudes
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must satisfy special linear relations, known as the Kleiss-Kuijf relations [25]. Under these,

the color-ordered amplitudes reduce to (n − 2)! independent ones; the same number as the

number of independent color factors. For theories with fundamental matter, such as QCD,

the color decomposition of the amplitude is more complicated and we will not cover it here

(see e.g. ref. [26] for a detailed discussion of amplitudes with fundamental quarks).

More exotic matter representations are the focus of this paper. In particular, we consider

SU(N1)×SU(N2) quiver gauge theories with two bi-fundamental matter fields, indicated by

the following quiver diagram.

N
1

N
2

For this discussion we do not restrict ourselves to any particular spacetime dimension. The

dynamics of the vector field can be governed either by the usual Yang-Mills Lagrangian or

by a Chern-Simons Lagrangian in three dimensions. In either case, our discussion will be

restricted to amplitudes that have pure-matter external states. This setup implies that the

matter carries conserved charges, and thus only even-multiplicity matter amplitudes exist.

For bi-fundamental theories the color factors of Feynman diagrams consist of products

of delta functions. Using the notation that the fundamental and anti-fundamental indices of

SU(N1) and SU(N2) are given by (α, α) and (α̃, α̃) respectively, the color dressed amplitude

of k matter states (Φi)
α̃
α and k anti-matter states (Φi)

α
α̃, with n = 2k, is conveniently

decomposed as [27]

An((Φ1)α1̄
α̃1̄
· · · (Φn)α̃n αn) =

∑
σ∈Sk, σ̄∈S̄k−1

An(1̄, σ1, σ̄1, . . . , σ̄k−1, σk) δ
α̃σ1
α̃1̄
· · · δα̃σkα̃σ̄k−1

δ
ασ̄1
ασ1
· · · δα1̄

ασk
.

(2.4)

Here, one sums over all distinct permutations Sk and S̄k−1 acting on even (2, 4, . . . , 2k)

and odd legs (3̄, 5̄, . . . , 2k − 1), respectively. We have added a bar on the odd numbers, to

emphasize that they are in the conjugate representation. Partial amplitudes with only Bosonic

external states satisfy two-site cyclic symmetry and flip symmetry as follows:

An(1̄, 2, 3̄, 4, . . . , n− 1, n) = An(3̄, 4, . . . , n− 1, n, 1̄, 2) ,

An(1̄, 2, 3̄, 4, . . . , n− 1, n) = (−1)k−1An(1̄, n, n− 1, . . . , 4, 3̄, 2) . (2.5)

The amplitude decomposition (2.4) is quite similar to eq. (2.3) for adjoint amplitudes in Yang-

Mills theory. Both the trace factors in eq. (2.3) and the Kronecker delta functions factors in

eq. (2.4) lead to a cyclic color-ordered structure of the partial amplitudes. The two-site-cyclic

and reversal symmetry imply that there are (k− 1)!k!/2 distinct color ordered amplitudes. If

some of the matter fields satisfy fermonic statistics, the symmetries (2.5) are altered by signs,

but the counts remain the same.
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As we will demonstrate, the distinct (k − 1)!k!/2 color-ordered amplitudes are not all

independent. The origin of such redundancy is very similar to the redundancy present in

Yang-Mills amplitudes: there is an additional structure in the color factors of the theory,

which is not manifest in the Kronecker basis, or trace basis. We will show that by embedding

the color factors in a three-algebra construction, the amplitude relation that exposes the

redundancy comes from the Jacobi identity (or fundamental identity) satisfied by the three-

algebra structure constants.

As the three-algebra will play a central role in our analysis, we here give a lightening

review of Lie three-algebras, following the notation of ref. [6]. Consider two complex vector

spaces V1 and V2 with dimensions N1 and N2, respectively. We are interested in linear maps

(Ma)α̃ α, such that Ma : V1 → V2. Similarly the conjugate maps act as M
ā

: V2 → V1 (we may

define (M
ā
)α α̃ = ((Ma)α̃ α)†). As the matrices Ma and M

ā
carry opposite bi-fundamental

indices, the natural product that defines an algebra is the triple product:

[Ma,M b;M c̄] ≡ (MaM c̄M b −M bM c̄Ma)α̃ β ≡ fabc̄d (Md)α̃ β , (2.6)

where

fabc̄d̄ = fabc̄e h
ed̄ = Tr

[
(MaM c̄M b −M bM c̄Ma)M

d̄
]
. (2.7)

In the above the last index of the four-indexed structure constants has been raised using the

metric hab̄ = Tr(MaM
b̄
). As shown in ref. [6] for Chern-Simons matter theory, the closure of

N = 6 supersymmetry algebra on the gauge field requires the following fundamental identity:

fabd̄g f
cgēf̄ + f baēg f

cgd̄f̄ + f∗d̄ēbḡ f
caḡf̄ + f∗ēd̄aḡ f

cbḡf̄ = 0 , (2.8)

where the fabc̄d̄ are subject to the constraints fabc̄d̄ = −f bac̄d̄ as well as f∗c̄d̄ab = fabc̄d̄. Using

these properties the fundamental identity can be rewritten as:

fabd̄g f
cgēf̄ − fabēg f cgd̄f̄ − f

caf̄
g f

bgd̄ē + f cbf̄g f
agd̄ē = 0 . (2.9)

As we will shortly see, this will be the fundamental identity that is suitable for ABJM-type

bi-fundamental theories.

To see how the usual color structure in bi-fundamental theories can be converted into

the above three-algebra construction, let us begin with the first non-trivial amplitude: the

four-point amplitude. As mentioned, the bi-fundamental matter fields give a natural ordering

to partial amplitudes. Looking at the partial amplitude proportional to the color factor

c1234 = δα̃2
α̃1̄
δα3̄
α2
δα̃4
α̃3̄
δα1̄
α4
. (2.10)

there are exactly two terms contributing, corresponding to the propagation of the channel
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with either the SU(N1) or SU(N2) gauge fields. Pictorially we have

+

1 2

4 3

21

34

,

where we have used colored dashed/un-dashed lines to indicate the contraction of two distinct

color indices, and (g, g′) are the coupling constants of the two gauge group. We will assume

that (g, g′) are the only coupling constants of theory, in which case any potential four-point

contact terms can be naturally associated with the two diagrams according to their coupling

constant assignment. The full amplitude is

A4(1̄, 2, 3̄, 4) = c1234

(
g
ns
s

+ g′
nt
t

)
+ (2↔ 4) . (2.11)

Now if we identify g = −g′, we obtain

A4(1̄, 2, 3̄, 4) = g(c1234 − c1432)
(ns
s
− nt

t

)
. (2.12)

We may think of (c1234 − c1432) ∼ fa2a4ā1ā3 as the new elementary group theory factor. To

make the identification exact, we promote the explicit pairs of fundamental indices into bi-

fundamental (or three-algebra) indices by multiplying by conversion coefficients (Clebschs):

fa2a4ā1ā3 = (Ma2)α̃2
α2(M

ā1)α1
α̃1(Ma4)α̃4

α4(M
ā3)α3

α̃3

(
δα̃2
α̃1̄
δα3̄
α2
δα̃4
α̃3̄
δα1̄
α4
− δα̃4

α̃1̄
δα3̄
α4
δα̃2
α̃3̄
δα1̄
α2

)
.

(2.13)

This clearly coincides with the definition given in eq. (2.7). Hence we arrive at the following

three-algebra representation for the four-point amplitude:

A4(1̄, 2, 3̄, 4) = gfa2a4ā1ā3

(ns
s
− nt

t

)
. (2.14)

From here on, we refer to bi-fundamental theories with g = −g′ as ABJM-type theories.

For the another natural choice of couplings, g = g′, the color factor and kinematic factor

each becomes s–t symmetric,

A4(1̄, 2, 3̄, 4) = g(c1234 + c1432)
(ns
s

+
nt
t

)
. (2.15)

This tells us that we should define four-index structure constants that are symmetric under

exchange of the two barred indices, as well as the two un-barred ones:

ha2a4ā1ā3 = (Ma2)α̃2
α2(M

ā1)α1
α̃1(Ma4)α̃4

α4(M
ā3)α3

α̃3

(
δα̃2
α̃1̄
δα3̄
α2
δα̃4
α̃3̄
δα1̄
α4

+ δα̃4
α̃1̄
δα3̄
α4
δα̃2
α̃3̄
δα1̄
α2

)
.

(2.16)

One can verify that the corresponding fundamental identity is given by:

habd̄g h
cgēf̄ + habēg h

cgd̄f̄ − hcaf̄g hbgd̄ē − h
cbf̄

g h
agd̄ē = 0 . (2.17)
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Finally, for the gauge group SU(2)×SU(2) and g = −g′, the structure constants enjoys

extra symmetry due to the small rank. In particular, one can now map the bi-fundamental

color factors into the four-dimensional Levi-Civita tensor:

εα1α2εα3α4εα̃1α̃4εα̃2α̃3 − εα1α4εα2α3εα̃1α̃2εα̃3α̃4 = εα1α̃1;α2α̃2;α3α̃3;α4α̃4 . (2.18)

After soaking up the index pairs with M ’s one can identify fabcd = εabcd, and the fundamental

identity becomes

ffg[d ef
abc]e = 0 , (2.19)

where the indices are raised or lowered at will. This is the SO(4) = SU(2) × SU(2) three-

algebra that was constructed by BLG [4–6]. More generally, we will refer to the theory with

g = −g′ and totally antisymmetric fabcd as BLG-type theories. For SU(2)×SU(2) theories

with g = g′, there is no enhanced symmetry for the structure constant.

In the above discussion, it was convenient to identify the coupling constants of the two-

gauge field: g = ±g′. Such an identification is most natural if the coupling constant is

marginal. For example, in three dimensions we can simply consider supersymmetric Chern-

Simons theories. In four dimensions we can consider N = 2 supersymmetric theory with

N1 = N2, which is superconformal. In any case, we observe the following three interesting

scenarios for the bi-fundamental quiver theory:
g = −g′ : fabc̄d̄ = −f bac̄d̄ = −fabd̄c̄ , (ABJM type)

g = −g′ : fabcd = 1
4!f

[abcd] , (BLG type)

g = g′ : habc̄d̄ = hbac̄d̄ = habd̄c̄ .

(2.20)

As it turns out, in the absence of other constraints, the theories with symmetric structure

constants habc̄d̄, will have parallel properties to the ABJM type theories.1 Therefore in this

paper, we focus on the first two cases.

The identification of the group theory structure in terms of three-algebra structure con-

stants allows us to implement the fundamental identity in eq. (2.9) to identify the independent

color structures. More precisely, since the color factor is now expressed in terms of four-

indexed structure constants, from the color point of view it is more natural to use diagrams

built out of quartic vertices. Now for each internal line in a given diagram, using eq. (2.9) we

can relate the color factor of one diagram to three other distinct diagrams as shown in fig. 1,

where the color factor for each diagram is given as:

cA = fabd̄g f
cgēf̄ , cB = fabēg f

cgf̄ d̄, cC = f caf̄g f
bgd̄ē, cD = f bcf̄g f

agd̄ē . (2.21)

Repeatedly applying such identities reduces the color factors to an independent basis. As we

will see in section 3, the number of independent color factors under the identity in fig. 1 is

smaller than the number of partial amplitudes, and this will lead to linear identities among

them similar to the Kleiss-Kuijf identities for Yang-Mills theory.

1We have explicitly verified up to eight points that both types of theories have the same number of inde-

pendent color factors, and the same partial amplitude relations, up to overall signs of the amplitudes.
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Figure 1. A diagrammatic representation of the fundamental identity in eq. (2.9). The color factors

of the diagrams are related through cA = −cB + cC + cD.

2.2 Partial amplitudes for three-algebra theories

In the above we have introduced partial amplitudes for the bi-fundamental matter S-matrix

with Kronecker delta functions as the color prefactor. As discussed, these theories can also

be considered to be three-algebra theories, and in that formulation the definition of partial

amplitudes becomes a more interesting problem. Given a three-algebra theory, we would

like to work out the partial amplitudes using properties that do not rely on explicit matrix

representations of the algebra, but only on the symmetry properties and fundamental identity

of the four-indexed structure constant.

Here, we will consider a definition of partial amplitudes that utilizes the notion of “gen-

eralized gauge invariance” introduced in refs. [10, 13, 14]. Consider the following form of the

color-dressed n-point tree amplitude:

An =
∑

i∈quartic

cini∏
αi
sαi

, (2.22)

where the sums run over all distinct quartic tree diagrams, and the product in the denominator

runs over the internal lines in a given diagram. For each internal line, there is a fundamental

identity that relates the color structure of four distinct diagrams, as discussed in fig.1. This

implies that the above representation is given in an overcomplete color basis, and hence there

exists a redundancy in the ni factors, in particular they are gauge dependent. To see this one

can deform the numerators using functions ∆i satisfying

ni → ni + ∆i , such that
∑

i∈quartic

ci∆i∏
αi
sαi

= 0 . (2.23)

By construction, this “generalized gauge transformation” will not alter the value of the am-

plitude in eq. (2.22). A partial amplitude, An, can then be defined as the combination of

kinematic factors (numerators and propagators) such that An is invariant under the trans-

formation in eq. (2.23); that is, An must be gauge invariant.
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2.2.1 ABJM-type partial amplitudes

Let us first demonstrate that the bi-fundamental partial amplitudes defined in eq. (2.4) satisfy

the criterion of generalized gauge invariance. Consider the six-point amplitude of an ABJM-

type theory; it contains nine quartic-diagram channels,

A6 =
c1n1

s123
+
c2n2

s126
+
c3n3

s134
+
c4n4

s125
+
c5n5

s146
+
c6n6

s136
+
c7n7

s145
+
c8n8

s124
+
c9n9

s156
, (2.24)

where sijl = (ki + kj + kl)
2 and the color factors are

c1 = f132̄
a f

a54̄6̄ , c2 = f354̄
a f

a16̄2̄ , c3 = f134̄
a f

a56̄2̄ ,

c4 = f512̄
a f

a34̄6̄ , c5 = f352̄
a f

a14̄6̄ , c6 = f136̄
a f

a52̄4̄ ,

c7 = f514̄
a f

a36̄2̄ , c8 = f356̄
a f

a12̄4̄ , c9 = f516̄
a f

a32̄4̄ .

The numerators ni can, for example, be built from Feynman diagrams: three-point vertices

are combined to form non-local four-point vertices while the six-point contact terms are split

up into two four-point vertices. Using eq. (2.7) to convert eq. (2.24) to a trace basis one finds

that the color-ordered partial amplitude is given by

AABJM(1̄, 2, 3̄, 4, 5̄, 6) =
n1

s123
+

n2

s126
+

n9

s156
. (2.25)

As expected, the amplitude is simply the sum over the planar diagrams in the canonical color

ordering. To show that this combination is gauge invariant, let us, for example, consider the

the fundamental identity c1 + c5 − c7 − c9 = 0. Since we can freely add (c1 + c5 − c7 − c9)χ

to eq. (2.24), it implies that any potential partial amplitude must be invariant under the

following deformation:

ni → ni + ∆i : ∆1 = s123χ, ∆5 = s146χ, ∆7 = −s145χ, ∆9 = −s156χ, ∆2,3,4,6 = 0 . (2.26)

It is straightforward to see that AABJM(1̄, 2, 3̄, 4, 5̄, 6) is indeed invariant under the above

transformation. Similarly, for all other such transformations the partial amplitude is invariant.

From this it follows that the color-ordered definition of partial amplitude is indeed invariant

under generalized gauge transformations.

For higher-point bi-fundamental amplitudes the details are exactly the same. The partial

amplitudes that are invariant under generalized gauge transformations are precisely the color

ordered ones, AABJM(1̄, 2, 3̄, . . . , n), which can be expresses as a sum over distinct planar

diagrams in the given color ordering.

2.2.2 BLG-type partial amplitudes

For BLG-type theories, the partial amplitudes can be defined in several ways. Firstly, one can

use color-ordered partial amplitudes that arise in the the bi-fundamental formulation of BLG.

However, since the four-indexed structure constants enjoy more symmetry than is manifest

in this formulation, such a representation will not be invariant under the generalized gauge
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transformation that arises from the BLG fundamental identity in eq. (2.19). Similarly, the

bi-fundamental formalism does not take into account the relations of the finite-rank gauge

group SU(2)× SU(2) = SO(4).

Taking this into account, we can define two additional types of partial amplitudes for

BLG-like theories: Partial amplitudes that use the three-algebra formulation, taking into

account the total antisymmetry and fundamental identity of the structure constants, or partial

amplitudes that are directly defined for SO(4) theories. Up to six points, these two definitions

will agree, but starting at eight points they lead to different partial amplitudes.

Using the properties of the structure constants one can show that the simplest generalized-

gauge-invariant partial amplitudes at six points have four channels. For example,

ABLG(1, 2, 3, 4, 5, 6) =
n1

s123
+

n2

s126
+

n9

s156
+
n10

s135
, (2.27)

where the last term arose from a diagram c10n10/s135, with c10 = f135
a f

a246, that we

added to the generic amplitude in eq. (2.22). Comparing this with eq. (2.25), we see that

ABLG(1, 2, 3, 4, 5, 6) contains one additional non-planar (with respect to the canonical order-

ing) channel. The absence of planar partial amplitudes is consistent with BLG being an

inherently non-planar theory.

Even though the partial amplitudes have distinct characteristics, the BLG and ABJM

amplitude can be non-trivially related after proper identification of states and channels. Pro-

jecting the BLG states on chiral multiplets (1̄, 2, 3̄, 4, 5̄, 6) (i.e. supersymmetry truncation),

one can set n10 to zero. This is because the s135 channel does not correspond to any physi-

cal propagating states (similarly c10 is zero in a bi-fundamental formulation of BLG). Since

n10 = 0 we can identify the amplitudes in eq. (2.27) and eq. (2.25): ABLG(1̄, 2, 3̄, 4, 5̄, 6) =

AABJM(1̄, 2, 3̄, 4, 5̄, 6). However, there are also other ways to assign chiralities to the external

states. For example, the amplitude ABLG(1̄, 2, 4, 3̄, 5̄, 6) does not have an alternating chiral

pattern to its entries. In fact, this amplitude also contains four channels, but none of them

correspond to n10/s135. So this BLG amplitude cannot be identified with a single ABJM

amplitude after eliminating n10. Instead it can be expressed as a sum over two ABJM am-

plitudes. Before writing the relation down, let us consider how many different partial BLG

amplitudes there are at six points.

Using the symmetry properties of the ni’s one can show that ABLG(1, 2, 3, 4, 5, 6) has a

48-fold permutation symmetry. Thus there are only 6!/48 = 15 distinct partial amplitudes.

We may rearrange the particle labels so that the symmetries are manifest. We define

ABLG
SO(4)({1, 4}, {2, 5}, {3, 6}) ≡ ABLG(1, 2, 3, 4, 5, 6), (2.28)

where the amplitude is insensitive to the ordering inside the curly or round brackets, only the

paring of the legs carry significance. This partial amplitude is exactly what one obtains in the

SO(4) decomposition at six points, thus the subscript. Its color factor is precisely δa1
a4
δa2
a5
δa3
a6

,

where the ai are SO(4) indices.
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Having exposed the symmetries of the BLG partial amplitudes, it is clear that there

are two distinct types of projections onto chiral states. For these, we have the two types of

relations

ABLG
SO(4)({1̄, 4}, {2, 5̄}, {3̄, 6}) = AABJM(1̄, 2, 3̄, 4, 5̄, 6) ,

ABLG
SO(4)({1̄, 3̄}, {2, 5̄}, {4, 6}) = −AABJM(1̄, 2, 3̄, 4, 5̄, 6)−AABJM(1̄, 2, 3̄, 6, 5̄, 4) , (2.29)

and all other non-vanishing chiral projections are related to these by simple relabeling. Need-

less to say, these relations give a very convenient way of obtaining BLG partial amplitudes.

For higher-point amplitudes, we can easily write down an SO(4) decomposition of BLG

theory using the fact that the structure constants are given in terms of the Levi-Civita tensor

fabcd = εabcd. The contraction of an even number of Levi-Civita tensors reduces to only

Kronecker deltas, and the color factors are easy to enumerate in this case. This occurs for

multiplicity n = 6, 10, 14, . . ., giving a decomposition into (n− 1)!! partial amplitudes,

A4j+2 =
∑

σ∈Sn/(Zk2Sk)

δ
aσ1
aσ2
· · · δaσn−1

aσn ABLG
SO(4)({σ1, σ2}, · · · , {σn−1, σn}) , (2.30)

where the sum is over all distinct pairings of legs. For multiplicity n = 2k = 8, 12, 16, . . .

the SO(4) color factors are built out of an odd number of Levi-Civita tensors, which can

be easily reduced to linear combinations of a single Levi-Civita tensor times a number of

delta functions. However, the set of all such color factor satisfy further relations, making this

overcomplete basis somewhat inconvenient for defining partial amplitudes. Nevertheless, for

completeness of the discussion, we have counted the number of distinct partial amplitudes

such a decomposition would generate, assuming a complete subset of these color factors would

be used. We find that the count is 91 at eight points. Furthermore, by analyzing the set

of all εabcd(δef )k−2 factors up to k = 5, we find a pattern for the basis size that agrees with

C(k)(C(k)− 1)/2, where C(k) = (2k)!/(k!(k+ 1)!) are the Catalan numbers. See Table 2 for

a summary of the counts.

Instead of relying on explicit SO(4) properties, we will in this paper use partial amplitudes

derived from only the defining properties of the BLG three-algebra structure constants: total

antisymmetry and the fundamental identity. As is well known, the SO(4) group is a special

case, and not the most generic group that obeys the BLG three-algebra. Albeit all other

known examples are groups with Lorentzian signature. Nevertheless, for later applications to

color-kinematics duality we will need this more general setup.

Using generalized gauge invariance one can show that the simplest partial amplitude at

eight points contains 30 channels. It is explicitly given as the 30-fold orbit of one quartic

diagram

ABLG(1, 2, 3, 4, 5; 6, 7, 8) =
∑

Z5(1,2,3,4,5)×S3(6,7,8)

n16;237;458

s237s458
, (2.31)

where n16;237;458 is the kinematic numerator that goes together with the f16abfa237f b458 color

factor. The partial amplitude has manifest cyclic symmetry in the first five entries, and full
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permutation symmetry in the last three. Furthermore, it has a non-manifest flip antisym-

metry ABLG(1, 2, 3, 4, 5; 6, 7, 8) = −ABLG(5, 4, 3, 2, 1; 6, 7, 8) that follows from the symmetries

of n16;237;458. This implies that the amplitude has a 60-fold symmetry, and that there are

8!/60 = 672 distinct such partial amplitudes.

Like before, we can relate the chiral projections of these amplitudes with the ABJM

ones. One can simply identify the 30 diagrams with channels that also appear in AABJM.

Each ABJM partial amplitude contains 12 planar quartic channels, and appropriate linear

combinations of these give the distinct projections of the BLG amplitudes. Using the sym-

metries of ABLG one obtains six distinct chiral projections. Three of these are given by

ABLG(1̄3̄5̄7̄2; 468) = AABJM(1̄43̄65̄87̄2) +AABJM(1̄43̄85̄67̄2) +AABJM(1̄63̄45̄87̄2)

+AABJM(1̄63̄85̄47̄2) +AABJM(1̄83̄45̄67̄2) +AABJM(1̄83̄65̄47̄2) ,

ABLG(3̄25̄7̄8; 1̄46) = AABJM(1̄23̄45̄67̄8) +AABJM(1̄23̄65̄47̄8) +AABJM(1̄25̄43̄67̄8)

+AABJM(1̄25̄63̄47̄8)−AABJM(1̄83̄47̄65̄2)−AABJM(1̄83̄67̄45̄2) ,

ABLG(23̄5̄7̄8; 1̄46) = −AABJM(1̄23̄45̄67̄8)−AABJM(1̄23̄65̄47̄8) , (2.32)

where we have suppressed the label delimiters for notational compactness, as we will do

frequently in what follows. In addition to the above there are three more projections given

by the chiral conjugates of eq. (2.32).

The existence of the relations (2.32) show that the BLG and ABJM partial amplitudes

can be mapped to each other in a surjective fashion. Simple diagrammatic analysis shows

that the map cannot be straightforwardly inverted. ABJM amplitudes cannot be obtained

by simple linear combinations of the BLG amplitudes with constant coefficients.2 In the

following sections we explain that this is due to the fact that the bases under Kleiss-Kuijf-like

relations are of different size for the two types of theories, starting at eight points. We will

see that this property has important consequences for the color-kinematics duality.

3 KK-like identities for SU(N)×SU(M) bi-fundamental theories

In this section, we will discuss the Kleiss-Kuijf-type amplitude relations for bi-fundamental

theories. The amplitude relations arise from the properties of the four-indexed structure

constants. We have a number of situations to consider.

3.1 ABJM type: fabc̄d̄ = −f bac̄d̄ = −fabd̄c̄

We begin by counting the number of distinct color factors that we encounter in the three-

algebra formulation. This is equivalent to counting the number of quartic (four-valent) dia-

grams, for an n-point amplitude. Starting with a root, say leg i, the remaining parts of the

2However, this does not preclude the existence of an inverse linear map that involves momentum dependent

coefficients. In section 6.2 we argue that such relations exists.
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diagram can be viewed as three lower-point branches of sizes 2m1, 2m2 and (n−2m1−2m2+2).

Pictorially, we have the following tree graph:

i

2m
2
− 1

2m
1
− 1

n− 2m
2
− 2m

1
+1 (3.1)

This organization allows us to iteratively express the number of diagrams in terms of the

function ν(n),

ν(2k) =
1

2!

k−1∑
m1=1

k−m1∑
m2

(
k − 1

m1

)(
k

m1 − 1

)(
k −m1 − 1

m2 − 1

)(
k −m1 + 1

m2

)
× ν(2m1)ν(2m2)ν(2k − 2m1 − 2m2 + 2) . (3.2)

with ν(2) = 1. The combinatorial factors in the first line correspond to distinct ways of

distributing the bi-fundamental and anti-bi-fundamental fields on the first two branches. A

closed formula is given by

ν(2k) =
(3k − 3)!k!

(2k − 1)!2k−1
. (3.3)

Given that we know the total number of quartic diagrams, we can now simply count the

number of such diagrams in each color-ordered partial amplitude. Trivially, this number is

equal to the average count for all color-ordered amplitudes. In turn this average must be

proportional to the total number of diagrams; thus we have the following relations:

#[An(1, 2, · · · , n)] =
2

(k − 1)!k!

∑
σ

#[An(σ)] =
2

(k − 1)!k!
2k−2#[An] . (3.4)

where #[· · · ] counts the number of quartic diagrams in each amplitude, with #[An] = ν(2k),

and the sum runs over the (k − 1)!k!/2 partial amplitudes. The factor of 2k−2 appears due

to the overcount of identical diagrams; the overcount is two-fold for each vertex due to the

antisymmetry property of the ABJM structure constants. This tells us that the number of

quartic diagrams in a color-ordered (2k)-point amplitude is exactly (3k−3)!/((2k−1)!(k−1)!).

The last count that we can simply deduce for ABJM theory, is the total number of funda-

mental identities. For this count, we observe that a fundamental identity acts on contractions

of two structure constants, or equivalently two vertices connected by a propagator. Thus,

we can associate the fundamental identities with the internal lines of the quartic diagrams.

On one hand, this leads to an overcount by a factor of four since each identity relates four

diagrams. On the other hand, we have not yet taken into account that there are several
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distinct fundamental identities that act on a given contraction of two structure constants.

Careful counting gives that for the ABJM-type structure constants there are four distinct

ways of obtaining a fundamental identity from a single fabc̄d̄fdeḡh̄. Thus these two factors

of four cancel out; and the total number of fundamental identities is equal to the number of

propagators per diagram times the number of diagrams, that is, (k − 2)ν(2k).

Having counted the distinct four-term relations between different color factors, we would

proceed by determining the number of independent identities. It is the number of independent

fundamental identities that carries real significance. Using these we can reduce the color

factors to a basis. The size of this basis tells us how many independent partial amplitudes there

exists. Unfortunately, we have found no means for determining this count to all multiplicity,

hence, we resort to case-by-case counting at low number of external legs. After explicitly

solving the (k − 2)ν(2k) identities we obtain that the number of independent color factors

for ABJM-type bi-fundamental matter theories are 1, 5, 57, 1144 for multiplicity 4, 6, 8, 10,

respectively. We summarize the above discussion in Table 1.

external legs 4 6 8 10 12 n = 2k

quartic diagrams 1 9 216 9900 737100 ν(2k) = (3k−3)!k!
(2k−1)!(2!)k−1

partial amplitudes 1 6 72 1440 43200 k!(k−1)!
2

diagrams in partial amplitude 1 3 12 55 273 (3k−3)!
(2k−1)!(k−1)!

fundamental identities 0 9 432 29700 2948400 (k − 2)ν(2k)

independent color factors 1 5 57 1144 ∗ ∗

Table 1. Counts of distinct diagrams, partial amplitudes and fundamental identities for ABJM

theories. The count for the reduced color basis, or equivalently the basis under Kleiss-Kuijf-like

relations, is given on the last line. An asterisk signify an undetermined quantity.

An important message from Table 1 is that, starting at six points, the number of indepen-

dent color factors is less than the number of color-ordered partial amplitudes. As mentioned in

section 2.1, this will lead to non-trivial amplitude identities for the color-ordered amplitudes

which we now discuss.

3.1.1 KK identities for ABJM-type bi-fundamental theories

In Yang-Mills theory, the fact that the partial amplitudes are more prolific than the inde-

pendent color factors leads to so-called Kleiss-Kuijf identities between the partial amplitudes.

For the bi-fundamental matter theories we find similar types of relations.

We now demonstrate that the partial amplitudes of ABJM-type theories satisfy the fol-

lowing KK-like amplitude relation:∑
i∈Sk

A2k(1̄, i1, 3̄, i2, 5̄, ..., 2k − 1, ik) = 0 (3.5)

where the sum runs over all permutations of the even sites, and all the states are Bosonic.

For Fermionic states, one must properly weight the sum by the usual statistical signs. Note
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that, by conjugation and relabeling, a similar relation exists where the even legs are fixed and

the odd legs are permuted.

To see that such an identity arises from the purely group-theoretical structure, let us

analyze the first nontrivial example: the six-point amplitude. We take the odd and even

sites to coincide with the barred and un-barred representation respectively. At six-point, as

indicated in Table 1, there are a total of six independent partial amplitudes. Expressing them

in terms of the kinematic factors defined in eq. (2.24), they are given as:

A6(1̄, 2, 3̄, 4, 5̄, 6) =
n1

s123
+

n2

s126
+

n9

s156
, A6(1̄, 4, 3̄, 6, 5̄, 2) =

n3

s134
+

n4

s125
+

n8

s124
,

A6(1̄, 6, 3̄, 2, 5̄, 4) =
n5

s146
+

n6

s136
+

n7

s145
, A6(1̄, 4, 3̄, 2, 5̄, 6) = − n3

s134
− n5

s146
− n9

s156
, (3.6)

A6(1̄, 6, 3̄, 4, 5̄, 2) = − n2

s126
− n4

s125
− n6

s136
, A6(1̄, 2, 3̄, 6, 5̄, 4) = − n1

s123
− n7

s145
− n8

s124
,

where the relative signs of the diagrams can be deduced from the definitions of the corre-

sponding color factors in eq. (2.24). From this representation one can immediately see that

the identity (3.5) is satisfied,

A6(1̄, 2, 3̄, 4, 5̄, 6) +A6(1̄, 4, 3̄, 6, 5̄, 2) +A6(1̄, 6, 3̄, 2, 5̄, 4)

+A6(1̄, 4, 3̄, 2, 5̄, 6) +A6(1̄, 6, 3̄, 4, 5̄, 2) +A6(1̄, 2, 3̄, 6, 5̄, 4) = 0 . (3.7)

It may not be obvious to the reader that this example follows from pure group theory.

However, note that the representation (3.6) simply follows from the generic color-dressed

amplitude in eq. (2.24) after converting the three-algebra color factors into a trace basis,

using eq. (2.7). Because of the generality of the derivation, the identity is valid for any

bi-fundamental theory that admits ABJM-like three-algebra structure constants.

We now prove the validity of eq. (3.5) for general multiplicity in the specific context of

ABJM theory; however, we expect it to hold for generic ABJM-type bi-fundamental theories

due the underlying group theoretic nature. For the proof we proceed in two different ways. In

the following, we will use a specific BCFW recursion developed for ABJM theory [28]. In the

next section, we will give another proof based on the the twistor-string-like integral formula

proposed in [29].

The BCFW proof is established inductively, similar to what was done for Yang-Mills

theory in [30]. The trivial inductive case is the four-point amplitude: it is simply the reflection

symmetry of the partial amplitudes,

A4(1̄, 2, 3̄, 4) +A4(1̄, 4, 3̄, 2) = 0 , (3.8)

which follows from the analogous symmetry relation of four-point color factors, fa1a3ā2ā4 +

fa1a3ā4ā2 = 0.

The general case in eq. (3.5) follows if we can relate the lower-multiplicity cases with the

given case. This can always be done by expressing the individual partial amplitudes in their
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BCFW representations. For example, at six points, choosing legs 1 and 6 as the globally

BCFW-shifted legs, we have:3

A6(1̄23̄45̄6) =
A4(ˆ̄123̄P̂ )A4( ˆ̄P45̄6̂)

s123
, A6(1̄63̄25̄4) =

A4( ˆ̄P 6̂3̄2)A4(5̄4ˆ̄1P̂ )

s145
,

A6(1̄43̄25̄6) =
A4(ˆ̄143̄P̂ )A4( ˆ̄P25̄6̂)

s134
, A6(1̄63̄45̄2) =

A4( ˆ̄P 6̂3̄4)A4(5̄2ˆ̄1P̂ )

s125
, (3.9)

A6(1̄43̄65̄2) =
A4(ˆ̄143̄P̂ )A4( ˆ̄P 6̂5̄2)

s134
+
A4( ˆ̄P2ˆ̄14)A4(3̄6̂5̄P̂ )

s124
+
A4(5̄2ˆ̄1P̂ )A4( ˆ̄P43̄6̂)

s125
,

A6(1̄23̄65̄4) =
A4(ˆ̄123̄P̂ )A4( ˆ̄P 6̂5̄4)

s123
+
A4( ˆ̄P4ˆ̄12)A4(3̄6̂5̄P̂ )

s124
+
A4(5̄4ˆ̄1P̂ )A4( ˆ̄P23̄6̂)

s145
,

where we use P to denote the on-shell intermediate state in the factorization channel, and for

notational brevity we have suppressed the delimiters in the amplitude arguments. One can

see that by combining the common propagators into pairs, each pair cancels precisely due to

eq. (3.8). Thus the six-point KK identity, eq. (3.5), is simply a consequence of eq. (3.8).

We can now set up the inductive proof in more detail. We assume that eq. (3.5) holds for

all (n− 2j)-point amplitudes, with 0 < j < n/2. To prove the n-point identity, we shift legs

1 and n in eq. (3.5) and express all color ordered amplitudes in terms of the BCFW expan-

sion. One can collect all terms that have the common BCFW channel, say s1i13i2···ij−1(2j−1),

and a fixed ordering of the even labels (i1, i2, . . . , 2j − 1) in each partial amplitude under

consideration. Because of this fixed ordering, the contribution to the residue of this pole, in

these amplitudes, is simply a common A2j factor multiplied by distinct An+2−2j amplitudes

of various orderings. The sum of these contributions then simply cancels due to the (3.5)

identity that has been assumed for An+2−2j . Since j and (i1, i2, ··, ij−1) where kept generic

in this argument, the vanishing holds for all terms in the BCFW representation, completing

the proof of eq. (3.5).

Might eq. (3.5) capture all the KK-like identities that one can deduce from the color

structure of ABJM-type bi-fundamental theories? The answer is no. As explained, for an

(2k)-point amplitude, there will be k!(k− 1)!/2 independent amplitudes under reflection and

cyclic permutation. Using up the (k−1)(k−2)/2 independent relations contained in eq. (3.5),

we are left with (k−1)(k−2)(k!(k−3)!−1)/2 superficially independent amplitudes. Comparing

this with the true number of independent color factor, which was explicitly computed up to

ten points using the fundamental identity (see Table 1), we have a discrepancy starting at

eight points:  multiplicity 6 8 10

independent ci 5 57 1144

eq.(3.5) 5 69 1434

 . (3.10)

3Due to the quadratic dependence on the BCFW deformation parameter, the BCFW representation is

schematically given as An =
∑
iHALAR/P

2
i , where H is a kinematic invariant that depends on the factoriza-

tion channel P 2
i [28]. Here, since we are collecting terms that have the same factorization channel, H appears

as a common factor and hence is suppressed throughout the discussion.
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Even if we take into account the conjugate identities of eq. (3.5), we only find three more

independent ones at eight points, and this does not make up for the discrepancy of 12 iden-

tities. So it is clear that something new is required beyond six points. Indeed, we find the

following new eight-point identity (for Bosonic external states):

−A8(1̄23̄45̄87̄6)−A8(1̄43̄25̄87̄6) +A8(1̄63̄85̄27̄4) +A8(1̄63̄85̄47̄2)

+A8(1̄67̄83̄25̄4) +A8(1̄27̄63̄85̄4) +A8(1̄47̄63̄85̄2) +A8(1̄67̄83̄45̄2)

+A8(1̄67̄23̄85̄4) +A8(1̄67̄43̄85̄2) +A8(1̄63̄27̄85̄4) +A8(1̄63̄47̄85̄2)

+A8(1̄63̄87̄25̄4) +A8(1̄63̄87̄45̄2) +A8(1̄43̄67̄85̄2) +A8(1̄23̄67̄85̄4) = 0 , (3.11)

along with 11 more similar ones. Starting at ten points the situation becomes more compli-

cated, leaving us without general-multiplicity formulas for all KK-like relations.

3.1.2 KK identities from amplitude-generating integral formula

We will now take a step back and ask: if given a KK-like relation, are there other efficient ways

for determining its validity? If so, these ways may give a path for determining the general

formulas. For this purpose we will use the twistor-string-like formula for ABJM amplitudes.

It has the advantage that the part of the amplitude that is not fully permutation invariant

is isolated to a very simple Park-Taylor-like factor, which allows us to extract any relation

among distinct color orderings.

Guided by the connected prescription for the twistor string theory [31] in four dimensions

and the Grassmannian integral formula for the ABJM theory [32], two of the present authors

recently proposed a twistor-string-like integral formula for the ABJM superamplitude [29]:4

An(Λ) =

∫
d2×nσ

vol[GL(2)]

J ∆
∏k
m=1 δ

2|3(Cmi[σ]Λi)

(12)(23) · · · (n1)
. (3.12)

The integration variable σ is a (2×n) matrix, which is mapped to the (k×n) matrix C[σ] by

σ =

(
a1 · · · an
b1 · · · bn

)
→ Cmi[σ] = ak−mi bm−1

i . (3.13)

The two-bracket in (3.12) is defined by (ij) ≡ aibj−ajbi, and ∆ is a delta-function constraint,

∆ =
2k−1∏
j=1

δ

(∑
i

a2k−1−j
i bj−1

i

)
. (3.14)

Finally, the factor J in eq.(3.12) is defined as a ratio J = (Num)/(Den) with

Den =
∏

1≤i<j≤k
(2i− 1, 2j − 1) , Num = det

1≤i,j≤2k−1
a2k−1−j
i bj−1

i =
∏

1≤i<j≤2k−1

(i, j) . (3.15)

4This formula was recently shown to be equivalent to an alternative integral formula which satisfy all

factorization properties, thus verifying it’s validity [33].
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We now want to show that the formula (3.12) satisfies the same KK identities for the

ABJM amplitudes as found in section 3.1.1 by studying the color factors. Since ∆ and (Num)

is completely invariant under arbitrary permutation, and (Den) is invariant up to a sign under

permutation of the odd sites, it is sufficient to focus on the Park-Taylor-like denominator,

D2k(1̄, 2, . . . , 2k) =
1

(12)(23) . . . (2k, 1)
. (3.16)

Let us first show that eq. (3.5) is indeed satisfied by eq. (3.12). First note that since the ABJM

superamplitude has Fermionic external states on the odd sites, we can write the equivalent

of the permutation sum in eq. (3.5), acting on D’s, as

S2k =
∑
ρ∈Sk

D2k(1̄, ρ1, 3̄, ρ2, 5̄, ..., 2k − 1, ρk)(−1)ρ = det Ωi,j = det Ω̄i,j , (3.17)

where (−1)ρ denotes the signature of the permutation ρ, and the k× k matrices Ωi,j and Ω̄i,j

are given as:

Ωi,j =

(
1

(2i− 1, 2j)(2j, 2i+ 1)

)
, Ω̄i,j =

(
1

(2i, 2j + 1)(2j + 1, 2i+ 2)

)
. (3.18)

By definition, S2k is a homogenous function of (−4k) powers of σ variables. Collecting all

the fractions using the obvious common denominator, we can write

S2k =
Q2k2−4k(σ)∏k
i,j=1(2i− 1, 2j)

, (3.19)

for some polynomial Q of degree (2k2 − 4k). Now, from eq. (3.17) and eq. (3.18) it is easy

to see if any two even legs are identified, for example σ2k = σ2k+2, then S2k must vanish due

to the fact that two columns in Ωi,j becomes identical. Similar conclusion can be reached

for any two odd legs being identified. This implies that the polynomial Q must contain the

product of the following two factors:

k∏
i<j

(2i− 1, 2j − 1) and
k∏
i<j

(2i, 2j) , (3.20)

each of which has degree k2 − k. The polynomial Q has not enough degree to contain both

factors, so the only consistent solution is that S2k is simply zero, thus completing the proof.

From the previous discussion, we see that any non-trivial linear relations for permutated

ABJM amplitudes must be encoded as identities for the Park-Taylor-like factorD2k(1, 2, . . . , 2k).

This fact can be utilized to develop graphical tools to recursively generate all possible KK-like

relations. To simplify computations, we use the homogeneity of D2k to pull out the ‘scale

factor’ from each two-bracket,

(ij) = aibj − ajbi = bibj

(
ai
bi
− aj
bj

)
≡ bibj(xi − xj) , (3.21)

and regard (ij) as (xi − xj) in what follows. Manipulations of D2k will involve two basic

operations:
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1. Antisymmetry:
1

(āb)
+

1

(bā)
= 0 . (3.22)

2. Four-term identity:

1

(āb)(bc̄)(c̄d)
+ (cyclic) =

(āb) + (bc̄) + (c̄d) + (dā)

(āb)(bc̄)(c̄d)(dā)
= 0 . (3.23)

Again we have introduced bared indices to emphasize the connection to odd an even sites.

Next, we find it useful to introduce a graphical representation for these operations as

follows:

+ +

+

+

⌘ 1

(āb)
,bā

bā bā = 0 ,

ā

b c̄

d ā

b c̄

d ā

b c̄

d ā

b c̄

d

= 0 .

(3.24)

Note that D2k is simply a closed path in such representation. The graphical representation

can be used to generate the generic KK identities recursively, deducing new identities for

D2k+2 from known identities for D2k. We begin by attaching two “open arrows” to D2k,

corresponding to adding two extra points. As depicted in the following diagram, adding the

two arrows in three different ways allows us to “close the path” using the four-term identity

eq. (3.23) and produce a D2k+2:

=+ +

ā

b c̄

d ā

b c̄

d ā

b c̄

d ā

b c̄

d (3.25)

To obtain a non-trivial recursive construction, we apply the basic operations repeatedly

to shift around the open arrows before closing the path, thereby generating a sum of many

different terms. Eqs. (3.26), (3.27) present two simple shift operations. The relation (3.26)

is just a slight rewriting of the basic four-term identity. To derive the relation (3.27), we

attach an extra arrow (dē) to (3.26) and apply the four-term identity to both terms on the

right-hand side. Two out of the six terms thus generated cancel out.
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= �
ā b c̄

d

ā b c̄

d bb

ā c̄d ā c̄d

�
(3.26)

�= � +

ā b c̄

ā c̄d ā c̄d ā c̄dā c̄d

ē

ē ē ē ē

d

b b bb

�
ā b c̄

d bb

ā c̄d ā c̄d

� =
ē ē ē

(3.27)

To illustrate the idea of this identity generating technique, we present some simple examples:

1. Starting from the trivial identity D4(1, 2, 3, 4) = D4(1, 2, 3, 4), attaching open arrows,

shifting them around in two different ways, we reproduce the only KK identity for D6,

D6(1, 2, 3, 4, 5, 6)−D6(1, 6, 3, 4, 5, 2) +D6(1, 6, 3, 2, 5, 4)

−D6(1, 4, 3, 2, 5, 6) +D6(1, 4, 3, 6, 5, 2)−D6(1, 2, 3, 6, 5, 4) = 0 , (3.28)

where the signs can be traced back to the Fermionic nature of even sites of the super-

amplitude. See Figure 2 for a step-by-step derivation of this identity.

2. Starting from the trivial identity D6(1, 2, 3, 4, 5, 6) = D6(1, 2, 3, 4, 5, 6), attaching open

arrows and shifting them around in different ways, we find a 24-term identity for D8

that involves permutations of both even and odd labels,

D8(12345678)−D8(18763452) +D8(18763254)−D8(14325678)

+D8(18743652)−D8(14783652) +D8(18365274)−D8(18365472)

+D8(12345678)−D8(18763452) +D8(18763254)−D8(14325678)

+D8(18743652)−D8(14783652) +D8(18365274)−D8(18365472)

+D8(12783654)−D8(18723654) +D8(14387652)−D8(18347652)

+D8(18367452)−D8(18367254) +D8(18327654)−D8(12387654) = 0 . (3.29)

The derivation of this identity is a straightforward but lengthy generalization of figure 2.

3. Starting from (3.28) and attaching open arrows on particle 1 and particle 6, we can

produce a 16-term identity for D8,

D8(12345678)−D8(18763452) +D8(18763254)−D8(14325678)

+D8(18743652)−D8(14783652) +D8(18365274)−D8(18365472)

+D8(12783654)−D8(18723654) +D8(14387652)−D8(18347652)

+D8(18367452)−D8(18367254) +D8(18327654)−D8(12387654) = 0 . (3.30)
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=

12 3 4
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1 2 3 4

56
= �
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=

+
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2
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2

3 4
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52

61 3 4

52

=

� �

� +

+

+ �

⌘ (a) + (b) + (c)

(a)}

(b)

(c) + 0

1

2

3 4

5

6 1

2

3 4

5

6

� +

1

2

3 4

5

6

+ 56

61 3 4

52�
1 2 3 4

+

= � D6(1, 4, 3, 6, 5, 2) + D6(1, 4, 3, 2, 5, 6)

+ D6(1, 6, 3, 4, 5, 2) + D6(1, 2, 3, 6, 5, 4) � D6(1, 6, 3, 2, 5, 4) .

D6(1, 2, 3, 4, 5, 6)

Figure 2. A graphical derivation of the identity (3.28). The two end points of each chain is identified

to form a closed path. Applying the basic four-term identity to the second line gives the third line.

The fourth line, (a) + (b) + (c), is the same as the third, except that we turned the arrows to prepare

for closing the path in the opposite direction. To obtain the fifth line, we apply (3.27) to (a) and

(3.26) to (b). We leave (c) as it is, but add and subtract the same term next to it. Now, in addition

to two closed paths, there are a total of nine diagrams with open arrows. Using the basic four-term

identity, we group them into three closed paths. We colored the diagrams to show which terms are

combined. The resulting five distinct closed paths on the right-hand-side and the original term on the

left-hand-side together give the desired identity (3.28).

We have checked that, by taking linear combinations of these identities, we can exhaust all

general KK identities at ten points, agreeing with the results obtained in section 3.1.1 after

taking into account that those formulas are for Bosonic states.
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We conclude this subsection by noting that the factor Dn is identical to that appearing

in the twistor-string formula for N = 4 Yang-Mills theory [31]. Since the remaining pieces

in both theories are permutation invariant (up to statistical signs), this implies that all KK

relations discussed here are also satisfied by Yang-Mills amplitudes, for adjoint particles.

Therefore the KK-relations for ABJM type theories are simply a subset of that for Yang-Mills,

such that even and odd sites do not mix, with proper identification of particle statistics.

3.2 BLG type: fabcd ∝ f [abcd]

Parallel to the ABJM discussion, we start by counting the number of quartic graphs that

appear in n-point BLG amplitudes, or distinct color factors built out of totally antisymmetric

fabcd’s. Using the same rooted diagrams as in section 3.1, we can derive the corresponding

iteration relation for the number of quartic BLG graphs, it is

ν(2k) =
1

3!

k−1∑
m1=1

k−m1∑
m2

(
2k − 1

2m1 − 1

)(
2k − 2m1

2m2 − 1

)
ν(2m1)ν(2m2)ν(2k−2m1−2m2+2) , (3.31)

with ν(2) = 1. A closed formula is given by

ν(2k) =
(3k − 3)!k!

(k − 1)!(3!)k−1
. (3.32)

The color factors that correspond to the quartic diagrams satisfy four-term fundamental

identities that we can write as fabc[dfegh]a = 0. For each contraction fabcdfegha we can

choose 1 + 3 out of 3 + 3 free indices to antisymmetrize over, giving a total of six different

possible fundamental identities. This implies that the total number of distinct fundamental

identities is equal to the number of quartic graphs times the number of propagators, times

six possible index antisymmetrizations, divided by an overcount of four, for counting each

graph four times. The final count of BLG fundamental identities at (2k) points is given by

3/2(k − 2)ν(2k).

As for ABJM, beyond four points, the number of independent color factors is smaller

than the number of partial amplitudes. This again implies linear amplitude identities. To see

this let us again start with the six-point amplitude. The full color dressed BLG amplitude is

given by:

A6 =
c1n1

s123
+
c2n2

s126
+
c3n3

s134
+
c4n4

s125
+
c5n5

s146
+
c6n6

s136
+
c7n7

s145
+
c8n8

s124
+
c9n9

s156
+
c10n10

s135
, (3.33)

where all but one of the color factors are defined in eq. (2.25), dropping the bars on the

indices; and the new one is c10 = f135afa462. Now consider the following gauge invariant

partial amplitudes:

ABLG
SO(4)({1, 4}, {2, 5}, {3, 6}) =

n1

s123
+

n2

s126
+

n9

s156
+
n10

s135
,

ABLG
SO(4)({1, 4}, {2, 3}, {6, 5}) = − n2

s126
− n4

s125
− n6

s136
− n10

s135
,

ABLG
SO(4)({1, 4}, {2, 6}, {5, 3}) = − n1

s123
− n9

s156
+

n4

s125
+

n6

s136
. (3.34)
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external legs 4 6 8 10 n = 2k

quartic diagrams 1 10 280 15400 ν(2k) = (3k−3)!k!
(k−1)!(3!)k−1

partial ampls, general fabcd 1 15 672 37800 ∗

partial ampls, SO(4) 1 15 91 945

{
(2k − 1)!! for k odd

C(k)(C(k)− 1)/2 for k even

fundamental identities 0 15 840 69300 3
2(k − 2)ν(2k)

KK basis, general fabcd 1 5 56 1077 ∗
KK basis, SO(4) 1 5 56 552 ∗
BCJ basis 1 3 38 1029 ∗

Table 2. Counts for BLG theory. First line gives the number of distinct color factors, or distinct

quartic diagrams, in the full amplitude. The second line gives a count of distinct partial amplitudes of

the simplest type (identified using generalized gauge invariance). The third line gives the same count

in the case of SO(4) (color basis: products of multiple δab and at most one εabcd). The fourth counts

the KK-independent amplitudes, or equivalently, the number of independent color factors. The fifth

line counts the same quantity in the SO(4) case. The final line gives the basis of partial amplitudes

independent under BCJ relations. C(k) are the Catalan numbers.

One immediately sees that

ABLG
SO(4)({1, 4}, {2, 5}, {3, 6}) +ABLG

SO(4)({1, 4}, {2, 3}, {6, 5}) +ABLG
SO(4)({1, 4}, {2, 6}, {5, 3}) = 0 .

(3.35)

In general ABLG
SO(4)({i, j}, {k, l}, {m,n}) vanishes as one performs a cyclic sum over i, j, k. Re-

peated use of this identity, we arrive at five independent amplitudes,

ABLG
SO(4)({1, 4}, {2, 5}, {3, 6}), ABLG

SO(4)({1, 6}, {4, 5}, {3, 2}), ABLG
SO(4)({1, 2}, {6, 5}, {3, 4})

ABLG
SO(4)({1, 2}, {4, 5}, {3, 6}), ABLG

SO(4)({1, 4}, {6, 5}, {3, 2}) . (3.36)

No more relations can be derived from the color structures alone. Using the fundamental

identity one can show that there are exactly five independent color factors, matching the

count above. Thus we conclude that eq. (3.36) is a basis of partial amplitudes under all

KK-like relations at six points in a BLG-like theory.

Proceeding to higher points, we can either find an exhaustive set of KK-like relations for

partial amplitudes (such as ABLG(1, 2, 3, 4, 5; 6, 7, 8) in eq. (2.31)), or we can solve the overde-

termined linear system of fundamental identities. Either task will result in a number that

counts the basis size of KK-independent amplitudes, which has to be equal to the number of

independent color factors. Using the latter method, we obtain a count of exactly 56 indepen-

dent color factors at eight points; and at ten points we find a basis size of 1044. Interestingly,

both these numbers are lower than the corresponding ones in ABJM-like theories, despite the

fact that BLG-like theories have a larger set of distinct color factors. For the partial ampli-

tudes, this mismatch of KK-basis sizes can be connected to the observation in section 2.2.1

that the chirally projected BLG amplitudes can be written in terms of ABJM amplitudes,

but the map is not invertible (assuming coefficients in the linear map are constants).
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In Table 2, we summarize all the determined counts of BLG quantities discussed in this

section and in 2.2.1. For completeness, this table also includes the KK-basis size for an

amplitude decomposition that uses the explicit SO(4) Lie algebra. Up to eight points, it

agrees with the count for general fabcd structure constants, but starting at ten points the

SO(4) count is considerably smaller. In the following section we will discuss the next layer

of structure that can be imposed on general bi-fundamental amplitudes. For the purpose of

BLG-like theories, we assume that the relevant KK-basis is the one obtained for the general

fabcd structure constants. This is what is needed for color-kinematics duality.

4 BCJ color-kinematics duality

The Kleiss-Kuijf identities in the previous sections are very general results that follow from

the overcompleteness of the fabc̄d̄, fabcd and fabc expansions. Any quantum field theory

whose interactions are dressed by such structure constants satisfy these identities. For further

unfolding of the amplitude properties we must turn to the detailed kinematical structure of

the theories.

First we briefly review the color-kinematics duality proposed for Yang-Mills theories by

Bern, Carrasco, and one of the current authors (BCJ) [10]. The duality states that scatter-

ing amplitudes of Yang-Mills theory, and its supersymmetric extensions, can be given in a

representation where the numerators ni reflect the general algebraic properties of the corre-

sponding color factors ci. More precisely, for an amplitude expressed using cubic diagrams,

one can always find a representation such that the following parallel relations holds for the

color and kinematic factors:

ci → −ci ⇔ ni → −ni
ci + cj + ck = 0 ⇔ ni + nj + nk = 0 . (4.1)

The first line signifies the antisymmetry property of the Lie algebra, and the second line

signifies a Jacobi identity, schematically. The duality has several interesting consequences,

both for gauge theory and gravity. On the gauge theory side, such representation leads to

the realization that color-ordered amplitudes satisfy relations beyond the Kleiss-Kuijf ones.

The construction of these BCJ relations are as follows: As already utilized in the previous

sections, one may expand color-ordered amplitudes in terms of color-stripped diagrams that

are planar with respect to appropriate ordering of external legs,

A(i) =
∑

planar w.r.t. σi

nj∏
αj
sαj

, (4.2)

where (i) is shorthand notation for a permutation σi; e.g. (1) = σ1 = (1, 2, 3, . . . , n), etc. The

flip antisymmetry ni → −ni can then be used to identify cubic diagrams that are common

in different partial amplitudes, and we may choose a KK-basis of (n− 2)! partial amplitudes.

Since the numerators ni satisfy the same Jacobi identity and symmetry properties as the
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color factors, there must be only (n− 2)! independent numerators. Choosing a particular set

of independent numerators, eq. (4.2) can be rewritten with the help of a (n − 2)! × (n − 2)!

matrix Θij . It is defined by

A(i) =

(n−2)!∑
j=1

Θijn̂j , (4.3)

where n̂j are the independent numerators. The matrix Θij is comprised solely of scalar φ3-

theory propagators (in [34] it was called propagator matrix). The rank of the matrix Θij is

only (n− 3)!, thus implying new amplitude relations beyond the Kleiss-Kuijf identities. The

simplest type of such relations (sometimes called fundamental BCJ relations) can be nicely

condensed to [10]

n∑
i=3

 i∑
j=3

s2j

An(1, 3, · · · , i, 2, i+ 1, · · · , n) = 0 . (4.4)

Since the Θij matrix is solely comprised of propagators, it can be straightforwardly

continued to arbitrary spacetime dimension. Remarkably, the matrix has rank (n − 3)! in

any dimension, but only for on-shell and conserved external momenta; off-shell the rank is

(n− 2)!. This can be interpreted as a non-trivial consistency check of the BCJ construction.

Indeed, Yang-Mills theories exists in D dimensions, and the S-matrix is well-defined only for

physical on-shell and conserved momenta.

A more important consequence of the color-kinematics duality is the double-copy con-

struction of gravity amplitudes [10]. Once duality-satisfying numerators are found, a corre-

sponding supergravity amplitude, whose spectrum is given by the tensoring of two Yang-Mills

spectra, can be directly written as

Mm =
(κ

2

)m ∑
i∈cubic

niñi∏
αi
sαi

, (4.5)

where at least one of the two sets of numerators must explicitly satisfy the duality (4.1). This

aspect of the conjecture as well as the existence of the duality-satisfying numerators have

been proven at tree level. The double-copy aspect was proven in ref. [14] for the cases of

pure YM and N = 4 sYM, and the existence of numerators to all multiplicity that satisfy

eq. (4.1) was exemplified in refs. [11] (see also refs. [12]). The conjecture has been extended

to loop level [13], where duality satisfying numerators has been found for various amplitudes

in different theories [13, 15, 35] and used in gravity constructions [16, 36], though a formal

proof is still an open problem.

4.1 BCJ duality for three-algebra theories

Remarkably, color-kinematics duality exists also for other gauge theories that are not part

of the family of Yang-Mills theories, but of Chern-Simons matter theories. In particular, the
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duality is believed to exist for certain gauge groups that are Lie three-algebras. For Lie three-

algebra color-kinematics duality, one would as before require that the kinematical numerators

respect the same symmetries and relations as the color factors,

ci → −ci ⇔ ni → −ni (4.6)

ci + cj + ck + cl = 0 ⇔ ni + nj + nk + nl = 0 .

The first line signifies the antisymmetry properties of the three-algebra, and second line

signifies the fundamental identity or generalized Jacobi identity. That these identities could be

imposed on the kinematic numerators was first proposed by Bargheer, He and McLoughlin [9]

in the context of BLG and ABJM theories. Via the double-copy relation,

Mm =
(κ

2

)m ∑
i∈quartic

niñi∏
αi
sαi

, (4.7)

they reproduced the four- and six-point amplitudes of N = 16 supergravity of Marcus and

Schwarz. The same exercise was later shown to work for a large class of CSm and supergravity

theories [19]. Remarkably, the gravity amplitudes that are produced by the double copies of

D = 3 YM theories and that of CSm theories are identical, even though the two constructions

are impressively distinct [19].

We should emphasize that all studies thus far [9, 19] have been limited to four- and

six-point amplitudes, which leaves open the possibility that the results do not generalize to

multiplicities n ≥ 8. Indeed, as we will explain, for ABJM-type theories with general gauge

group, most of the expected color-kinematics properties are absent beyond six points. Before

we get there, let us proceed by discussing BLG-type color-kinematics duality, which appears

to work seamlessly.

4.2 BCJ duality for BLG theory

Let us now consider the BCJ relation for BLG-type theories. We will show the details of the

six-point amplitude, and for eight and ten points we will only give the counts of relations

and independent amplitudes. As discussed previously, BLG-type three-algebras allow one

to reduce the color ordered amplitude to five independent ones. However, further reduction

comes from color-kinematics duality. The numerator must satisfy the same properties as the

color factor. Using the six-point amplitude representation in eq. (3.33) one would have, for

example,

c3 − c4 − c5 + c6 = 0 ⇔ n3 − n4 − n5 + n6 = 0 . (4.8)

Imposing this numerator relation, together with 14 more similar relations (not all indepen-

dent), leads to five independent numerators. By the duality, this number has to be the

same as the number of KK-independent amplitudes (see Table 2). Thus the KK-independent

amplitudes can be expressed in terms of these five independent numerators

A(i) =
5∑
j=1

Θijnj , i = 1, · · · , 5 , (4.9)
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Naively, since Θij is a square matrix, one would like to invert it and express the independent

numerators in terms of color ordered amplitudes. However, upon deeper consideration this

might not be a legal move. Since, one should expect the numerators in a gauge theory to be

gauge dependent, and thus not well defined in terms of S-matrix elements. Indeed, just like

the case of Yang-Mills theory, the Θij matrix has lower rank than what is explicit. To show

this in detail, we use A(i) with i = 1, · · · , 5 defined in eq. (3.36) as our independent basis,

A(i) =
(
ABLG

SO(4)({1, 4}, {2, 5}, {3, 6}), ABLG
SO(4)({1, 6}, {4, 5}, {3, 2}), ABLG

SO(4)({1, 2}, {6, 5}, {3, 4})

ABLG
SO(4)({1, 2}, {4, 5}, {3, 6}), ABLG

SO(4)({1, 4}, {6, 5}, {3, 2})
)
, (4.10)

and the numerator basis ni for i = 1, . . . , 5. The reduction of the numerators is given by the

dual fundamental identities; the independent content of these are

n6 = −n3 + n4 + n5 , n7 = n1 − n2 − n3 + n4 + n5 , n8 = n1 − n2 + n4 ,

n9 = n2 + n3 − n4 , n10 = n1 + n4 + n5 . (4.11)

Using the above bases, the matrix Θij is then given as

ΘBLG
ij =

1
s123

+ 1
s135

1
s126

+ 1
s156

1
s156

1
s135
− 1

s156

1
s135

1
s124

+ 1
s135

− 1
s124

1
s134

1
s124

+ 1
s125

+ 1
s135

1
s135

1
s135

+ 1
s145

− 1
s145

− 1
s136
− 1

s145

1
s135

+ 1
s136

+ 1
s145

1
s135

+ 1
s136

+ 1
s145

+ 1
s146

− 1
s135

− 1
s156

− 1
s134
− 1

s156
− 1
s135

+ 1
s156

− 1
s135
− 1

s146

− 1
s135

− 1
s126

1
s136

− 1
s125
− 1

s135
− 1

s136
− 1
s135
− 1

s136

 .

(4.12)

Imposing momentum conservation and on-shell constraints one sees that, while the determi-

nant of this matrix does not vanish in generic spacetime dimension, it does vanish for three-

dimensional kinematics. Thus in three-dimensional BLG-type theories, the color-kinematics

duality leads to further amplitude relations beyond the KK-relations. This critical dimension-

dependence of Θ was first observed in ref. [19] for the ABJM six-point amplitude. Here we see

the same phenomenon for BLG theory. More explicitly, ΘBLG
ij has rank three in D = 3, and

thus we have two additional amplitude relations, which reduces the number of independent

amplitudes to exactly three. The apparent mismatch between independent amplitudes and

independent numerators (three versus five) implies that the numerators are gauge dependent.

In fact, to make up for the mismatch, the gauge dependence can be pushed into two redundant

numerators; one can think of them as “pure gauges”. Choosing n3 and n4 as the redundant

numerators, one can explicitly solve ni in terms of A(2), A(4), A(5) as well as n3 and n4; that

is, n∗j = n∗j (A(i), n3, n4). Substituting the solution nj → n∗j into

A(1) =
n1

s123
+

n2

s126
+
n1 + n4 + n5

s135
+
n2 + n3 + n4

s156
,

A(3) =
n5

s146
+
n1 + n4 + n5

s135
+
n4 + n5 − n3

s136
+
n1 − n2 − n3 + n4 + n5

s145
, (4.13)
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we find that the “pure gauges” n3 and n4 drop out, and eq. (4.13) becomes two relations

between color ordered amplitudes. After multiplying by common denominators, the two

relations become

0 =
5∑
i=1

SiA(i) =
5∑
i=1

S̃iA(i) , (4.14)

where Si and S̃i are degree-four polynomials of momentum invariants. Explicitly they are

given by

S1 = 0 ,

S2 = s124(s156(s145s146 − s135s136) + s126(s146(s135 + s156)− s136(s145 + s156))) , (4.15)

S3 = s145(s156(s136(2s35 − s146) + s146(s136 − s126))− s126s146(2s24 − s156)) ,

S4 = s156(s136s145(2s35 − s146) + s146(s136(s126 + s135) + s145(s135 + s136) + s124(s126 + s145))) ,

S5 = s126(s145s146(s136 − 2s24)− s136(s135(s145 + s146) + s124(s145 + s156) + s146(s145 + s156))) ,

and

S̃1 = s123(s156(s136(2s35 − s146) + s146(s136 − s126))− s126s146(2s24 − s156)) ,

S̃2 = s124(s126(s123s136 + s146(s135 + s136))− s156(s135s136 + s146(s123 + s136))) , (4.16)

S̃3 = 0 ,

S̃4 = s146(s123s126(s156 − 2s24)− s156(s123(s126 + s135) + s124(s123 + s136) + s126(s135 + s136))) ,

S̃5 = s136(s126(s124s146 + s156(s135 + s146)) + s123(s126(s124 + s135) + 2s156s35)) .

Next we present the double-copy result of the six-point gravity amplitude using the BLG

three-algebra color-kinematics duality. We find a relatively compact expression if we solve

the numerators ni in terms of A(1), A(4), A(6) and ñi in terms of Ã(2), Ã(3), Ã(5). We have

M6 =
1

B

{
s145s146Ã(3)

[
A(1)s126(s134 − s124) +A(4)s134(2s35 − s146)−A(6)s124(2s26 − s145)

]
+ s124s134Ã(2)

[
A(1)s126(s145 − s146)−A(4)s146(2s26 − s134) +A(6)s145(2s35 − s124)

]
+ s126Ã(5)

[
A(1)(s134s145(s135 + s146) + s124(s134s145 − (2s26 − s126)s146))

+A(6)s124s145(s134 − s146) +A(4)s134s146(s145 − s124)
]}
, (4.17)

where

B = 2(s124s146s26 − s134s145s35) . (4.18)

The tilde notation emphasizes that Grassmann-odd parameters should be tensored, not

squared. At convenience one may replace the partial amplitudes in eq. (4.17) by their N = 6

supersymmety truncated counterparts. Using eq. (2.29) we can map these to ABJM partial

amplitudes that are conveniently accessible in the literature [27, 28], and thus obtain explicit

gravity amplitudes. We have checked that these agrees with D = 4 supergravity amplitudes

dimensionally reduced to D = 3, verifying the entire construction.
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Going beyond six points, we find a multitude of BCJ relations. We have worked out

the Θij matrix and amplitude relations at eight and ten points explicitly. As before, the

results are rather elaborate so we avoid explicit formulas, and instead present the counts

of independent amplitudes. At eight points we find that the 56-dimensional basis of KK-

independent partial amplitudes gets further reduced to 38 amplitudes that are independent

under the BCJ relations. That is, the eight-point 56-by-56 ΘBLG matrix has rank 38 in D = 3

dimensions (in D > 3 it has the expected full rank 56, and in D < 3 it diverges). For the

ten-point case we find that the 1077-dimensional KK basis is reduced to a 1029 dimensional

BCJ basis. So the 10-point 1077-by-1077 ΘBLG matrix has rank 1029 in D = 3 dimensions

(in D > 3 it has the expected full rank 1077, and in D < 3 it diverges). These counts are

summarized in Table 2.

Turning to supergravity at eight points: we have explicitly solved the 56 independent

numerators in terms of 38 BLG partial amplitudes and a remaining set of 18 pure gauge

degrees of freedom. Altogether, we have 280 numerators (see Table 2) that are linearly de-

pendent on the 38 chosen partial amplitudes as well as the 18 pure-gauge numerators. For the

BLG partial amplitudes we use eq. (2.32) to map these to ABJM partial amplitudes, which

we in turn compute using three-dimensional BCFW recursion. After taking double copies of

the 280 numerators, the pure-gauge numerators drop out, and we obtain an expression for

the eight-point supergravity amplitude. We have numerically checked that the resulting am-

plitude indeed matches the supergravity amplitude obtained from three-dimensional BCFW

recursion as well as direct dimensional reduction of the four-dimensional amplitude. This

concludes the verification of color-kinematics duality at eight points.

4.3 BCJ duality for ABJM theories

We now consider BCJ duality for ABJM-type theories at six points. Recall that at six-point,

a set of five independent amplitudes under the Kleiss-Kuijf relations was given in eq. (2.24),

A(i) =
(
A6(1̄23̄45̄6), A6(1̄43̄65̄2), A6(1̄63̄25̄4), A6(1̄43̄25̄6), A6(1̄63̄45̄2), A6(1̄23̄65̄4)

)
.

(4.19)

Following the previous analysis, assuming BCJ duality one can reduce the number of kine-

matic numerators down to five. Again choosing ni, i = 1, . . . , 5 as the independent numerators,

the reduction relations are

n6 = −n3+n4+n5 , n7 = n1−n2−n3+n4+n5 , n8 = n1−n2+n4 , n9 = n2+n3−n4 . (4.20)

one finds that the matrix Θij is given by

ΘABJM
ij =


1

s123

1
s126

+ 1
s156

1
s156

− 1
s156

0
1

s124
− 1

s124

1
s134

1
s124

+ 1
s125

0
1

s145
− 1

s145
− 1

s136
− 1

s145

1
s136

+ 1
s145

1
s136

+ 1
s145

+ 1
s146

0 − 1
s156

− 1
s134
− 1

s156

1
s156

− 1
s146

0 − 1
s126

1
s136

− 1
s125
− 1

s136
− 1

s136

 (4.21)
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As before, after imposing momentum conservation and on-shell constraints the determinant

vanishes for three-dimensional kinematics, but not for D > 3 [19]. More explicitly, ΘABJM
ij

has rank four in D = 3, and thus we have one additional amplitude relation, which reduces

the number of independent amplitudes to exactly four. Choosing n5 as the redundant “pure

gauge” numerator, one can explicitly solve n1, n2, n3, n4 in terms of A1, A2, A3, A4 and n5;

that is, n∗j = n∗j (A(i), n5). Substituting the solution nj → n∗j into

A(5) = A6(1̄, 6, 3̄, 4, 5̄, 2) = − n4

s125
− n2

s126
+
n3 − n4 − n5

s136
, (4.22)

we find that the “pure gauge” n5 droops out, and eq. (4.22) is now a relation between color

ordered amplitudes. We get

0 =

5∑
i=1

SiA(i) , (4.23)

where Si are given by

S1 = s123(s126s134(s136 + s145) + s125(s126s134 + s134s136 − s145s156) + s124(s125(s126 + s136)

+ s126(s134 + s136) + s136(s134 + s156))) ,

S2 = s124(s125(s136 + s145)s156 + s126((s125 + s136)s156 − s134s145)

+ s123(s136(2s34 − s125) + s125(2s16 − s146))) ,

S3 = −s145(s123(s136(2s34 − s125) + s125(2s16 − s146)) + (s125(s126 + s136) + s126s136)

× (s134 + s156) + s124(s125(s126 + s136) + s126(s134 + s136) + s136(s134 + s156))) ,

S4 = (s134(s126(s136 + s145) + s125(2s45 − s123)) + s124(s126(s134 + s136) + s134(s136 + s145)

+ s125(2s45 − s123)))s156 + s123(s124(s134s136 + s126(s134 + s136) + s134s156

+ s136s156 + s125(2s16 − s146)) + s134((s136 + s145)(s126 + s156) + s125(2s16 − s146))) ,

S5 = −s126(s125s145(s134 + s156) + s124(s125s145 + s134s145 − s136s156))

+ s123(2s124s136s34 + s125(s134s136 − s145(s126 + s156))) . (4.24)

As stated, for dimensionsD > 3 the matrix Θij is of full rank and BCJ amplitude relations

are absent. However, for D = 2 the matrix is in fact of rank three, giving further relations

for the two-dimensional S-matrix. We will discuss the two-dimensional case in further detail

in the next subsection.

Going beyond six points, we find that ΘABJM
ij has full rank in D = 3 as well as D > 3, as

explicitly verified up to ten points.5 This implies that, in the absence of further constraints

imposed on the amplitude numerators, there are no BCJ relations for three-dimensional

ABJM amplitudes beyond six points. Even so, because the ΘABJM
ij matrix is full rank we

can invert it and obtain numerators that by construction satisfy the same properties as the

color factors. Yet these numerators do not seem to have the desirable properties that one

expects of a color-dual representation. We have explicitly verified that the double copy of

5This result has been independently verified at eight points in ref. [37].

– 33 –



these eight-point numerators do not give the correct supergravity amplitude, as obtained from

recursion or dimensional reduction. Given that it has been shown that three-dimensional

N = 12 supergravity is unique [38], the double copy cannot compute an amplitude in any

other meaningful theory. Hence, this is an interesting example of a situation when the double-

copy procedure does not work even though duality-satisfying numerators can be obtained.

The result is surprising considering the close relationship between ABJM and BLG tree-

amplitudes.

As discussed in section 2.2, at six points one can obtain the ABJM partial amplitudes

from the BLG partial amplitudes via supersymmetry truncation, as given by eq. (2.29). Thus

any BCJ relation or double-copy formula that is valid for BLG partial amplitudes have a

corresponding relation for ABJM partial amplitudes. However, beyond six points one can

no longer obtain ABJM partial amplitudes via supersymmetry truncation of BLG theory;

e.g. the map in eq. (2.32) is not invertible. Thus the previous success in obtaining the

correct supergravity amplitudes, at six points [9, 19], from either three-algebra color-kinematic

duality, can be viewed as a consequence of the ability to identify the partial amplitudes of

ABJM-type theories with that of BLG.

As a possible resolution of this puzzle, one might wonder if there are additional constraints

beyond those of eq. (4.7) that needs to be imposed on the ABJM numerators starting at eight

points. For example, the fundamental identities that the ABJM numerators satisfy are always

a subset of the BLG fundamental identities. One can wonder whether imposing the full set

of BLG fundamental identities on ABJM numerators cures the observed problem. At six

points, this works well: the number of quartic diagrams for BLG theory is exactly ten, while

the number for ABJM theory is nine. Even though on the outset, it appears that the ABJM

theory lacks one channel compared to BLG one can use generalized gauge freedom to set the

numerator of the offending channel to zero, n10 = 0 in eq. (2.27). With these constraints, the

ABJM and BLG numerators satisfy exactly the same algebraic properties. At eight points,

the same procedure does not work: there are 280 quartic diagrams in BLG theory, compared

to 216 for ABJM. The generalized gauge freedom for BLG gives that there are 56− 38 = 18

free numerators. But the discrepancy to 280−216 = 64 is too large, hence one cannot choose

a gauge such that the BLG numerator constraints can be directly transferred to ABJM.

Nevertheless, there might be other constraints that can be imposed on the ABJM numerators

at eight points. In section 6.2 we explain that there exists many amplitude relations for

ABJM theory (as well as BLG theory) whose origin are not understood. These relations

could support the existence of new constraints that can consistently be imposted on ABJM

numerators.

5 Supergravity integrability and D = 2 BCJ duality

We now consider ABJM, BLG and supergravity amplitudes living in two-dimensional space-

time. To be specific, we take the supergravity theory to be either the maximally supersym-
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metric N = 16 theory, or the reduced version with N = 12 supersymmetries. However, at

tree level, all pure supergravity theories are simple truncations of the maximal theory.

We obtain the D = 2 gauge-theory amplitudes by analytically reducing the three-

dimensional ones, and the supergravity amplitudes from the double-copy procedure. Because

of the highly constrained on-shell kinematics, special attention is needed to avoid collinear

and soft divergences, even at tree level. While it should be possible to compute sensible phys-

ical quantities (e.g. cross sections) for any momenta, here we restrict ourself to kinematical

configurations where the massless tree-level S-matrix is finite. As we will see, this is sufficient

for a number of interesting observations.

For the purpose of maintaining a finite tree-level S-matrix, we initially choose the mo-

menta of the external color-ordered particles to be pointing in alternating light-like directions:

kµ2i+1 ‖ ēµ ≡ (1, 1) and kµ2i ‖ eµ ≡ (1,−1), where e, ē are two light-like basis vectors. In par-

ticular, we have

ki = κ̄iē for i odd, kj = κje for j even , (5.1)

where κi, κ̄j are scaling factors for the momenta. Momentum conservation implies that∑
i κi =

∑
j κ̄j = 0. Thus, for this setup, the momentum direction is correlated with the

chirality of the particles. In fact, this correlation is responsible for the absence of collinear

and soft divergences, as such would require that on-shell chiral particles could evolve or split

into one or several on-shell antichiral particles, 1 → 2̄ + 3̄ + . . . + n̄. This is forbidden by

supersymmetry (note that, for supergravity, chirality corresponds to helicity from the D = 4

theory perspective).

We begin with the six-point ABJM amplitude. At six points, for kinematics (5.1), the

matrix ΘABJM
ij has rank three. This implies that there are at most three independent six-point

amplitudes. The two BCJ relations can be obtained by recycling the details and notation used

in section 4.3: we solve the numerators ni in terms of A(2), A(4), A(5) and n3, n4, then sub-

stitute the solution back into A(1) or A(3), similar to above. The two independent amplitude

relations, valid for alternating two-dimensional momenta, are given by

0 = (A(1)s25 −A(2)s16)(s14s12 − s56s36) + (A(4)s12 −A(5)s56)(s14s36 + s25s14 + s25s36),

0 = (A(2)s16 −A(3)s34)(s14s12 − s56s36) + (A(4)s36 −A(5)s14)(s34s12 + s56s34 + s56s12) .

(5.2)

Interestingly, the coefficients of the amplitudes are only degree-three polynomials of momen-

tum invariants, and moreover the relations are significantly simpler than the corresponding

three-dimensional ABJM relation (4.23). Unlike the three-dimensional case, ΘABJM
ij contin-

ues to have less-than-full rank even beyond six points. We determined the rank up to ten

points; for each multiplicity we find novel BCJ relations. The counts of independent ABJM

amplitudes, subject to the two-dimensional BCJ relations and kinematics (5.1), are

external legs 4 6 8 10

D = 2 BCJ basis 1 3 38 987
. (5.3)
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We can now demonstrate some interesting applications of color-kinematics duality to

D = 2 supergravity amplitudes. Using the double-copy formula (4.7), we can now derive

a gauge-invariant expression that gives six-point two-dimensional supergravity amplitudes

(with manifest N = 12 supersymmetry) in terms of the two-dimensional ABJM amplitudes.

We have

M6(1̄, 2, 3̄, 4, 5̄, 6) =
s12s34s56

(s23 − s14)(s36 − s12)(s34 − s16)

(
(s34 − s16)A(1)Ã(1)

+ (s36 − s12)A(2)Ã(2) + (s23 − s14)A(3)Ã(3)

)
, (5.4)

where the formula is only valid for the kinematics in eq. (5.1), and the gravity states cor-

respond to chiral and antichiral N = 12 supermultiplets. The A(i) and Ã(i) are ABJM am-

plitudes with color ordering defined in section 4.3. The explicit two-dimensional form of the

ABJM amplitudes can be obtained by direct dimensional reduction of the three-dimensional

amplitudes. For the kinematics in eq. (5.1), the superamplitude takes a very simple form

AABJM
D=2 (1̄, 2, 3̄, 4, 5̄, 6) = i

δ(3)(
∑

even λiηi)δ
(3)(
∑

odd λ̄iηi)

λ̄1λ2λ̄3λ4λ̄5λ6

×
∑
s=±

δ(3)

(
s
λ̄3η1 − λ̄1η3

λ̄5
+ i

λ6η4 − λ4η6

λ2

)
, (5.5)

where λ, λ̄ are scalar-valued spinor-helicity variables, which are related to the lightcone mo-

menta: κi = (λi)
2 and κ̄i = (λ̄i)

2. Upon close inspection we note that AABJM
D=2 (1̄, 2, 3̄, 4, 5̄, 6),

is, in fact, totally symmetric in the (1,3,5) labels and totally antisymmetric in the (2,4,6)

labels. Compensating for the Fermionic statistics on the even sites, the six distinct orderings

of the amplitudes give identical result A(i) = A(j) (note we have tacitly assumed Bosonic

amplitudes in eq. (5.2) and eq. (5.4)). As a consequence, after pulling out the common factor

A(1)Ã(1), and accounting for momentum conservation
∑

j sij = 0, eq. (5.4) becomes mani-

festly zero! Is it a coincidence that the six-point supergravity amplitude vanishes for this

alternating kinematics? No, as we will see, it vanishes for all kinematics that is not plagued

by collinear or soft divergences.

For non-alternating two-dimensional kinematics the ABJM superamplitudes as well as the

entries of the Θij matrix become divergent. However, one can typically remedy the situation

by imposing external state choices that eliminates the divergent channels. The kinematics in

eq. (5.1) was fortunate to have this property automatically satisfied. For other kinematics one

can proceed more carefully. We use the double-copy representation in eq. (4.17), and regulate

the infrared divergences using D = 3 momenta kMi = (kµi ,mi), where kµi are two-dimensional

momenta and m2
i are very small parameters. The three-dimensional momenta are taken to

be massless, so the two-dimensional ones are massive k2
i −m2

i = 0. Let us be explicit and

consider the limit mi → 0, such that

ki → κ̄iē for i = 1, 2, 5, ki → κie for i = 3, 4, 6 . (5.6)
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Note that for a supergravity amplitude M6(1̄, 2, 3̄, 4, 5̄, 6), with manifest N = 12 supersym-

metry, any kinematics with three particles in each light-like direction is related to either

eq. (5.1) or eq. (5.6) via trivial relabeling. For the kinematics (5.6), the channel n4ñ4/s125

naively diverges, since s125 → 0. However, after choosing a component amplitude that does

not have such pole, we are allowed to set n4 or ñ4 to zero. For example, the ABJM compo-

nent amplitude proportional to (η1
1η

1
2η

1
5)(η2

2η
2
4η

2
6)(η3

1η
3
3η

3
5), where the superscripts are SU(3)

indices, has a vanishing s125 pole, so we set n4 = 0. The state choices of the first parenthesis

ensures that all partial amplitudes are finite for configuration (5.6). The particular form of

the ABJM partial amplitudes can be conveniently obtained of from the “cyclic gauge” of

ref. [28]. At leading order, they are given as

A(1) = O(m2) , A(3) = O(m2) , A(4) = O(m2) , A(6) = O(m2) ,

A(2) = −i κ3κ̄2

λ6λ4λ̄1λ̄5
+O(m) , A(5) = −A(2) +O(m) . (5.7)

Note that we cannot drop the O(m) and O(m2) terms immediately, because if we use the

double-copy formula in eq. (4.17) the denominator B also vanishes in this limit, B = O(m2).

Remarkably, after plugging amplitudes (5.7) into eq. (4.17), and taking the limit (5.6), the

supergravity amplitude again vanishes! Thus we see evidence of the general pattern: as long

as the ABJM amplitudes are not contaminated by divergent channels, the corresponding

supergravity amplitude always vanishes.

The spectacular vanishing is perhaps not unexpected; it can be understood as a statement

supporting integrability of the theory. Integrability of maximal D = 2 supergravity, which

is a theory that has a dimensionless coupling yet should be non-conformal, has been argued

in [22, 23]. Integrability of the two-dimensional S-matrix should imply that all higher-point

amplitudes vanish for generic kinematics, except for momenta that allows for factorization into

products of the four-point S-matrix [39]. However, as the massless S-matrix is contaminated

by infrared divergences, indicating that its asymptotic states are not properly identified, we

can expect to see some deviation from this statement. Nevertheless, for gravity amplitudes

that are manifestly free of infrared problems, we confirm that they behave as expected from

integrability.

We will now discuss the properties found to be consistent with integrability, starting

with the four-point amplitude. For kinematical reasons, the four-point amplitude in D = 2

is nonvanishing only for elastic scattering, e.g. on δ(2)(k1 + k3)δ(2)(k2 + k4) support, in any

massless theory. For the alternating momentum configuration (5.1), the four-point ABJM

tree superamplitude is given by

AABJM
D=2 (1̄, 2, 3̄, 4) = i

δ(3)(
∑

even λiηi)δ
(3)(
∑

odd λ̄iηi)

λ̄1λ2λ̄3λ4
, (5.8)

and a corresponding supergravity amplitude, with N = 12 supersymmetry manifest, is given

by MD=2(1̄, 2, 3̄, 4) = AABJM
D=2 (1, 2̄, 3, 4̄)ÃABJM

D=2 (1, 2̄, 3, 4̄). For other kinematics, some of the
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component amplitudes are divergent, and thus needs to be regulated, or otherwise carefully

treated. We will not discuss the the divergent component amplitudes in any detail.

In order to have a consistent factorization of higher-multiplicity amplitudes, the integrable

S-matrix should satisfy the Yang-Baxter equation. In three-dimensions, it is known [40] that

the sewing of three four-point tree amplitudes in ABJM theory indeed satisfies a “Yang-

Baxter-like” identity. Pictorially it is

=

k
1

a

k
2b

k
3

c k
4d

k
5

e

k
6f

k
1

a

k
2b

k
3

c

k
4d

k
5

e
k

6f

p

q r q

p

r

, (5.9)

where each blob represents a four-point amplitude and each internal line indicates a sum

over the spectrum as well as an on-shell phase space integral. In fact, these diagrams are

usually called unitarity triple cuts. The indices a, b, · · · , f on each external lines indicate the

particle species of each leg, with lower and upper indices being chiral and antichiral states,

respectively. This identity stems from the fact that the two triple cuts can be mapped to two

different BCFW representations of the six-point ABJM amplitude, which by consistency of

the BCFW recursion has to be identical [41]. However, the identity is not precisely the Yang-

Baxter equation; the external and internal momenta do not correspond to elastic scattering for

generic D = 3 kinematics. This is cured by taking the two-dimensional limit, where the four-

point amplitudes forces the momenta into this configuration. More precisely, the kinematics

degenerates into only three momentum lines, k1, k2, k3, which are diagonally identified across

each four-point amplitude. Straightening out the lines in the diagrams, the identity looks like

=

k
1

a

k
2b

k
3

c − k
1d

− k
2

e

− k
3f

k
1

a

k
2b

k
3

c

− k
1d

− k
2

e− k
3f

q r

p

q r

p

. (5.10)

This is precisely the Yang-Baxter equation:

Sapbq (k1,−k2)Scqdr(k3,−k1)Serfp(k2,−k3) = Sapfq (k1,−k3)Seqdr(k2,−k1)Scrbp(k3,−k2) . (5.11)

To see this more clearly we subtract out the trivial part and only consider the transfer matrix

iT = S − 1, and let T = T (0) be the tree-level contribution, we can then write this object
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directly as a unitarity cut. It is given by

T apbq (k1,−k2)T cqdr (k3,−k1)T erfp(k2,−k3) ≡ (5.12)

J
∑

p,q,r∈states

A4(`p1, k
a
1 , (−k2)b, (−`2)q)A4(`q2, k

c
3, (−k1)d, (−`3)r)A4(`r3, k

e
2, (−k3)f , (−`1)p) ,

where the internal momenta is constrained by on-shell conditions `2i = 0 and momentum con-

servation `2 = `1 + k1 − k2, `3 = `1 + k3 − k2, and J =
∫
dD`1δ(`

2
1)δ(`22)δ(`23) is the Jacobian

factor from the phase-space integration, and for convenience we have dropped factors of 2, π, i

and g. Thus, we observe that the four-point tree amplitude in ABJM, evaluated in two dimen-

sions, is a solution to the Yang-Baxter equation at lowest nontrivial order in the perturbative

expansion! Note that at least one of the four-point amplitudes in the equivalence (5.11) will

diverge for D = 2 kinematics, since at least two of the light-light momenta k1, k2, k3 neces-

sarily become collinear in the D = 2 limit, resulting in a soft-exchange singularity. However

both sides will diverge in the same fashion. The simplest way to see this, is to regulate the di-

vergence using three-dimensional kinematics and amplitudes, treating the extra-dimensional

momenta as a mass regulator for the D = 2 divergence. Since the three-dimensional version

already satisfies the equality, so will the regulated D = 2 result.

Finally, as the supergravity four-point tree amplitude is simply a double-copy of the

corresponding ABJM amplitude, we may simply square the T -matrix part of eq. (5.11), it

also satisfies the Yang-Baxter equation,

[T apbq (k1,−k2)T cqdr (k3,−k1)T erfp(k2,−k3)]2 = [T apfq (k1,−k3)T eqdr (k2,−k1)T crbp (k3,−k2)]2 . (5.13)

If we are to be careful, we must divide both sides of the equation by the Jacobian factor

J and take care of factors of 2π and i, in order to obtain properly normalized supergravity

T -matrices, but it does not matter for the validity of the equivalence. So while the D = 2

ABJM theory Yang-Baxter equation is an interesting curiosity, it is the D = 2 supergravity

double-copy version of this identity that has real bearing on the integrability of the theory,

since only the latter theory satisfies the integrability factorization property at six points.

As stated, in an integrable theory, all higher-point amplitudes should vanish unless the

kinematics correspond to a factorization channel given by products of four-point amplitudes.

At six points, we confirmed that the alternating light-like momenta (5.1) give vanishing

supergravity tree amplitudes. This momenta do not correspond to elastic scattering for any

of the values of κi and κ̄i, since such would require an even number of particles on each

of the two lightcones directions. And such elastic scattering is needed for a non-vanishing

four-point amplitude in the factorization channels. This implies that the six-point amplitude

should vanish identically on kinematics (5.1), as we indeed find. The six-point amplitudes in

ABJM and BLG theories are non-vanishing for two-dimensional momenta (5.1); this shows

that neither D = 2 ABJM theory nor D = 2 BLG theory are integrable, at least not in the

normal sense of two-dimensional integrability.

The same analysis applies for the eight-point tree amplitudes. For supergravity, the

amplitude MD=2(1̄, 2, 3̄, 4, 5̄, 6, 7̄, 8) again vanishes on kinematics (5.1), providing non-trivial
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support for integrality. The corresponding two-dimensional ABJM and BLG amplitudes are

non-vanishing. The construction of the supergravity eight-point amplitude was done as fol-

lows: We used BCFW recursion to obtain the eight-point ABJM partial amplitudes, then we

applied the linear map in eq. (2.32) to obtain the corresponding eight-point BLG partial am-

plitudes. Using the BLG partial amplitudes we solved for the numerators in a color-kinematics

dual representation. By squaring these numerators, we obtain three-dimensional supergravity

amplitudes. After confirming that these give the correct answer in D = 3 (by comparing to

three-dimensional BCFW recursion of supergravity) we used the three-dimensional momenta

as a regulator when approaching the D = 2 kinematics (5.1) in a limiting procedure. The

limit is well behaved; the supergravity amplitude vanishes, as expected.

As explained in the beginning of this section, the D = 2 ABJM theory enjoys novel

BCJ relations beyond six points. One might expect that the presence of BCJ relations is

indicative of the existence of a ABJM double-copy formula for supergravity (without going

through BLG amplitudes as an intermediate step). Indeed, at six points this works without

problems. However, at eight points the situation is somewhat unclear. We have verified

that the double-copy result is overall non-vanishing for kinematics (5.1), suggesting that

it does not compute the correct D = 2 supergravity amplitudes. However, many of the

component amplitudes of the ABJM double copy do exhibit non-trivial vanishings (even

when the corresponding ABJM component amplitudes are non-zero), suggesting that the the

double copy may compute some meaningful quantity. One might ask if the non-vanishing

double-copy amplitudes could correspond to some deformation of the supergravity theory

Lagrangian. But since the amplitudes have manifest N = 12 supersymmetry, the room

for deformations are small, even possibly non-existent, similar to the corresponding higher-

dimensional supergravitites. Thus this puzzle is an first example of a case where, although

BCJ-amplitude relations exists, the corresponding double-copy formula does not give the

expected gravity amplitudes. Further studies of D = 2 ABJM theory BCJ relations and

double-copy amplitude are likely needed to bring full clarity into this.

6 Bonus relations and more

We end the discussion on tree-level amplitude relations by exposing additional hidden relations

in ABJM and BLG theory. As mentioned in section 2.2, one can obtain six-point ABJM

partial amplitudes from the BLG theory simply via supersymmetry truncation. From this it

follows that ABJM should obey two BCJ-like relations at six points, one more than observed,

since that is the count for BLG theory. As we show below, this extra relation can be manifested

as a bonus relation due to the improved asymptotic behavior of the BCFW shift. However,

even after talking into account BCJ and bonus relations, there are still more unexplored

structure that relates different partial amplitudes.
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6.1 Bonus relations from large-z behavior

It is well known Yang-Mills-theory amplitudes enjoys improved large-z falloff as the BCFW

shifted legs become non-adjacent. For any non-adjacent shift the Yang-Mills amplitude van-

ishes as 1/z2. This behavior can be shown straightforwardly [42] using the RSVW twistor

string formula of N = 4 SYM [31]. Feng, Huang and Jia shown that the BCJ amplitude

relations can be cast as bonus relations that emerge from this improved large-z behavior [30].

It was discussed in [28] (see also appendix A) that ABJM also enjoys improved large-z

behavior. Unlike N = 4 SYM, the large-z falloff continues to improve as the shifted legs are

taken further apart in the color ordering. For example, for n = 4, 6, 8 one has

n = 4 : (1, 2)→ 1

z
, (1, 3)→ 1

z2
,

n = 6 : (1, 2)→ 1

z
, (1, 3)→ 1

z2
, (1, 4)→ 1

z3
,

n = 8 : (1, 2)→ 1

z
, (1, 3)→ 1

z2
, (1, 4)→ 1

z3
(1, 5)→ 1

z2
, (6.1)

where we use (i, j) to indicate the shifted legs.

The fact that the amplitude enjoys improved large-z falloff beyond that necessary for

BCFW recursion, 1/z, can be utilized to extract non-trivial linear relations between ampli-

tudes. In ref. [30] the authors started with the KK relations, multiply an inverse propagator

and then apply the standard BCFW shift, which can become non-adjacent shift depending

on the ordering of the amplitude since the KK relations includes amplitudes of different or-

dering. Although the inverse propagator introduces an extra power of z at large z, due to

the improve large-z behavior of non-adjacent shift some of the amplitudes appearing in a

given KK relation will not contribute at z →∞. As the KK relation holds irrespective of the

value of z, this implies non-trivial linear relations among the amplitudes that do contribute at

z →∞. In the following we will use the six-point ABJM amplitude to illustrate this analysis.

We begin again by BCFW shifting legs 1 and 6 for the six-point KK identity. For

simplicity, we will consider the pure scalar amplitude A6(φ̄iφjφ̄kφlφ̄mφn):

A6(ˆ̄123̄45̄6̂) +A6(ˆ̄143̄6̂5̄2) +A6(ˆ̄16̂3̄25̄4) +A6(ˆ̄143̄25̄6̂) +A6(1̂ˆ̄63̄45̄2) +A6(ˆ̄123̄6̂5̄4) = 0 .

(6.2)

Picking the un-barred scalars to carry the same SU(4) R-index and the barred scalars carrying

the conjugate one, the six-point color ordered amplitude is given by:

A(φ̄1I φ
I

2 φ̄3I φ
I

4 φ̄5I φ
I

6 ) = Y z(¯̂123̄45̄6̂) + Y z∗(ˆ̄123̄45̄6̂) (6.3)

≡ i

(〈2|p246|5〉+ i〈46〉〈31〉)(〈4|p246|1〉+ i〈62〉〈53〉)(〈6|p246|3〉+ i〈24〉〈15〉) + c.c. ,

where we have used the function Y z,z∗ to denote their origin as the two terms in the BCFW

recursion, with legs 1 and 6 shifted. Due to the propagator’s quadratic dependence on the

– 41 –



BCFW deformation parameter [28], there are two solutions on each factorization channel,

denoted by z and z∗ respectively.

Multiplying eq. (6.2)) by s1̂23(z), we consider the following z-integral:∮
z=∞

s1̂23(z)

1− z

(
A6(ˆ̄123̄45̄6̂) +A6(ˆ̄143̄6̂5̄2) +A6(ˆ̄16̂3̄25̄4) +A6(ˆ̄143̄25̄6̂)

+A6(ˆ̄16̂3̄45̄2) +A6(ˆ̄123̄6̂5̄4)

)
= 0 . (6.4)

Let us look at which of these terms contribute to the integral. At large z, the terms in the

integrand shifts as:

s1̂23(z)→ z2, A6(ˆ̄123̄45̄6̂)→ 1

z
, A6(ˆ̄143̄6̂5̄2)→ 1

z3
, A6(ˆ̄16̂3̄25̄4)→ 1

z
,

A6(ˆ̄143̄25̄6̂)→ 1

z
, A6(ˆ̄16̂3̄45̄2)→ 1

z
, A6(ˆ̄123̄6̂5̄4)→ 1

z3
. (6.5)

The terms s1̂23(z)A6(ˆ̄143̄6̂5̄2) and s1̂23(z)A6(ˆ̄123̄6̂5̄4) scales as 1/z thus vanishes as z → ∞.

For these terms, the residue at z = 1 cancels with that at finite z and thus do not contribute

to the integral. For the others the pole at infinity is given by the sum of the residues of the

finite poles as well as that of z = 1. Explicitly the integral gives

s123A6(1̄23̄45̄6) +

s123A6(1̄63̄25̄4)−
∑
z,z∗

s1̂23(z145)Y z,z∗

6 (ˆ̄16̂3̄25̄4)


+

s123A6(1̄43̄25̄6)−
∑
z,z∗

s1̂23(z143)Y z,z∗
6 (ˆ̄143̄25̄6̂)


+

s123A6(ˆ̄16̂3̄45̄2)−
∑
z,z∗

s1̂23(z125)Y z,z∗
6 (ˆ̄16̂3̄45̄2)

 = 0 . (6.6)

We have used square brackets to indicate the contribution coming from each of the non-

vanishing terms in eq. (6.4)). For the first term in eq. (6.4)), there is only a pole at z = 1

since the finite pole, 1/s123(z), was canceled by the pre factor. The third, fourth and fifth

term in eq. (6.4)) is given by a sum of the residue at z = 1 and the residue at the factorization

pole, i.e.s1̂45, s1̂43 and s1̂25 respectively. We use the notation s1̂23(z145) to indicate that it is

the shifted invariant s1̂23(z), with z evaluated at the solution of s1̂45(z) = 0. Note that since

s123 − s1̂23(z145) = −s145 , the first square bracket in eq. (6.6)) can be rewritten as:

s123A6(1̄63̄25̄4)−
∑
z,z∗

s1̂23(z145)Y z,z∗

6 (ˆ̄16̂3̄25̄4) = −s145A6(16̄32̄54̄) .

For the remaining two square brackets, the the z dependence in the combination −s123 +

s123(z134) and −s123 + s123(z125) does not drop out. This leads to the result that the two Y
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functions are weighted differently. As we will soon see, it is convenient to write the sum as:∑
z,z∗

s123(z143)Y z,z∗
6 (ˆ̄143̄25̄6̂) =

s123(z143) + s123(z∗143)

2

(
Y z

6 (ˆ̄143̄25̄6̂) + Y z∗
6 (ˆ̄143̄25̄6̂)

)
+
s123(z143)− s123(z∗143)

2

(
Y z

6 (ˆ̄143̄25̄6̂)− Y z∗
6 (ˆ̄143̄25̄6̂)

)
≡ S[s123(z143)]

(
Y z

6 (ˆ̄143̄25̄6̂) + Y z∗
6 (ˆ̄143̄25̄6̂)

)
+ AS[s123(z143)]

(
Y z

6 (ˆ̄143̄25̄6̂)− Y z∗
6 (ˆ̄143̄25̄6̂)

)
.

An important property of the Y functions is that while the sum gives the purely scalar tree

amplitude, the difference gives the purely Fermionic tree amplitude (see eq. (5.31) of [28] ).

i.e.:

Y z
6 (ˆ̄123̄45̄6̂) + Y z∗

6 (ˆ̄123̄45̄6̂) = A(φ̄1Iφ2
I φ̄3Iφ4

I φ̄5Iφ6
I) ≡ A6φ(1̄23̄45̄6) ,

Y z
6 (ˆ̄123̄45̄6̂)− Y z∗

6 (ˆ̄123̄45̄6̂) = −iA(ψ̄1
Iψ2I ψ̄3

Iψ4I ψ̄5
Iψ6I) ≡ −iA6ψ(1̄23̄45̄6) .

Thus we have finally arrived at the following linear relations for amplitudes:

s123A6φ(1̄23̄45̄6)− s145A6φ(1̄63̄25̄4) + s123A6φ(1̄43̄25̄6) + s123A6φ(1̄63̄45̄2)

−S
[
s123(z143)

]
A6φ(1̄43̄25̄6) + iAS

[
s123(z143)

]
A6ψ(1̄43̄25̄6)

−S
[
s123(z125)

]
A6φ(1̄63̄45̄2) + iAS

[
s123(z125)

]
A6ψ(1̄63̄45̄2) = 0 . (6.7)

The identity in eq. (6.7)) relates purely Bosonic amplitudes with purely Fermionic ones.

If we were to start with the KK identity of the super amplitude, then the corresponding

identity would related the amplitude whose Fermionic multiplets on the even sites, to those

with Fermionic multiplet on the odd sites. One can multiply eq. (6.2)) with s134(z) and repeat

the above steps to obtain another linear relation:

s134A6φ(1̄23̄45̄6) + s134A6φ(1̄63̄25̄4) + s134A6φ(1̄43̄25̄6)− s125A6φ(1̄63̄45̄2)

−S
[
s134(z123)

]
A6φ(1̄23̄45̄6) + iAS

[
s134(z123)

]
A6ψ(1̄23̄45̄6)

−S
[
s134(z145)

]
A6φ(1̄63̄25̄4) + iAS

[
s134(z145)

]
]A6ψ(1̄63̄25̄4) = 0 . (6.8)

One now has two equations that relateA6φ(1̄23̄45̄6), A6φ(1̄63̄25̄4), A6φ(1̄43̄25̄6) andA6φ(1̄63̄45̄2),

which we will call our basis amplitudes denoted by (Ã1, Ã2, Ã3, Ã4) respectively, to their

Fermionic counter part. One can obtain another two sets of equations by repeating the same

steps as before, but starting with the KK relations of the purely Fermionic amplitudes. In

principle these four sets of linear relations should allow us to express the four Fermionic
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amplitudes, A6ψ(1̄23̄45̄6), A6ψ(1̄63̄25̄4), A6ψ(1̄43̄25̄6) and A6ψ(1̄63̄45̄2), to the four basis am-

plitude. However, the four linear relation has only rank 3 instead of 4! This immediately

leads to the fact that one has a new amplitude relation!

4∑
i=1

aiÃi = 0 , (6.9)

where ai are coefficient functions that only depend on the kinematic invariants. As discussed

in the previous subsection 4.3, the BCJ amplitude relations can be used to reduce the number

of independent amplitudes down to the basis amplitudes discussed above. Thus any new

relations among these basis amplitudes are beyond that implied by the color kinematic duality

of ABJM. Indeed one finds that this is precisely the extra relation obtained from the BCJ

relations of BLG theory.

6.2 Structure beyond BCJ and bonus relations

As a last remark, we should address the existence of amplitude relations that goes beyond

those of BCJ and bonus relations. While these seem to have no clear purpose in the color-

kinematics duality of BLG theory, one could speculate that they might have some role to play

in the various puzzles that occur when applying color-kinematics duality to ABJM theory. At

six and eight points, we find that there exists further relations in both BLG and and ABJM

theory, such that the true basis of partial amplitudes is the same for both theories, implying

the existence of a bijective non-trivial map between the two types of amplitudes. This is a

highly unexpected result that goes against the intuition that BLG is a special case and ABJM

is the general case. For example, setting the gauge group ranks N1 = N2 = 2 seems like an

irreversible operation that converts ABJM to BLG. Likewise BLG has only non-planar tree

partial amplitudes, making it difficult to imagine how these can be converted into planar

ABJM amplitudes. Nevertheless, new relations exists through eight points and most likely

to all multiplicity. Whether they give rise to identical basis sizes for ABJM and BLG at ten

points and beyond, we leave as an open problem.

We will not give the extra relations here, as we do not have analytical formulas for them,

only numerical proof of their existence. For this numerical proof we must introduce a new

concept, or object, that measures what we define as the “true basis” of partial amplitudes.

Just like the BCJ relations are determined from the Θ matrix, the true basis of partial

amplitudes are determined from the (state)×(partial amplitude) matrix. That is, we rewrite

the color-dressed superamplitude6 as

An =
∑
σ,h

A σ
h cσχ

h , (6.10)

where the index σ runs over all distinct partial amplitudes and h runs over all possible external

state configurations, cσ are all the color factors of the corresponding partial amplitudes, and

6For non-supersymmetric theories one can similarly consider A σ
h , only the collective state index h is not

contacted with χh.)
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χh collects all non-vanishing products of the Grassmann-odd parameters of the external states.

The matrix A σ
h is simply a table of the individual component amplitudes organized according

to their (state)×(partial amplitude) structure. Any relations that the partial amplitudes

satisfy must translate into linear relations on the column vectors of A σ
h , for a fixed kinematical

point. Thus the rank of this matrix is the true basis of partial amplitudes. The rank is

straightforward to compute numerically; for both ABJM and BLG, we find a rank of 2 and

14 for the three-dimensional six- and eight-point amplitudes, respectively. (At four-points

the rank is trivially one.) Note that these bases are smaller than those derived from either

the BCJ or bonus relations. Since the rank is the same for both theories, and since we have

the surjective maps (2.29) and (2.32), the information content of the ABJM and BLG partial

amplitude must be the same up to eight points. The corresponding amplitude relations, as

well as the map from BLG to ABJM partial amplitudes, should be simple linear identities of

the amplitudes with coefficients that depend only on the kinematic invariants.

7 Conclusion

In this paper we have studied the structure of pure bi-fundamental matter amplitudes in

gauge theories, with or without propagating gauge fields on internal lines. We followed the

known procedure [4–6] of embedding the bi-fundamental color structure in a three-algebra for-

mulation. The fundamental identitiy, or three-algebra Jacobi identity, allowed us to construct

non-trivial identities for the pure matter partial amplitudes, in close analogy to the Kleiss-

Kuijf relations [25] in Yang-Mills theory. Since these relations are solely due to the algebraic

properties of the structure constants, they hold for bi-fundamental matter amplitudes in gen-

eral gauge theories. The relations depend only on the symmetries and fundamental identitiy

of the corresponding three-algebra structure constants, but not on the detailed Lagrangian

nor on the dimension of spacetime. For a particular simple class of these identities two inde-

pendent proofs are given in the context of the N = 6 ABJM theory. The first proof uses a

three-dimensional variant [28] of BCFW recursion, and the second uses the twistor-string-like

amplitude representation of ref. [29]. In addition, we construct graphical representations and

operations that can in principle be used to prove any given Kleiss-Kuijf-like identity in ABJM

theory.

Using the three-algebra construction, we explored the possible existence of color-kinematics

duality in a general setting. We find that for bi-fundamental matter amplitudes, BCJ ampli-

tude relations [10] exist in three and two dimensions; and not in D > 3. Furthermore, the

number of independent amplitudes under such relations critically depends on the symmetry

properties of the three-algebra structure constants. Contrary to previous expectations, we

find that only three-algebra theories with totally antisymmetric structure constants, such

as the N = 8 BLG theory, admit BCJ relations for general multiplicity, whereas general

three-dimensional bi-fundamental theories, such as ABJM theory, fail at this starting at eight

points. This result was unexpected since SO(4) BLG theory can be considered to be a special

case of ABJM with SU(2)×SU(2) Lie algebra [5]. We use generalized gauge transforma-
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tions [10, 13] to show that the invariant partial amplitudes of the two types of theories are

simply related at four and six points, but starting at eight points this is no longer true. The

previous low-multiplicity results in the literature [9, 19] were observations that generalize for

BLG-like theories, but not for general bi-fundamental theories in three dimensions.

We have explicitly verified that the double-copy results obtained from BLG theory

through eight points indeed matches with the supergravity amplitudes obtained from ei-

ther BCFW recursion or dimensional reduction. Note that while BCJ amplitude relations are

absent for ABJM amplitudes beyond six points, numerators exists that satisfy proper sym-

metries and fundamental identity. However, by squaring these duality-satisfying numerators,

one does not obtain correct gravity amplitudes at eight points. Interestingly, for Yang-Mills

theory, the formal proof showing that gravity amplitudes are obtained by the double-copy of

duality-satisfying numerators [14], did not rely on the existence of BCJ amplitude relations.

This suggest that a detailed study of an analog proof for three-algebra theories would be

rewarding, as identifying the subtle difference between the two cases might lead to a remedy

for the double copy of ABJM theory.

Novel BCJ relations for bi-fundamental theories of ABJM-type theories re-emerges upon

dimensional reduction down to D = 2. We obtain S-matrix elements of this theory by

dimensionally reducing the ABJM amplitudes to D = 2, mainly working with kinematics cor-

responding to alternating light-like momenta. This choice of kinematics allows us to obtain

two-dimensional tree amplitudes without encountering explicit collinear and soft divergences.

At six points, even though the reduced ABJM amplitudes are non-vanishing, the gravity am-

plitudes obtained from the BCJ double-copy manifestly vanish. At eight points, using the fact

that BLG partial amplitudes can be obtained as a linear combination of ABJM ones, we have

explicitly verified that the double-copy results derived from the BLG color-kinematics duality

vanish. The results are cross-checked using higher-dimensional supergravity amplitudes eval-

uated near D = 2 kinematics. These vanishings are expected in an integrable theory, where

(n > 4)-point amplitudes should vanish unless they are evaluated on kinematics correspond-

ing to a factorization channel. Moreover, we find that the four-point D = 2 ABJM amplitude

satisfies the Yang-Baxter equation. A corresponding D = 2 supergravity Yang-Baxter equa-

tion is obtained from the ABJM one via the double copy. Thus our results support the

existence of integrability in two-dimensional maximal N = 16 supergravity [22, 23]. Since the

observed vanishings are tree-level results, we find the same vanishings in any supersymmetric

truncation of supergravity. However, the check of the Yang-Baxter equation is a loop-level

result, and thus we only considered the N = 12 and N = 16 theories.

Note that while D = 2 BCJ amplitude relations can be found for ABJM theory beyond

six points, the corresponding double-copy result at eight points does not vanish, contrary to

the correct behavior of pure supergravity tree amplitudes. It is interesting to ask whether

such discrepancy is indicative of the need to have further structure imposed on the kinematic

numerators in order to obtain the correct supergravity amplitude. Certainly, further hidden

amplitude relations exists, supporting this idea. Another interesting question to ask is whether

or not the double-copy of ABJM theory is computing an amplitude in a deformed version of
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N = 12 supergravity. Note that while uniqueness of N > 8 supergravity theories in D = 3

has been proven [38], to our knowledge a similar statement has not been proven for D = 2.

At six points, we initially find that BLG theory has one more independent BCJ relation

than what is observed in ABJM theory. This halfway result is rather surprising, since the

six-point ABJM partial amplitudes can be obtained from the corresponding BLG ones via

supersymmetry truncation. Indeed, we find that there exists a hidden six-point relation in

ABJM theory that can be seen as a bonus relation arising from the improved asymptotic

behavior of the BCFW deformation. Interestingly, such improved behavior, and hence the

presence of bonus relations, are present beyond eight points, even though corresponding BCJ

relations in ABJM are absent. The precise structure of higher-multiplicity bonus relations,

and whether or not they can be related to the BCJ relations for BLG theory, is an interesting

open problem. Going beyond the BCJ and bonus relations there are further unexplored

structures in ABJM and BLG theories. By introducing a (states)×(partial amplitudes) matrix

we find that the true number of independent partial amplitudes is smaller that what the known

amplitude relations give. Surprisingly, up to eight points the counts of truly independent

partial amplitudes are the same for BLG and ABJM, suggesting a bijective relationship

between the partial tree amplitudes of the two theories, which do not follow from the respective

gauge group structures.

In this paper we have demonstrated the usefulness of the three-algebra formulation of

bi-fundamental matter in the context of scattering amplitudes. This suggests that a study

of more general amplitudes and theories that admit three-algebra structures may be fruitful.

An example close to the current considerations is to decouple one of the gauge fields in the

bi-fundamental theory. This gives a conventional gauge theory with a simple gauge group

and fundamental matter. Hence, one can also use three-algebra structure constants as a

bookkeeping device for quark amplitudes. The fact that the three-algebra BCJ relations are

only valid in D ≤ 3 dimensions is a peculiar feature. It should be better understood in from

the perspective that Chern-Simons-matter theory is a theory of membranes. In particular,

the (weak-weak) double-copy formula that relates BLG theory to supergravity could lead to

new insights in string theory.
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A Large-z behavior of Grassmannian integrals

Let us begin by analyzing the improved large-z behavior of the Grassmannian integral. We

begin by reviewing the result in the setup of orthogonal Grassmannian.

Under a BCFW deformation, the two selected spinors Λ1 and Λi are rotated by an SO(2)

matrix R(z), with RTR = 1. Under this deformation, the Grassmannian integral becomes∫
dC2k2∏k
i=1Mi(C)

δ(CCT )δ(CRΛ) =

∫
dC̃2k2∏k

i=1Mi(Ĉ(z))
δ(C̃C̃T )δ(C̃Λ) , (A.1)

where we have redefined C̃ = C ∗R and Ĉ = C̃RT . Thus the only z-dependence is now in the

minors of the Grassmannian integral, and they enter in two columns of the Grassmannian.

Defining C± ≡ C1 ± iCi:

Ĉ1(z) =
z

2
C+ +

1

2z
C−, Ĉi(z) = −zi

2
C+ +

i

2z
C− . (A.2)

One can easily see that any minor that contains either Ĉ1(z) or Ĉi(z) scales linearly in z

as z → ∞, with the exception for the case that both are present, such as M1, for which it

scales as a constant. Thus generically the z-dependence of the Grassmannian integral scales

as z−(i−1) at large z.

Since for n = 4, 6 the Bosonic delta functions of the Grassmannian completely fixes the

integral, there are no explicit integration to be done and the large-z analysis can be done

straight forwardly:

n = 4 : (1, 2)→ 1

z
, (1, 3)→ 1

z2
,

n = 6 : (1, 2)→ 1

z
, (1, 3)→ 1

z2
, (1, 4)→ 1

z3
. (A.3)

For n = 8 and beyond, the Grassmannian integral becomes a contour integral. Since the

integral is localized on the zeroes of the minor, the solution might alter the large-z dependence

of the remaining minors. As an example, consider the shifting (1, 5), the large-z behavior of

each minor is given as

M1(z) =
z

2
det[C+C2 · · ·C4] +

1

2z
det[C−C2 · · ·C4] ,

M2(z) = −iz
2

det[C2 · · ·C4C+] +
i

2z
det[C2 · · ·C4C−] .

(A.4)

One sees that when evaluated on the zero of M1(z) at z →∞, the leading O(z) pieces of the

minor M2(z) vanishes identically, i.e. at large z the zeroes of M1(z) and M2(z) degenerates,

and the overall large-z behavior becomes z−2 if the residue in question correspond to the zero

of M1(z) or M2(z). Thus we have

n = 8 : (1, 2)→ 1

z
, (1, 3)→ 1

z2
, (1, 4)→ 1

z3
(1, 5)→ 1

z2
. (A.5)
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On the other hand, if the number of integration is more than one, then the above analysis

does not hold either. From the formula (k − 2)(k − 3)/2 we see that at 10 points, more care

needs to be taken.
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