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Abstract

Differential cross sections of charged particles in inelastic pp collisions as a function ofpT have
been measured at

√
s= 0.9, 2.76 and 7 TeV at the LHC. ThepT spectra are compared to NLO-

pQCD calculations. Though the differential cross section for an individual
√

s cannot be described
by NLO-pQCD, the relative increase of cross section with

√
s is in agreement with NLO-pQCD.

Based on these measurements and observations, procedures are discussed to construct pp reference
spectra at

√
s= 2.76 and 5.02 TeV up topT = 50 GeV/c as required for the calculation of the nuclear

modification factor in nucleus-nucleus and proton-nucleuscollisions.

∗See Appendix A for the list of collaboration members

http://arxiv.org/abs/1307.1093v3


Energy Dependence of Charged-ParticlepT Distributions ALICE Collaboration

1 Introduction

The measurement of charged particle production in proton-proton collisions at high energy gives in-
sight into the dynamics of soft and hard interactions. Hard parton-parton scattering processes with large
momentum transfer are quantitatively described by perturbative Quantum Chromodynamics (pQCD).
Measurements at high transverse momenta (pT) at LHC-energies can help to constrain parton distri-
bution and fragmentation functions in current next-to-Leading-Order (NLO) pQCD calculations [1] of
charged particle production. As data at various

√
s become available at the LHC, a systematic com-

parison with current NLO-pQCD calculations over a large span of
√

s is now possible. However, most
particles are produced at low momentum, where particle production is dominated by soft interactions
and only phenomenological approaches can be applied (e.g. PYTHIA [2], PHOJET [3]) to describe the
data. A systematic comparison to data at different values of

√
s is an essential ingredient to tune these

Monte Carlo event generators.

Furthermore, the measurement of charged particle transverse momentum spectra in pp collisions serves
as a crucial reference for particle spectra in Pb–Pb collisions. To quantify final state effects due to
the creation of a hot and dense deconfined matter, commonly referred to as the Quark-Gluon Plasma
(QGP), pT spectra in the two collision systems are compared. The observed supression [4] in central
Pb–Pb collisions at LHC-energies at highpT relative to an independent superposition of pp collisions
is generally attributed to energy loss of the partons as theypropagate through the hot and dense QCD
medium. To enable this comparison a pp referencepT spectrum at the same

√
s with the samepT

coverage has to be provided. Similarly, a pp reference spectrum is also needed for p–Pb collisions to
investigate possible initial-state effects in the collision.

In this paper we present a measurement of primary charged particle transverse momentum spectra in
pp collisions at

√
s= 0.9,2.76 and 7 TeV. Primary charged particles are considered here as all charged

particles produced in the collision and their decay products, except for particles from weak decays of
strange hadrons. The measurement is performed in the pseudorapidity range|η |< 0.8 for particles with
pT > 0.15 GeV/c. Reference spectra for comparison with Pb–Pb spectra at

√
sNN = 2.76 TeV and p–Pb

spectra at
√

sNN = 5.02 TeV in the correspondingpT range up topT = 50 GeV/c are constructed.

2 Experiment and data analysis

The data were collected by the ALICE apparatus [6] at the CERN-LHC in 2009–2011. The analysis is
based on tracking information from the Inner Tracking System (ITS) and the Time Projection Chamber
(TPC), both located in the central barrel of the experiment.The minimum-bias interaction trigger was
derived using signals from the forward scintillators (VZERO), and the two innermost layers of the ITS,
the Silicon Pixel Detector (SPD). Details of the experimental setup used in this analysis are discussed
in [7].

The events are selected based on the minimum-bias trigger MBOR requiring at least one hit in the SPD or
VZERO detectors, which are required to be in coincidence with two beam bunches crossing in the ALICE
interaction region. In addition, an offline event selectionis applied to reject beam induced (beam-gas,
beam-halo) background. The VZERO counters are used to remove these beam-gas or beam-halo events
by requiring their timing signals to be in coincidence with particles produced in the collision. The
background events are also removed by exploiting the correlation between the number of the SPD hits
and the number of the SPD tracklets (short track segments reconstructed in the SPD and pointing to the
interaction vertex). The beam-gas or beam-halo events typically have a large number of hits in the SPD
compared to the number of reconstructed tracklets; this is used to reject background events. In total
6.8 M, 65 M and 150 M pp events at

√
s= 0.9, 2.76 and 7 TeV fulfill the MBOR trigger and offline

selection criteria. The typical luminosity for these data taking was about 1029 s−1cm−2. The average
number of interactions per bunch crossing varied from 0.05 to 0.1.
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In this analysis the focus is on inelastic (INEL) pp events originating from single-diffractive, double-
diffractive and non-diffractive processes. The INEL events are selected with an efficiencyεMBOR of
91+3.2

−1.0%, 88.1+5.9
−3.5% and 85.2+6.2

−3.0% for the three energies. The trigger efficiencies are determined [8]
based on detector simulations with PYTHIA6 [2] and PHOJET [3] event generators.

The primary event vertex is determined based on ITS and TPC information. If no vertex is found using
tracks in the ITS and the TPC, it is reconstructed from tracklets in the SPD only. Tracks or tracklets
are extrapolated to the experimental collision region utilizing the averaged measured beam intersection
profile in thex–y plane perpendicular to the beam axis.

An event is accepted if thez-coordinate of the vertex is within±10 cm of the center of the interaction
region along the beam direction. This corresponds to about 1.6 standard deviations from the mean of
the reconstructed event vertex distribution for all three energies. In this range, the vertex reconstruction
efficiency is independent ofz. The event vertex reconstruction is fully efficient for events with at least
one track in the pseudorapidity range|η |< 1.4 for all three energies.

Only tracks within a pseudorapidity range of|η | < 0.8 and transverse momentapT > 0.15 GeV/c are
selected. A set of standard cuts based on the number of space points and the quality of the track fit in
ITS and TPC is applied to the reconstructed tracks [5].

Efficiency and purity of the primary charged particle selection are estimated using simulations with
PYTHIA6 [2] and GEANT3 [9] for particle transport and detector response. The overallpT-dependent
efficiency (tracking efficiency× acceptance) is 40–73%, 36–68% and 40–73% at

√
s= 0.9, 2.76 and

7 TeV. At
√

s= 2.76 TeV the overall efficiency is lower than at
√

s= 0.9 and 7 TeV due to the smaller
number of operational channels in the SPD. Contamination ofsecondary tracks which passed all selection
criteria amounts to 7% atpT= 0.15 GeV/c and decreases to∼ 0.6% for pT> 4 GeV/c. In addition, the
contribution from secondary tracks originating from weak decays of strange hadrons was scaled up by a
factor of 1–1.5 (pT-dependent) to match the contribution in data. The secondary tracks were subtracted
bin-by-bin from thepT spectra.

The pT resolution is estimated from the space point residuals of the track fit. It is verified by the width
of the invariant mass peaks ofΛ, Λ and K0

s, reconstructed from their decays into two charged parti-
cles. The relativepT resolution is 3.5%, 5.5% and 9% at the highestpT of 20, 32 and 50 GeV/c at√

s = 0.9, 2.76 and 7 TeV, respectively. From invariant mass distributions Minv(pT) of Λ and K0
s, the

relative uncertainty on thepT resolution is estimated to be≈20% for all three energies. To account
for the finite pT resolution of tracks, correction factors to the spectrum for pT > 10 GeV/c are derived
using an unfolding procedure. The determination of the correction factors is based on measured tracks
without involving simulation. The choice of the unfolding procedure is based on the observation that
pT smearing has a small influence on the measured spectrum. As input to the procedure a power-law
parametrization of the measuredpT spectrum forpT > 10 GeV/c is used. This parametrization is folded
with the pT resolution obtained for a givenpT from the measured track covariance matrix. ThepT de-
pendent correction factors are extracted from the ratio of the input to the folded parametrization and are
applied (bin-by-bin) to the measuredpT spectrum. It was checked that the derived correction factors
are the same when replacing the measured with the correctedpT distribution in the unfolding procedure.
The correction factors depend on

√
sdue to the change of the spectral shape and reach 2%, 4% and 6.5%

at
√

s= 0.9, 2.76 and 7 TeV for the highestpT. The systematic uncertainty of the momentum scale is
|∆(pT)/pT|< 0.01 atpT = 50 GeV/c, as determined from the mass difference betweenΛ andΛ and the
ratio of positively to negatively charged tracks, assumingcharge symmetry at highpT.

A summary of the systematic uncertainties is given in Table 1. The systematic uncertainties on the event
selection are determined by changing the lower and upper limits on thez-coordinate of the vertex. Track
selection criteria [5] are varied to determine the corresponding systematic uncertainties resulting in a
maximal contribution of 4.3–5.5% forpT < 0.6 GeV/c. The systematic uncertainties on the tracking
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√
s 0.9 TeV 2.76 TeV 7 TeV

Event vertex selection 1.2% 2.3% 0.5%
Track selection 2.5–5.5% 2.3–5.1% 1.9–4.3%
Tracking efficiency 5% 5% 5%
pT resolution correction <1.7% <1.9% <2.6%
Material budget 0.2–1.5% 0.2–1.5% 0.2–1.5%
Particle composition 1–2% 1–2% 1–2%
MC event generator 2.5% 2–3% 2–3.5%
Secondary strange particles<0.3% <0.3% <0.3%
Total pT dependent 6.7–8.2% 6.4–8.0% 6.6–7.9%
Normalization uncertainty +5.1/-4.0%±1.9% ±3.6%

Table 1: Contribution to the systematic uncertainties on thepT spectra.

efficiency are estimated from the difference between data and simulation in the TPC-ITS track matching
efficiency. The systematic uncertainties related to thepT resolution correction are derived from the
unfolding procedure including a relative uncertainty on the pT resolution, and reach maximum values at
the highestpT covered. The systematic uncertainties on the material budget (∼ 11.5 %X0 [10], whereX0

is the radiation length) are estimated by changing the material density (conservatively) by±10% in the
simulation, contributing mostly atpT < 0.2 GeV/c. To assess the systematic uncertainties on the tracking
efficiency related to the primary particle composition the relative abundance ofπ, K, p was varied by
30% in the simulation; they contribute mostly atpT < 0.5 GeV/c. The Monte Carlo (MC) event generator
dependence was studied using PHOJET as a comparison, with the largest contribution atpT < 0.2 GeV/c.
The yield of secondary particles from decays of strange hadrons has been varied by 30% to determine
the corresponding uncertainty of maximum 0.3% atpT ≈ 1 GeV/c. The totalpT dependent systematic
uncertainties for the three energies amount to 6.7–8.2%, 6.4–8.0% and 6.6–7.9% and are shown in the
bottom panel of Figure 1. They are dominated by the systematic uncertainties on the tracking efficiency.
There are also comparable contributions related to the track selection (pT < 0.6 GeV/c) andpT resolution
correction at the highestpT covered.

The systematic uncertainties on the normalization are related to the minimum bias nucleon-nucleon cross
section (σNN

MB ) determination [8] and amount to +5.1/-4.0%,±1.9% and±3.6% for pp at
√

s = 0.9 TeV,
2.76 TeV and 7 TeV, respectively.

The differential cross section d2σch/dηdpT is calculated as d2σch/dηdpT = σNN
MBOR

×d2NMBOR
ch /dηdpT

with d2NMBOR
ch /dηdpT being the per event differential yield of charged particlesin minimum bias colli-

sions.σNN
MBOR

is determined based on van-der-Meer scans [8] asσNN
MBOR

= 55.4±1.0 (62.2±2.2) mb at√
s= 2.76 (7) TeV. At

√
s= 0.9 TeV van-der-Meer scans were not performed andσNN

MBOR
= 47.8+2.5

−3.0 mb

is obtained based on detector simulations using the INEL cross sectionσNN
INEL = 52.5+2

−3.3 mb [8]. σNN
INEL

includes the UA5 measurement [11] and re-analysis of the extrapolation to low diffractive masses [12].

3 Results

The differential cross section in INEL pp collisions as a function of pT is shown in Figure 1 for all
three measured collision energies. At highpT a clear evolution of the slope from

√
s= 0.9 to 7 TeV

can be observed. A NLO-pQCD calculation [1] forpT > 3 GeV/c is compared to the spectra. The
calculation shows a similar evolution of the high-pT dependence with

√
s but overpredicts the data by a

factor two [10] [13]. The low systematic uncertainties demonstrate the accuracy of the measurements for
all energies over the fullpT range.

Though thepT dependence of the cross section for a single
√

s is not well described by NLO-pQCD,
the relative dependence onpT of cross sections of two collision energies is described much better. Fig-
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Fig. 1: (color online) Top: Differential cross section of charged particles in INEL pp collisions at
√

s= 0.9, 2.76
and 7 TeV as a function ofpT compared to a NLO-pQCD calculation [1] at the same energy. Only statistical un-
certainties are shown. Bottom: Systematic uncertainties as a function ofpT for all three energies. The uncertainty
on the normalization (compare Table 1) of the spectra is not included.
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Fig. 2: (color online) Top: Ratio of differential cross sections ofcharged particles in INEL pp collisions at different
collision energies as a function ofpT. Grey boxes denotepT dependent systematic uncertainties. Normalization
uncertainties are not shown (see text for details). The histograms show the same ratio determined from NLO calcu-
lations. Bottom: Ratio of data and NLO calculations derivedfrom upper panel. A variation of the renormalization
and factorization scale of the NLO calculation gives a systematic uncertainty on the double ratio of 0.5–23.6 % for
0.9 TeV / 2.76 TeV, 1.0–37.8% for 0.9 TeV / 7 TeV and 2.4–12.3% for 2.76 TeV / 7 TeV.
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ure 2 shows the ratio between the differential cross sectionin INEL pp collisions at
√

s= 2.76 to 7 TeV,
0.9 to 2.76 TeV and 0.9 to 7 TeV as a function ofpT in comparison to the same ratio calculated with
NLO-pQCD. The totalpT dependent systematic uncertainties on the ratios are evaluated taking into ac-
count correlated contributions, and amount to 8.1–9.8%, 7.8–9.8% and 7.9–9.9% for 0.9 TeV / 2.76 TeV,
0.9 TeV / 7 TeV and 2.76 TeV / 7 TeV. The corresponding normalization uncertainties amount to
+5.4%/− 4.4%,+6.2%/− 5.4% and±4.1%, and are calculated assuming that the normalization un-
certainties on thepT spectra (Table 1) are uncorrelated. In all three ratios goodagreement between data
and NLO-pQCD calculations is found, which can be seen in the double ratio of data and NLO-pQCD for
the three energy ratios in the lower panel of Figure 2.

4 Construction of a pp reference for
√

s= 2.76TeV

For the determination of the nuclear modification factor

RAA (pT) =
d2NAA

ch /dηdpT

〈TAA 〉 d2σpp
ch/dηdpT

(1)

in heavy-ion collisions a well described pp reference d2σpp
ch/dηdpT at the same center-of-mass energy

up to highpT is essential.NAA
ch describes the charged particle yield per event in nucleus-nucleus col-

lisions and〈TAA 〉 is the average nuclear overlap function [4] [5]. The statistics in the measurement of
d2σpp

ch/dηdpT for
√

s= 2.76 TeV reported in this paper allowspT = 32 GeV/c to be reached. In order to
extrapolate to higherpT, the measured cross section needs to be parametrized.

As can be seen in Figure 1 forpT > 10 GeV/c the pp spectrum at
√

s= 2.76 TeV shows a clear power-
law dependence onpT. To constrain the parametrization better by including datapoints at lowerpT,
d2σpp

ch/dηdpT has been parametrized by a so-called modified Hagedorn function [14]

1
2π pT

d2σpp
ch

dηdpT
= A

pT

mT

(

1+
pT

pT,0

)−n

(2)

wheremT denotes the transverse massmT =
√

m2
0+ p2

T, with m0 = 140 MeV/c assumed for all tracks.

For smallpT, the term
(

1+ pT
pT,0

)−n
behaves like an exponential function with an inverse slope parameter

of pT,0/n while for largepT the Hagedorn function behaves like a power-law function.

To determine the extrapolation to highpT, d2σpp
ch/dηdpT is parametrized forpT > 5 GeV/c. For

5 GeV/c < pT < 10 GeV/c the exponential part of the Hagedorn function acts as a correction term
to the power-law part in the function.

Figure 3 shows the differential cross section in INEL pp collisions as a function ofpT for
√

s= 2.76 TeV
together with the parametrization forpT > 5 GeV/c. The ratio between data and parametrization in
the lower panel demonstrates the good agreement of the parametrization with the data. The grey band
indicates the totalpT dependent systematic uncertainty of the measured spectrumas presented in Table 1.

To estimate the systematic uncertainty of the parametrization and extrapolation, the lower boundary of
the fit range of the Hagedorn parametrization is varied between pT = 3 GeV/c andpT = 7 GeV/c, while
the upper boundary is fixed to the highest data point measuredat pT = 32 GeV/c. Together with the
systematic uncertainties on the measured differential cross section as shown in Table 1 this results in
a total systematic uncertainty on the reference at

√
s= 2.76 TeV of 6.4% for lowpT up to 19% at

pT = 50 GeV/c.

The final pp reference for the determination ofRAA at
√

s= 2.76 TeV is constructed from the measured
data points up topT = 5 GeV/c and the parametrization forpT > 5 GeV/c. Statistical uncertainties in
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Fig. 3: (color online) Top: Differential cross section of charged particles in INEL pp collisions at
√

s= 2.76 TeV
as a function ofpT together with the parametrization (pT > 5 GeV/c) described in the text. Bottom: Ratio of data
to parametrization. The grey band indicates the totalpT dependent systematic uncertainty of the data, open circles
show data points only used for the evaluation of the systematic uncertainty of the parametrization.
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discussed in the text. The grey band indicates the totalpT dependent systematic uncertainty as discussed in the
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the extrapolated part of the reference are obtained from thecovariance matrix of the parametrization.
The systematic uncertainties on the spectrum are propagated to the reference by application of the full
extrapolation procedure using the measured data points shifted up and down by the total systematic
uncertainty.

This reference is compared to alternative measurements andapproaches. Figure 4 shows the ratio be-
tween alternative pp references and the reference at

√
s= 2.76 TeV presented in this paper. Above

pT= 20 GeV/c, all references agree within the systematic uncertainties. Simulations with the PYTHIA8
generator [15] agree with the new reference forpT > 15 GeV/c. Below pT= 20 GeV/c, the shape of the
PYTHIA8 spectrum is similar to the measured reference. A pp reference presented by the CMS collab-
oration [16] agrees best forpT < 6 GeV/c. The overall normalization systematic uncertainties±1.9%
(±6%) for ALICE (CMS) are not included in the comparison. A reference based on an interpolation be-
tween measured yields at

√
s= 0.9 and 7 TeV as discussed in [4] does not agree with the new reference

for pT > 6 GeV/c. Finally a scaling of the measured differential cross section in INEL pp collisions at√
s= 7 TeV with the ratio of pQCD calculations (as shown in Figure 2)

d2σpp
ch/dηdpT |2.76TeV=

d2σpp
ch/dηdpT |NLO,2.76TeV

d2σpp
ch/dηdpT |NLO,7TeV

×d2σpp
ch/dηdpT |7TeV (3)

agrees well in shape and normalization with the measured data over a wide range inpT. The systematic
uncertainty of the new reference is indicated in Figure 4 as agrey band for comparison.

5 Construction of a pp reference for
√

s= 5.02TeV

Similar to RAA , a nuclear modification factorRpA in proton-lead collisions has been studied [17] at√
s= 5.02 TeV. No measured pp reference is available at this collision energy. Due to the asymmetric

p-Pb collision system, theη coverage of the detector is shifted with respect to the symmetric pp or Pb–
Pb collisions. To obtain a maximum overlap between the pp andp-Pb systems, a pp reference is needed
for |η | < 0.3. To construct the pp reference at this energy, different methods for threepT-ranges are
combined.
0.15< pT < 5 GeV/c: As NLO-pQCD becomes unreliable for smallpT, the measured differential cross
sections for pp collisions of

√
s = 2.76 and 7 TeV are interpolated for a givenpT, assuming a power-law

9
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Fig. 5: (color online) Top: Constructed pp references for
√

s = 2.76 and
√

s = 5.02 TeV. Bottom: Comparison
of NLO-scaled reference and parametrization. The parametrization is used forpT > 20 GeV/c. The grey band
indicates the totalpT dependent systematic uncertainty as discussed in the text.
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behaviour of the
√

sdependence of the cross section. Here the maximum relative systematic uncertainty
of the underlying measurements has been assigned as systematic uncertainty.
5< pT < 20 GeV/c: The measured differential cross section for pp collisionsat

√
s= 7 TeV is scaled to√

s= 5.02 TeV using the NLO-pQCD calculations (Equation 3). Systematic uncertainties are determined
by taking into account differences to an interpolated reference as well as to a scaled reference using
µ = pT/2 andµ = 2pT as alternative choices for the renormalization and factorization scales.
pT > 20 GeV/c: The NLO-scaled reference is parametrized in the range 20< pT < 50 GeV/c by a
power-law function and the parametrization is used.

The constructed pp reference for
√

s= 5.02 TeV is shown in Figure 5 together with the reference for√
s = 2.76 TeV discussed above. ForpT > 20 GeV/c the data points show the NLO-scaled reference

which is parametrized by a power-law function (line) to obtain the final reference at
√

s= 5.02 TeV. In
the bottom part of the figure a comparison of the NLO-scaled reference and the parametrization is shown.

6 Summary

Differential cross sections of charged particles in inelastic pp collisions as a function ofpT have been
presented for

√
s= 0.9, 2.76 and 7 TeV. Comparisons of thepT spectra with NLO-pQCD calculations

show that the cross section for an individual value of
√

s cannot be described by the calculation. The
relative increase of cross section with

√
s is well described by NLO-pQCD, however. The systematic

comparison of the energy dependence can help to tune the model dependent ingredients in the calculation.
Utilizing these observations and measurements proceduresare discussed to construct pp reference spectra
at
√

s= 2.76 (|η |< 0.8) and 5.02 TeV (|η |< 0.3) in the correspondingpT range of charged particlepT

spectra in Pb–Pb and p–Pb collisions measured by the ALICE experiment. The reference spectra are used
for the calculation of the nuclear modification factorsRAA [5] andRpA [17]. The systematic uncertainties
related to the pp reference were significantly reduced with respect to the previous measurement by using
the pT distribution measured in pp collisions at

√
s= 2.76 TeV.
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ropean Particle Physics Latin American Network) Stichtingvoor Fundamenteel Onderzoek der Materie

11



Energy Dependence of Charged-ParticlepT Distributions ALICE Collaboration

(FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Re-
search Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority
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24 Dipartimento di Fisica dell’Università ‘La Sapienza‘ andSezione INFN, Rome, Italy
25 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
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55 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
56 Institute of Physics, Bhubaneswar, India
57 Institute of Space Science (ISS), Bucharest, Romania
58 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
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