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Abstract
We show how general initial conditions for small field inflation can be ob-
tained in multi-field models. This is provided by non-linear angular friction
terms in the inflaton that provide a phase of non-slow-roll inflation before the
slow-roll inflation phase. This in turn provides a natural mechanism to star
small-field slow-roll at nearly zero velocity for arbitrary initial conditions. We
also show that there is a relation between the scale of SUSY breaking (

√
f )

and the amount of non-gaussian fluctuations generated by the inflaton. In
particular, we show that in the local non-gaussian shape there exists the re-
lation

√
f = 1013GeV

√
fNL. With current observational limits from Planck,

and adopting the minimum amount of non-gaussian fluctuations allowed by
single-field inflation, this provides a very tight constraint for the SUSY break-
ing energy scale

√
f = 3 − 7 × 1013 GeV at 95% confidence. Further limits,

or detection, from next year’s Planck polarisation data will further tighten this
constraint by a factor of two. We highlight that the key to our approach is
to identify the inflaton with the scalar component of the goldstino superfield.
This superfield is universal and implements the dynamics of SUSY breaking
as well as superconformal breaking.

1 Introduction
Recent constraints on inflation by the Planck satellite [1,2] have provided new insight on the properties of
the inflaton. We know that the generation of non-gaussian fluctuations has been restricted significantly,
with no detection by Planck and only upper limits reported (for the local case Planck reports fNL < 14–
at 95% confidence). Further, constraints on the non-detection of the tensor-to-scalar ratio (r < 0.1) have
served to eliminate many candidates for the inflaton. In fact, the above “non-detections" already point
toward a model for the inflaton in which perturbations were nearly Gaussian and most likely generated
by a single-field slow-roll scalar with canonical kinetic energy; further, it seems likely the field is in
the so-called "small-field" class with displacement of ∼ M (hereafter M is the Planck mass scale) to
produce the required e-folds to explain flatness. An excellent review on this class of models can be
found in Ref. [3, 4].

One very interesting question to be answered after the Planck results is how to set-up sufficiently
general initial conditions for the inflaton in the "small-field" class, in other words: how can we have
inflation to start with nearly zero velocity at the time it will start slow-rolling in a flat potential? Here we
present a general mechanism, inspired by SUSY, to do so.
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Unless one has a single-field slow-roll inflaton with canonical kinetic energy, nearly all other mod-
els produce measurable amounts of non-gaussianity [5–14] with values of the parameter that measures
non-gaussianity fNL >> O(1). Even the single-field slow-roll inflaton will produce values of non-
gaussianity at the level of the tilt (∼ ns − 1) which might be detected in futuristic 21cm experiments
that measure all modes in the current horizon. The nice feature of being able to measure non-gaussian
fluctuations is that it provides all the correlators of the inflaton, thus one could construct, from observa-
tions, the effective lagrangian of the inflaton itself, very much in the fashion that is done in high-energy
physics at accelerators like the LHC for the standard model of particles and beyond.

In the minimal-inflation [15–17] scenario the field X that drives the exponential expansion of the
Universe can often be represented at low energies by a Goldstino composite GG. Our main motivation
to propose to identify the inflaton field with the order parameter of supersymmetry breaking is guided by
the fact that, independently of the particular microscopic mechanism driving supersymmetry breaking (in
what follows we will restrict ourselves to F -breaking ) we can define a superfield X whose θ component
at large distances becomes the “Goldstino" (see [18, 19]). In the UV the scalar component x of X is
well defined as a fundamental field while in the IR, once supersymmetry is spontaneously broken, this
scalar field may be expressed as a two Goldstino state. The explicit realisation of x as a fermion bilinear
depends on the low-energy details of the model. In models of low-energy supersymmetry the realization
of x as GG can be implemented by imposing a non linear constraint in the IR for the X field of the
type X2 = 0. In our approach to inflation we use one real component of the UV x field as the inflaton.
We assume the existence of a F-breaking effective superpotential for the X-superfield and we induce a
potential for x from gravitational corrections to the Kähler potential.

In this paper we show that for generic trajectories of the minimal inflation model there is a level
of generated non-gaussian fluctuations that depends directly on the scale of SUSY breaking. Therefore
the further the value of non-gaussianity in the sky is constraint by current CMB experiments like Planck,
the better we can constraint the SUSY energy scale and therefore make predictions for the feasibility of
discovering SUSY at the LHC.

As a final observation we would like to make several remarks to highlight the similarities and
differences between our approach and other attempts to identify the inflaton as well as the underlying
dynamics of inflation. The key to our approach is to identify the inflaton with the scalar component of
the goldstino superfield. This superfield is universal and implements the dynamics of SUSY breaking as
well as superconformal breaking. In our approach SUSY breaking is unavoidably linked to inflation and
the constraints we get for the SUSY breaking scale are partially dictated by requiring a SUGRA vacuum
with zero cosmological constant. Finally our approach can be understood as similar to Higgs inflation
with the important difference of using what could be understood as the Higgs of the SUSY breaking.

2 Setup
In order to study under what conditions the inflaton in our model will produce general initial conditions
for small-field slow-roll inflation, we generate randomly 1000 trajectories for different starting points in
the inflation potential (see Fig. I).

Let us briefly recall the form of the inflation potential and how inflationary trajectories are found.

In our minimal inflationary scenario [15, 16] we use only the Ferrara-Zumino (FZ) multiplet to
drive inflation. The scalar potential in the Einstein frame is given by:

VE = e
K
M2 (− 3

M2
WW̄ +GXX̄DXW DX̄W̄ ), (1)

where the Kähler metric and the Kähler covariant derivatives are given by:

GXX̄ = ∂X ∂̄X K(X, X̄) DW (X) = ∂X W (X) +
1

M2
∂X KW (X). (2)
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In our approach we make an explicit, but reasonably generic choice for K and W .

For us the inflaton superfield is the FZ-chiral superfield X = z+
√
2 θψ+θ2F , the order parameter

of supersymmetry breaking. We will consider the simplest superpotential implementing F-breaking of
supersymmetry. More elaborate superpotentials often reduce to this one once heavy fields are integrated
out.

W = fX + f0M (3)

with f0 some constant to be fixed later by imposing the existence of a global minimum with vanishing
cosmological constant and with f the supersymmetry breaking scale f = µ2

susy.

We are interested in sub-planckian inflation, and not in the ultraviolet complete theory that should
underlie the scenario. Hence we simply parametrize the subplanckian theory in terms of the previous
superpotential, and a general Kähler potential whose coefficient will be taken of order one. We try to use
our ignorance of the ultraviolet theory to our advantage. The Kähler potential K we consider is:

K = XX̄+
a

2M
(X2 X̄+c.c.)− b

6M2
(XX̄)2− c

9M2
(X3X̄+c.c.)+. . . −2M2 log(1+

X + X̄

M
) (4)

Which can be understood as a taylor series expansion of all terms up-to 1/M2 plus a term (the
log) that breaks R-symmetry. In our case, the scalar fields form a complex scalar field, the partner
of the goldstino field. Our complex field can be written as z = M(α + iβ)/

√
2. The potential is

V (z, z̄) = f2V (α,β), since we only include for simplicity two scales, the Planck scale M and the
supersymmetry breaking scale f1/2. In supergravity models, the gravitino mass is up to simple numerical
factors given by m3/2 ∼ f/M . It is convenient to write down dimensionless equations of motion such
that time is counted in units of f−1/2.

The system of differential equations for the trajectory becomes:

α�� + 3
a�

a
α� +

1

2
∂α log g(α

�2 − β�2) + ∂β log gα
�β� + g−1V �

α = 0

β�� + 3
a�

a
β� +

1

2
∂β log g(β

�2 − α�2) + ∂α log gα
�β� + g−1V �

β = 0

a�

a
=

H

m3/2
=

1√
3

�
1

2
g(α�2 + β�2) + V (α,β)

�1/2

(5)

The coefficients f0, a, b, c will be chosen appropriately so that we obtain flat directions. For our
purposes it is convenient to chose a = 0, as this guarantees the existence of a global minimum. f0 will
be adjusted such that the global minimum is at a vanishing value of the potential. So the model only has
b, c as free parameters, which we try to keep of order one to avoid fine-tunning in the potential.

From the collection of potentials considered, not all will show flat directions where it is possible
to inflate during enough e-foldings (> 55) for any choice of the microscopic parameters f0, a, b, c. We
will restrict to cases where the potential has a global minimum with vanishing cosmological constant and
thus we fix the value of the minimum at 0 tuning the value of f0.

We can now compute trajectories and attractors in more detail using the equations above. An
example of the potential is shown in Fig. I for values of the parameters a = 0, b = 1, c = −1.5. Note
that there is a flat direction where slow-roll takes place. We elaborate on this in the next section.

3 General initial conditions for small-field inflation
There are a number of important properties of the system of equations 5 and its solutions that are shared
by large classes of supersymmetric theories. In our approach, the inflaton is always the scalar component
of the goldstino superfield, and the Kähler potential and the superpotential completely determine its dy-
namics. For a multifield inflationary theory, with a non-canonical kinetic term, the dynamical equations
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Fig. IV: Left panel: polar plot of the potential used to compute inflationary trajectories. Right panel: contour plot
version of the left panel (θ (y-axis) range from 0 to π/2) with some inflationary trajectories over-plotted.

trajectories determined by the extrema of the potential with respect to the angular variable ∂θ V = 0.
From the angular part of the slow roll equations one sees easily that those constant θ = θ0 satisfying the
extremum condition are exact solutions to the slow roll equations. Each of those values is a potential
attractor. General trajectories will join one of this attractors and then the ρ will roll to the origin as in
single field inflation theories. The number of e-folding generated will depend, of course, on the initial
conditions and the parameters of the model, but it is important to remark that in most models in this
approach it is typical to obtain a number of order ten e-foldings. The number of effective attractor
trajectories depends on the potential and the metric.

If we analyse the full set of second order equations, hence without the slow roll conditions, the
conclusions are rather similar. The attractor-like trajectories, i.e. exact solutions with θ = θ0 constant
are also characterised by the extremal point of the potential with respect to the angle. Some examples
can be found in the figures below. For some values of the parameters of our model, we plot the potential
in polar coordinates. It is easy to see attractor trajectories in the three dimensional plot in Fig. I, and also
the corresponding valleys of attraction in Fig. IV, which portrays the same potential but in a contour plot.

In the next section we explore some explicit examples and trajectories with reasonable number of
efoldings. The general remarks just presented of course apply to the cases studied below.

4 Examples
As explained before, we always need to set a = 0, so we concentrate on the values of b and c. From
a Monte-Carlo simulation that samples more that 1000 values for b and c we have found that the most
favourable values to produce enough e-folds is when b ∼ −c , so from now on we focus on this case.
This is the case already depicted in Fig. I. Note the main features of the potential: a very steep part at
values of the field ∼ M , a flat part at < M and finally a global minimum. Let us start with a trajectory
where the field starts near the flat part. This is shown in Fig. II. the left panels shows the trajectory in the
plane α,β while the right panel shows the value of the equation of state p/ρ, recall that slow-roll implies
p/ρ ∼ −1 ∼ (� − 1) where � is the first slow-roll parameter, as a function of the number of e-folds (τ ).
First, the trajectory is very flat (note the small values of p/ρ on the y-axis) but last only for about 20
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Fig. V: Dark-red thick line shows the prediction for our model in the plane r− ns (plot adapted from Planck team
release).

e-fold, enough to explain the observed universe but not its flatness.

So we now explore the case when the field starts from the steeper part at positions of the field
∼ M and with arbitrary position in velocity and direction. An example is shown in Fig. III. First, note
that despite the initial steepness of the potential and arbitrary velocity, the field is slowed-down by the
non-linear friction terms at the turns. This period os “slashing" ends into the field reaching nearly zero
velocity at the beginning of the flat part of the potential. From the right panel we observe that this early
phase provides a few e-folds before entering the slow-roll phase that last for about 25 e-folds. The field
then exits slow-roll and enters a final phase of no slow-roll adding and extra 10 e-folds. In total we obtain
the required 45 e-folds to explain flatness and the required slow roll phase to explain the observed slope
of the primordial power spectrum ns = 0.96± 0.007.

This is typical of what we found in the Monte-Carlo simulation for arbitrary trajectories starting
at positions of the field ≥ M . Note that because we do not have control on how the potential behaves
beyond values of the field of M , it is important that even for very steep values the non-linear friction is
efficient at slowing down the inflaton and providing initial conditions for slow-roll.

Thus general trajectories in our model look very much like the one in Fig. III. Note that obtaining
order 50 e-folds is not difficult with values of b, c order one (as in Fig. I). More e-folds can be obtained
if the values of b, c are tune in one part in 100, although this does not seem to be necessary. We note that
further fine-tuning of the parameters will not lead to any improvement of the model.

We show the general prediction of our model for the ratio of tensor-to-scalar perturbations in
Fig. V. As expected [20], because of the small displacement of the field (Δα,β ∼ 0.2 − 0.3M ), r is
small ∼ 0.001.

5 Non-gaussianities

We now answer the following question: will non-gaussian fluctuations be generated by our model? We
first note that the kinetic term is always non-canonical, but weakly so for α,β < 1 as can be seen from
the choice of the Kahler potential. So although our inflaton is a “pion" we will not generate any non-
gaussianity from this source. The only place where one could generate measurable non-gaussianity is
from those situations in which the inflaton turns.

We can estimate the value of the non-gaussian fluctuations following [21]. The overall level of

7



Initial conditions for inflation and the energy scale of SUSY-breaking from...

non-gaussianity is given by their Eq. 17, which reads

f int
NL = α(ν)

1

P
1/2
ξ

�−V ���

H

��
θ̇

H

�3

(10)

where V ��� is the third derivative of the potential at the turn, θ̇ is the angular velocity of the inflaton as
it turns, Pξ is the power spectrum of the fluctuations and α(ν) is a numerical factor (which we compute
using [22]).

In order to estimate the different terms in the above equation in our models we proceed as follows:
we generate 1000 random trajectories for different values of our potential, but limited to the case where
c = −g × b, where g is a number between 1 − 2, as we know by previous experience that this is the
case when the potential can harbour trajectories with O(40 − 50) efolds; we also limit b, c to have the
freedom to vary only in the first decimal place as to not produce fine tunning of the potential. Finally, the
trajectory are all started with random values for both position and velocity at different values of the two
real fields α,β. A typical trajectory is shown in Fig. III. Note that the interesting part of the trajectory
where non-gaussianities can be generated are at very large scales, comparable to the horizon scale today
and at scales smaller than dwarf galaxies, i.e. very small scale perturbations. This behaviour is typical
of our model for most trajectories.

From this set of trajectories we compute the distribution of θ̇ and V ���. This is shown in Fig. VI.
We can now evaluate Eq. 10 noting that α(ν) ∼ 10, θ̇

H ∼ 10, P 1/2
ξ = 6× 10−9 and −V ���

H ∼ 5(f/M2),
thus the relation between the SUSY breaking scale and the level of non-gaussianity reads

�
f =

√
fNL

105
M (11)

Using current observational limits from Planck [2] (fNL < 14), and adopting the minimum amount of
non-gaussian fluctuations allowed by single-field inflation [23], provides a very tight constraint for the
SUSY breaking energy scale

√
f = 3− 7× 1013 GeV at 95% confidence.

In passing we note that the turns will generate isocurvature fluctuations at a level similar to the
one needed to explain the observed power asymmetry at large scales [24, 25]; we will elaborate on this
subject in a future publication.

6 Conclusions
We have presented in this article some more quantitative phenomenological findings for our proposal
to identify the inflaton with the order parameter of SUSY breaking. We are motivated by finding a
physical candidate for the inflaton, which seems to be the paradigm supported by current cosmological
observations [1] to explain the origin, size, flatness and perturbations of the Universe. The model is
successful at answering questions about the fundamental physics behind inflation. In particular:

1. Why does the inflaton start the slow-roll phase with nearly zero velocity? Because the non-linear
friction term (loss of angular momentum) provided by the fact that we have broken R-symmetry;
this produces a "slashing" phase.

2. Why does the universe inflate ∼ 50 e-folds? Because the inflaton rolls for about one Planck mass.
3. Why is the value of the CMB fluctuations the observed one? Due to the fact that in this model the

fluctuations are proportional to the SUSY breaking scale, so thus the value of the fluctuations on
the sky are linked to the energy chosen by nature to break SUSY.

4. Why does inflation end? At low energies the inflaton "integrates itself out" and manifests as a
fermi gas of goldstinos, thus not behaving anymore as a scalar field.
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Fig. VI: The probability distribution for the values of θ (angle of the turn), V ��� (third derivative of the potential)
and t (time it takes to turn) as derived from 1000 random trajectories generated for different initial conditions
and values of the potential that generate at least 45 e-folds. These values are used to compute the amount of
non-gaussianity generated in the trajectories.

Our model makes a very precise prediction: that the scale of SUSY breaking has to be at ∼ 1013

GeV. This can be tested in the next LHC run starting in 2015. This relatively high energy scale implies
that the possibility of observing SUSY at the LHC is slim but not completely excluded. The details will
depend on the explicit parameters chosen to make contact with the low energy world (∼ 10 TeV).
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