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 Abstract–The LHCb experiment at CERN’s Large Hadron 

Collider (LHC) searches for New Physics through precision 
measurements in the domain of heavy flavour physics, exploiting 
in particular the large B hadron production. After a short 
introduction to the requirements of the LHCb detector, this 
paper reviews the operational strategy during the first three 
years of data taking. The focus is on the detector performance 
together with a description of several fundamental system 
developments which emerged in this period and which allowed 
LHCb to venture well beyond its design parameters and to 
extend the physics program. With the inclusion of a solid charm 
physics program and electroweak and soft QCD measurements in 
the forward direction, LHCb has established itself as an excellent 
forward general purpose detector at the LHC. Running at twice 
the design luminosity, LHCb has been able to collect an 
integrated luminosity of more than 3 fb-1 at an operational 
inefficiency of less than 4% in the first three years. 

I. INTRODUCTION 

HE LHCb experiment [1] is located at one of the four 
interaction points on the Large Hadron Collider (LHC) at 

CERN. Its prime discovery potential for New Physics lies in 
measuring the effects of new physics in CP violation and in 
rare decays. Deviations from the Standard Model predictions 
are expected to manifest themselves most visibly in processes 
which are strongly suppressed in the Standard Model, such as 
those which are predominantly mediated by loop diagrams and 
involving flavor changing neutral currents. The virtual effects 
in the loop diagrams allow LHCb to increase the sensitivity to 
new physics in a mass range far beyond the center-of-mass 
energy scale accessible in direct searches at the LHC. In that 
respect the LHCb experiment is complementary to the 
searches by the Atlas and the CMS experiments.  

The initial aim of the LHCb experiment was to perform 
precision measurements in the very large and diverse domain 
of processes involving B hadrons. In the proton-proton 
collision mode, the LHC accelerator is to a large extent a 
heavy flavor factory producing over 100.000 bbത–pairs every 
second at the LHCb design luminosity of 2x1032 cm-2s-1, 
giving the experiment access to all quasi-stable b-flavored 
hadrons.  

Together with the progressive commissioning strategy of 
the LHC accelerator in the first years of operation and thanks 
to a very good detector, flexible trigger, high data acquisition 
capacity and powerful offline processing, LHCb has been able 
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to expand the physics program. The charm production cross-
section is 20 times larger than the beauty cross-section, and 
CP violation and mixing in the charm sector are both generally 
considered to be small in the Standard Model but have not 
been fully explored.  

Below follows an account of the main challenges and 
highlights, and the evolution of the LHCb operational strategy 
which laid the foundation for a large number of world-best 
physics results in the first three years of operation. 

 
Fig. 1: The distribution of the polar angles of the ܊-quark and the ܊ҧ -quark as 
they are produced at the LHC. 

II. LHCB DETECTOR AND DESIGN OPERATING CONDITIONS 
At the LHC, the initial state partons have generally different 

longitudinal momenta leading to a strong boost of the bbത- and 
the ccത-pair. Fig. 1 shows the distribution of the polar angles of 
the b and the bത-quarks. Consequently the resulting pair of B or 
alternatively D hadrons appears in the same hemisphere. This 
opens the possibility of using the decay products of the 
accompanying hadron to tag the identity of the hadron decay 
of interest by detecting the final states in a reduced fiducial 
volume around the beam pipe with relatively small angle. 

The prerequisite to explore fully flavor physics at the LHC 
consists of collecting a very large statistics of B and D final 
states with the help of a fast but flexible trigger with high 
sensitivity to a very large variety of different final states. Due 
to the complexity of the final states the trigger needs to 
perform a level of reconstruction in order to identify the signal 
vertex signatures with high efficiency against a background of 
inelastic events which is several orders of magnitude larger. 
The key detector requirements consist of 
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• excellent vertex and impact parame
order to resolve the complex vertex s

• excellent proper time resolution to 
oscillations 

• high track reconstruction efficiency, 
• a dipole magnet with precisely know

precision momentum measurement, 
• very good mass resolution to reje

background, 
• and extremely good π, K, e, γ, μ ide

wide momentum range for the flavor
reconstruction and identification o
heavy flavor decay, 

all of which have to span the full forward a
 

Fig. 2: Illustration of the unique acceptance of the LHCb 
rapidity as compared to the other LHC experiments. 
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Fig. 3: The LHCb single-arm forward spectro
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IV together with the detector performance. Other subsequent 
measures to manage the performance with the higher event 
pileup and higher luminosity included regular sub-detector 
ageing and calibration scans with beam, and automated end-
of-fill calibration. 

Encouraged by the high performance demonstrated by the 
sub-detectors, and the potential of the operational 
improvements, the operational strategy continued to evolve in 
2010 – 2012. 

A. 2010 Run 
While 2010 was a “test drive” for the LHCb sub-detectors, 

the validation of the trigger and the offline processing concept 
was of fundamental importance. With the change of the LHC 
commissioning strategy, the first year of operation became 
characterized by an exploration of the LHCb performance in 
the event pileup domain. 

In the very first phase of the commissioning with a very low 
number of bunches and low bunch intensity, LHCb focused on 
a minimum bias physics program very much profiting from an 
increase of the event storage rate from the design of 200 Hz to 
2 kHz. Studies of strangeness production and of anti-
particle/particle production ratios in the forward region are 
examples of interesting early measurements. In the 
intermediate phase with nominal bunch intensities but low 
number of bunches, LHCb was able to maintain lower than 
nominal trigger thresholds and hence boost the trigger 
efficiencies for hadronic B decays up to ~75%. This phase 
also allowed exploring the LHCb physics potential in charm 
physics by reserving a significant portion of the bandwidth for 
charm triggers with corresponding trigger efficiency of up to 
~40% for prompt D hadrons. As the LHC luminosity 
increased with increasing number of bunches in the second 
half of the 2010 running year, trigger conditions were 
gradually tightened in order to exploit at maximum the 
available readout bandwidth and CPU power in the HLT farm. 
As shown in Fig. 4, at the end of 2010, LHCb took data at 
80% of the design luminosity with only 344 colliding bunches 
instead of 2622. This is equivalent to six times the design in 
terms of the number of average visible interactions for bunch 
crossing. 

B. 2011 Run 
Due to a relatively fast LHC re-commissioning in 2011, the 

ultimate luminosity of 2010 was reached after only one month. 
The nominal number of bunches for the LHC Run I with 50ns 
(~1300) was reached at about 1/3 into the 2011 running year. 
As a result the second year of LHCb operation was already 
largely characterized by stable data taking at high efficiency 
with the opportunity to explore the LHCb performance in the 
luminosity domain while running with a significantly lower 
event pileup than in 2010. Fig. 4 shows the stepwise increase 
in the instantaneous luminosity and the extended stable 
periods as defined by the need to monitor the sub-detector 
behavior in conditions well above the design luminosity.  

The trigger in 2011 was tuned to a luminosity of 3.5x1032 

cm-2s-1 for the bigger part of the year and the event storage rate 

was increased to 3 kHz in order to accommodate 1 kHz for the 
continued charm physics program. 

 

 
Fig. 5: Trigger yield as normalized to the yield at the nominal design 
luminosity of 2x1032 cm-2s-1 for B decays with muons and hadrons in the final 
state.  
 

Fig. 5 shows the trigger yield for final states with muons 
and with hadrons as a function of instantaneous luminosity. 
The yield is normalized to the yield expected at the nominal 
design conditions of 2x1032 cm-2s-1. The figure illustrates the 
effect of the event pileup which ranges from an average pileup 
per visible crossing of one up to 2.4 in the plot. As seen in Fig. 
5   the trigger yield for hadronic channels saturates at high 
luminosity. The reason is that in order to respect the 1 MHz 
readout limitation after the first level trigger, a stronger cut on 
transverse energy is needed with event pileup in order to 
suppress the increasing rate of triggers due to overlapping 
clusters faking particles with larger transverse energy. The 
optimal luminosity was found to be around 4x1032 cm-2s-1. 

In total over one fb-1 was collected by the end of 2011 at an 
operational efficiency of 91%. The offline data quality 
evaluation qualified more than 99% of the data good for all 
physics analyses. 

C. 2012 Run 
A very fast LHC re-commissioning allowed reaching a 

luminosity of 4x1032 cm-2s-1 with the nominal number of 
bunches for 50 ns operation after only a month. Yet another 
data taking mechanism of significant importance was put in 
operation at the beginning of 2012 which allowed LHCb to 
profit from 20-30% more CPU power in the event filter farm. 
Instead of increasing the size of the farm, the mechanism 
defers a fraction of the High-Level Trigger processing to the 
inter-fill time of several hours between LHC collision periods 
when virtually no computing power is needed for the detector.   

With the extended LHCb physics program in mind together 
with the upcoming 2-year shutdown of the LHC accelerator 
2013-2014, the output event rate to storage was further 
increased to 5.5 kHz in order to collected additional statistics. 



 

As a result, the LHCb data taking in 
characterized by a stable trigger configuratio
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IV. OPERATIONAL HIGHLIGHTS AND PE
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Fig. 6: Overview of the LHCb online system together w
performance parameters. 

A. Trigger Architecture 
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In this scheme, the LHCb trigger performa
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Fig. 9: The plot illustrates the LHCb luminosity control 
the luminosity up to the desired value and subsequ
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D. Detector Performance 
In the beyond-design conditions described 
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nt pileup, the operational 
2010 and matured at the 
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rements and dominance in 
tion to a reputation of an 
etector at the LHC. 
014) will allow LHCb to 
llected and prepare LHCb 
gy close to the nominal 14 
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and hadronic decays of beauty and charm hadrons, the 1 MHz 
readout limit is currently the main bottle neck to run at higher 
luminosity and with higher trigger efficiencies. The upgrade 
consists of a complete readout at the LHC bunch crossing rate 
(40 MHz) with only a software trigger and running at an 
instantaneous luminosity of up to 2x1033 cm-2s-1. Several sub-
detectors upgrades are also underway to cope with the higher 
occupancies and provide a fast reconstruction. 
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