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1 Introduction

In the past several years a great amount of attention has been focused on the problem

of understanding the hidden mathematical structure of scattering amplitudes (for reviews

see [1–6]), particularly (but certainly not exclusively) in supersymmetric theories such as

N = 4 Yang-Mills (SYM) theory [7, 8]. As amplitudeologists, our mathematical interest

in planar SYM theory stems from imagining it as a vast and mysterious encyclopedia,

recovered from some long-lost desert cave, filled with functions having remarkable prop-

erties and interrelationships. This encyclopedia has many volumes, but beyond the most

introductory sections, we can only make out bits and scraps of text here and there.

It is hardly our ambition to greatly ameliorate this situation. Rather, our goal in this

work is to describe some general mathematical properties of and techniques for analyzing

amplitudes — to provide a kind of archaeologist’s toolkit. In particular, one overarching

aim of our work is to point out that SYM theory is an ideal setting in which to study

motivic amplitudes, as proposed a decade ago in [9] (see in particular section 7). Why

motivic amplitudes? It remains an important outstanding problem in physics to determine

explicit effective constructions for general amplitudes. However the abundance of func-

tional identities amongst generalized polylogarithms apparently precludes the existence

of any particular preferred or canonical functional representation or ‘formula’ for general

multi-loop amplitudes (the only exception is reviewed in section 3). Our goal is rather to

investigate, following [9], their motivic avatars — motivic amplitudes — which are math-

ematically more sophisticated, but at the same time much more structured and canonical

objects. In particular they are elements of a Hopf algebra. This Hopf algebra is the alge-

bra of functions on the so-called motivic Galois group. The group structure of the latter

is encoded in the coproduct of the Hopf algebra. So by studying the coproduct of motivic

amplitudes — a structure totally invisible if we remain on the level of functions — we

uncover their hidden motivic Galois symmetries. One cannot resist to think that these

new symmetries will eventually play an essential role in physics.

A similar upgrading, from multi-zeta values to motivic multi-zeta values, has recently

played a crucial role in unlocking the structure of tree-level superstring amplitudes in the

α′ expansion [10–13]. In SYM theory we expect the motivic approach to be even more

powerful since the amplitudes we deal with are not merely numbers but highly nontrivial

functions on the 3(n− 5)-dimensional kinematic configuration space Confn(P3), the space

of collections of n points in the projective space P3, considered modulo the action of the

projective linear group PGL4.

The one-sentence slogan of our paper is that we find that the cluster structure of the

space Confn(P3) underlies the structure of amplitudes in SYM theory. The technical aspects
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of our work which support this conclusion can be divided into two parts, which one can

think of very roughly as kinematics and dynamics.

We can phrase the ‘kinematic’ question we are interested in roughly as: which variables

do motivic amplitudes in SYM theory depend on? Thanks to dual conformal symmetry [14–

21] it is known that appropriately defined n-particle SYM scattering amplitudes depend

on 3(n− 5) algebraically independent dual conformal cross-ratios. However, all experience

to date indicates that the functional dependence of amplitudes on these variables always

takes very special forms. For example, in the case of the two-loop MHV amplitude for

n = 6 (reviewed in section 3), which can be completely expressed in terms of the classical

polylogarithm functions Lim [22], only very particular algebraic functions of the three in-

dependent cross-ratios appear as arguments of the Lim’s. It is natural to wonder why these

particular arguments appear, and not others, and to ask about the arguments appearing

in more general amplitudes (including n > 6, higher loops, and non-MHV).

There is a more specific purely mathematical reason to concentrate on the study of the

motivic two-loop MHV amplitudes. These amplitudes are polylogarithm-like functions of

weight (also known as transcendentality) four. Any such function of weight one on a space

X is necessarily of the form logF (x), the logarithm of a rational function on X. Next,

any weight two function can be expressed as a sum of Li2’s and products of two logarithms

of rational functions. Similarly, any weight three function is a linear combination of Li3’s

and products of lower weight polylogarithms of rational functions. So the question ‘which

variables these functions depend on’ is well-defined, up to the functional equations satisfied

by Li2 and Li3 —a beautiful subject on its own. However this is no longer true for functions

of weight four [23]. There is an invariant associated to any weight four function, with

values in an Abelian group Λ2 B2, reviewed in section 4, which is the obstruction for the

function to be expressible as a sum of products of classical polylogarithms Lim. This makes

the above question ill-defined. However, upgrading weight four functions to their motivic

avatars one sees that their coproducts are expressible via classical motivic polylogarithms

of weights ≤ 3, and so the question makes sense again. Finally, the coproduct preserves all

information about motivic amplitudes but an additive constant. So to understand two-loop

amplitudes we want first to find explicit formulas for the coproduct of their motivic avatars.

On the other hand, the two-loop amplitudes are natural weight four functions, and so one

can hope that their detailed analysis might shed a new light on the fundamental unsolved

mathematical problems which we face starting at weight four. Therefore, although the level

of precision one can reach studying the two-loop motivic MHV amplitudes is unsustainable

for higher loops, one can hope to discover general features by looking at the simplest case.

In this paper we propose that the variables which appear in the study of the MHV

amplitudes in SYM theory belong to a class known in the mathematics literature as cluster

X -coordinates [24] on the configuration space Confn(P3).

Cluster X -coordinates in general describe Poisson spaces which are in duality with

cluster algebras, originally discovered in [25, 26]. In particular, the space Confn(P3) is

equipped with a natural Poisson structure, invariant under cyclic shift of the points. This

Poisson structure looks especially simple in the cluster X -coordinates: the logarithms of

the latter provide collections of canonical Darboux coordinates. It seems remarkable that
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the arguments of the amplitudes have such special Poisson properties, although at the

moment we do not know how to fully exploit this connection.

An immediate consequence of the cluster structure of the space Confn(P3) is that

its real part Confn(RP3) contains the domain Conf+
n (RP3) of positive configurations of

n points in RP3. This positive domain is evidently a part of the Euclidean domain in

Confn(CP3), the domain where amplitudes are singularity-free.

The configuration space Confn(P3) can be realized as a quotient of the Grassmannian

Gr(4, n) by the action of the group (C∗)n−1. This Grassmannian, describing the exter-

nal kinematic data of an amplitude, may look unrelated to those which star in [27–32]

and involve also ‘internal’ data related to loop integration variables. However the cluster

structure and in particular the positivity play a key role in the Grassmannian approach to

amplitudes [32], and we have no doubt that a tight connection between these objects will

soon emerge.

Once one accepts the important role played by cluster coordinates as the kinematic

variables which, in particular, the coproduct of the two-loop motivic MHV amplitudes are

‘allowed’ to depend on, it is natural to ask the ‘dynamic’ question: what exactly is the de-

pendence on these coordinates? For example, what explains the precise linear combination

of Li4 functions appearing in the two-loop MHV amplitude for n = 6? There is a vast

and rich mathematical literature on cluster algebras, which are naturally connected [33]

to beautiful combinatorial structures known as cluster complexes and, more specifically,

generalized associahedrons (or generalized Stasheff polytopes) [34, 35]. We defer most

of the dynamic question to subsequent work but report here the first example of a con-

nection between these mathematical structures and motivic amplitudes: we find that the

‘distance’ between a two-loop amplitude and the classical Li4 functions, expressed in the

Λ2 B2-obstruction, is naturally formulated in terms of certain two-dimensional quadrilateral

faces of the associahedron for Confn(P3). Equivalently, the pairs of functions entering the

Stasheff polytope Λ2 B2-obstruction for the two-loop MHV amplitudes Poisson commute.

The outline of this paper is as follows. In section 2 we briefly review various notations

for configurations of points in Pk−1 and the appearance of the 3(n− 5)-dimensional space

Confn(P3) as the space on which n-particle scattering amplitudes in SYM theory are de-

fined. We also review the relationship with the Grassmannian Gr(4, n). In section 3 we call

attention to the very special arguments appearing inside the Li4 functions in the two-loop

MHV amplitude for n = 6. Section 4 reviews the mathematics necessary for the calculus

of motivic amplitudes. We present our result for the coproduct of the two-loop n = 7

MHV motivic amplitude in section 5 (results for all higher n will be given in a subsequent

publication). In section 6 we turn to cluster algebras related to Gr(4, n), the construction

of cluster coordinates, and the Stasheff polytope and cluster X -coordinates for Confn(P3).

Finally section 7 exhibits these concepts for n = 6, 7 in detail and contains some analysis of

the structure of the two-loop n = 7 MHV motivic amplitude and its relation to the Stasheff

polytope. While the n = 6 case is well-known in the mathematical literature, the geometry

of the cluster X -coordinates in the n = 7 case is more intricate. In appendix A we discuss

parity conjugation, and show how to calculate its action on the cluster X -coordinates. In

appendix B we discuss and prove the 40-term functional equation for the trilogarithm,

which plays a role in section 5.
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2 The kinematic configuration space Confn(P3)

Having argued that scattering amplitudes are a collection of very interesting functions, we

begin by addressing a seemingly simple-minded question: what variables do these functions

depend on? Despite initial appearances this is far from a trivial question, and somewhat

surprisingly a completely satisfactory understanding has only emerged rather recently.

2.1 Momentum twistors

The basic problem is essentially this: a scattering amplitude of n massless particles de-

pends on n four-momenta pi (which we can take to be complex), but these are constrained

variables. First of all each one should be light-like, p2
i = 0 with respect to the Minkowski

metric for all i, and secondly energy-momentum conservation requires that p1+· · ·+pn = 0.

These constraints carve out a non-trivial subvariety of C4n. It is desirable to employ a set

of unconstrained variables which parametrize precisely this subvariety. A solution to the

problem is provided by momentum twistors [36], whose construction we now review.

In the planar limit of SYM theory we have an additional, and crucial, piece of struc-

ture: the n particles come together with a specified cyclic ordering. This arises because

each particle lives in the adjoint representation of a gauge group and each amplitude is

multiplied by some invariant constructed from the gauge group generators of the partici-

pating particles. In the planar limit we take the gauge group to be U(N) with N → ∞,

in which case only amplitudes multiplying a single trace Tr[T a1 · · ·T an ] of gauge group

generators are nonvanishing.

Armed with a specified cyclic ordering of the particles, the conservation constraint is

solved trivially by parameterizing each pi = xi−1 − xi in terms of n dual coordinates xi.

The xi specify the vertices, in C4, of an n-sided polygon whose edges are the vectors pi,

each of which is null. A very special feature of SYM theory in the planar limit is that all

amplitudes are invariant under conformal transformations in this dual space-time [14–21]

It is often useful, especially when one is interested in discussing aspects of conformal

symmetry, to compactify the space-time. For example, in Euclidean signature, a single

point at infinity has to be included in order for conformal inversion to make sense. It

is also convenient to complexify space-time. Different real sections of this complexified

space correspond to different signatures of the space-time metric. The complexified com-

pactification M̃4 of four-dimensional space-time is the Grassmannian manifold Gr(2, 4) of

two-dimensional vector spaces in a four-dimensional complex vector space V4; in other

words, there is a one-to-one correspondence between points in M̃4 and two-dimensional

vector subspaces in V4. We can projectivize this picture to say that the correspondence is

between points in complexified compactified space-time and lines in P3.

In the Grassmannian picture two points are light-like separated if their corresponding

2-planes intersect. So after projectivization, a pair of light-like separated points in M̃4

corresponds to a pair of intersecting lines in P3. Conformal transformations in space-time

correspond to PGL4 transformations on P3.

This P3 space is called twistor space in the physics literature. The importance of

this space was first noted in the work of Penrose [37, 38] and more recently emphasized
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by Witten [39] in the context of Yang-Mills theory scattering amplitudes. However the

twistors we need here are not the ones associated to the space-time in which the scattering

takes place, but rather the ones associated to the dual space mentioned above, where

the xi live and on which dual conformal symmetry acts. These were called ‘momentum

twistors’ in ref. [36], where they were first introduced. Momentum twistor space has both a

chiral supersymmetric version (see ref. [40]) and a non-chiral supersymmetric version (see

refs. [41–43]), but we will not make use of these extensions in this paper.

To summarize: a scattering amplitude depends on a cyclically ordered collection of

points xi in the complexified momentum space C4, each of which corresponds to a projective

line in momentum twistor space. Since each xi is null separated from its neighbors xi−1

and xi+1, their corresponding lines in momentum twistor space intersect. We denote by

Zi ∈ P3 the intersection of the lines corresponding to the points xi−1 and xi. Conversely,

an ordered sequence of points Z1, . . . , Zn ∈ P3 determines a collection of n lines which

intersect pairwise and therefore correspond to n light-light separated points xi in the dual

Minkowski space.

2.2 Bracket notation

The space we have just described — the collection of n ordered points in P3 modulo the

action of PGL4 — defines Confn(P3), read as ‘configurations of n points in P3’. Scatter-

ing amplitudes of n particles in SYM theory are functions on this 3(n − 5)-dimensional

kinematic domain. This space can be essentially realized as the quotient Gr(4, n)/(C∗)n−1

of the Grassmannian by considering the space of 4 × n matrices (being the homogeneous

coordinates of the n points in P3) modulo the left-action of PGL4 as well as independent

rescaling of the n columns. In this presentation the natural dual conformal covariant ob-

jects are four-brackets of the form 〈ijkl〉 := det(ZiZjZkZl), which is just the C4 volume of

the parallelepiped built on the vectors (Zi, Zj , Zk, Zl).

More precisely, emphasizing the structures involved, given a volume form ω4 in a four-

dimensional vector space V4, we can define the bracket 〈v1, v2, v3, v4〉 := ω4(v1, v2, v3, v4).

These four-brackets are key players in the rest of our story, so we list here a few of

their important features. The Grassmannian duality Gr(k, n) = Gr(n − k, n) means that

configurations of n points in Pk are dual to configurations of n points in Pn−k−2. Explicitly,

at six points the relationship between four-brackets in P3 and two-brackets in P1 given by

〈ijkl〉 =
1

2!
εijklmn〈mn〉, 〈ij〉 =

1

4!
εijklmn〈klmn〉, (2.1)

while the relationship at seven points between four-brackets in P3 and three-brackets in P2

is clearly

〈ijkl〉 =
1

3!
εijklmnp〈mnp〉, 〈ijk〉 =

1

4!
εijklmnp〈lmnp〉. (2.2)

We find it useful to exploit this duality for six and seven points when doing so leads to

additional clarity. An invariant treatment of this duality is given below in section 2.3.

More complicated PGL4 covariant objects can be formed naturally by using projective

geometry inside four-brackets. Such objects will appear later in section 6, so we review the
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standard notation for them here. Following the ∩ notation introduced in ref. [31] we define

the four-brackets with an intersection to be

〈ab(cde) ∩ (fgh)〉 ≡ 〈acde〉〈bfgh〉 − 〈bcde〉〈afgh〉. (2.3)

This composite four-bracket vanishes when the line (ab) and the intersection of planes

(cde) ∩ (fgh) lie in a common hyperplane.

Here is a slightly different way to think about (2.3). Consider a pair of vectors v1, v2

in a four-dimensional vector space V4, and a pair of covectors f1, f2 ∈ V ∗4 . Then we set

〈v1, v2; f1, f2〉 ≡ f1(v1)f2(v2)− f1(v2)f2(v1). (2.4)

To get (2.3) we just take the covectors f1(∗) := 〈c, d, e, ∗〉 and f2(∗) := 〈f, g, h, ∗〉.
If we pick a vector c in the intersection of the two hyperplanes, writing them as

(ca2b2) and (ca3b3), then we can rewrite it in a slightly different notation, making more

symmetries manifest:

〈a1b1(ca2b2) ∩ (ca3b3)〉 = −〈c|a1 × b1, a2 × b2, a3 × b3〉, (2.5)

Precisely, consider the three-dimensional quotient V4/〈c〉 of the space V4 along the subspace

generated by the vector c. The volume form ω4 in V4 induces a volume form ω4(c, ∗, ∗, ∗) in

V4/〈c〉, and therefore in the dual space (V4/〈c〉)∗. So we can define three-brackets 〈∗, ∗, ∗〉c
in (V4/〈c〉)∗. The other six vectors in eq. (2.5) project to the quotient. Taking the cross-

products × of consecutive pairs of these vectors, we get three covectors in (V4/〈c〉)∗. Their

volume −〈a1 × b1, a2 × b2, a3 × b3〉c equals the invariant (2.4). So we get formula (2.5).

Notice the expansions, where we use εαβγε
α(·, a, b) = aβbγ − aγbβ:

〈a1 × b1, a2 × b2, a3 × b3〉 = εαβγε
α(·, a1, b1)εβ(·, a2, b2)εγ(·, a3, b3) (2.6)

= 〈a1a2b2〉〈b1a3b3〉 − 〈b1a2b2〉〈a1a3b3〉 (2.7)

= −〈a2a1b1〉〈b2a3b3〉+ 〈a2a3b3〉〈b2a1b1〉 (2.8)

= 〈a3a1b1〉〈b3a2b2〉 − 〈a3a2b2〉〈b3a1b1〉. (2.9)

2.3 Configurations and Grassmannians

Let us formulate now the relationship between the Grassmannians Gr(k, n) and the con-

figuration spaces more accurately. We start with the notion of configurations.

Let Vk be a vector space of dimension k. Denote by Confn(k) the space of orbits of

the group GLk acting on the space of n-tuples of vectors in Vk. We call it the space of

configurations of n vectors in Vk. It is important to notice that the sets of configurations

of vectors in two different vector spaces of the same dimension are canonically isomorphic.

Denote by Confn(Pk−1) the space of PGLk-orbits on the space of n-tuples of points in

Pk−1, called configurations of n points in Pk−1.

We consider an n-dimensional ‘particle vector space’ Cn with a given basis (e1, . . . , en).

Then a generic k-dimensional subspace h in Cn determines a configuration of n vectors

(f1, . . . , fn) in the dual space h∗: these are the restrictions to h of the coordinate linear
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functionals in Cn dual to the basis (e1, . . . , en). This way we get a well-defined bijection

only for generic h, referred to mathematically as a birational isomorphism,

Gr(k, n)
∼−→ Confn(k). (2.10)

The group (C∗)n acts by rescaling in the directions of the coordinate axes in Ck. This action

transforms into rescaling of the vectors of the configuration space Confn(k). The diagonal

subgroup C∗diag ⊂ (C∗)n acts trivially. So the quotient group (C∗)n−1 = (C∗)n/C∗diag acts

effectively. Passing to the quotients we get a birational isomorphism

Gr(k, n)/(C∗)n−1 ∼−→ Confn(Pk−1). (2.11)

The dualities

Confn(k)
=−→ Confn(n− k), Confn(Pk) =−→ Confn(Pn−k−2) (2.12)

are best understood via the identification with the Grassmannian (2.10), followed by the

obvious isomorphism Gr(k, n) = Gr(n− k, n), obtained by taking the orthogonal planes.

2.4 The euclidean region

Scattering amplitudes in field theory have a complicated singularity structure, including

poles and branch cut singularities. However, there are regions in the kinematic space where

such singularities are absent. In particular, amplitudes are expected on physical grounds

to be real-valued and singularity-free everywhere in the Euclidean region, reviewed in this

section. It was discussed in ref. [44] in connection with MHV amplitudes in SYM theory.

The Euclidean region is defined most directly in the dual space parametrized by the

xi. We impose that the coordinates of the vectors xi are real and

(xi − xi+1)2 = 0, (xi − xj)2 < 0, otherwise, (2.13)

where the distance is computed with a metric of signature (+,−,−,−) or (+,+,−,−).

These constraints define the Euclidean region in terms of the xi coordinates.

When transformed to twistor coordinates the first constraint in eq. (2.13) is always

satisfied. However, the constraint that the components of the vectors xi should be real

is harder to impose. We can think about twistors as being spinor representations of the

complexified dual conformal group. This complexified dual conformal group has several

real sections: SU(4) which corresponds to Euclidean signature, SL(4,R) which corresponds

to split signature (+,+,−,−) and SU(2, 2) which corresponds to (+,−,−,−) signature.

In fact, there are two kinds of spinor representations which we call twistors (denoted

by Z) and conjugate twistors (denoted by W ). There is a Z and a W for every par-

ticle in a scattering process, which we denote by Zi, Wi. Under the dual conformal

group the Z and W twistors and transform in the opposite way. That is, if M is a dual

conformal transformation,

W →W ′ = WM−1, Z → Z ′ = MZ. (2.14)

This implies that there is an invariant product W · Z.
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Now we can study the reality conditions. We will not discuss the Euclidean signature

(+,+,+,+) any further since it does not allow light-like separation. For split signature,

the twistors transform under SL(4,R) so they can be taken to be real and independent.

For Lorentzian signature (+,−,−,−) the symmetry group is SU(2, 2). If M ∈ SU(2, 2),

then M †CM = C, where C is a (2, 2) signature matrix which we will take to be real and

symmetric. Then CZ transforms in the same way as W † so we can consistently impose a

reality condition W † = CZ. This implies that (Wi ·Zj)∗ = Wj ·Zi. The light-like conditions

imply that Wi = Zi−1∧Zi∧Zi+1, so the previous reality condition can be written in terms

of the Z twistors alone as 〈i− 1ii+ 1j〉∗ = 〈j − 1jj + 1i〉.
Finally, let us translate the second condition in eq. (2.13) into twistor language. Space-

time distances (xi − xj)2 cannot be expressed in twistor variables without first making an

arbitrary choice of ‘infinity twistor’. However this choice cancels in conformal ratios, and

for these the dictionary between space-time and momentum twistor space then implies that

〈ii+ 1jj + 1〉〈kk + 1ll + 1〉
〈ii+ 1ll + 1〉〈jj + 1kk + 1〉

> 0, (2.15)

for all i, j, k, l for which none of the four-brackets vanishes. This condition is certainly

guaranteed if 〈ii+ 1jj + 1〉 > 0 for all nonvanishing four-brackets of this type.

We therefore define the Euclidean region in momentum twistor space by the condition

that 〈ii+ 1jj + 1〉 > 0. It has two sub-regions

(2, 2) signature: 〈ijkl〉 ∈ R, (2.16)

(3, 1) signature: 〈i− 1ii+ 1j〉∗ = 〈j − 1jj + 1i〉. (2.17)

Note that the (2, 2) signature region contains the positive Grassmannian which is well-

studied mathematically. In contrast, the (3, 1) region does not seem to have been studied

in the mathematical literature.

3 Review of the two-loop n = 6 MHV amplitude

In the previous section we reviewed that n-particle scattering amplitudes in SYM theory are

functions on the 3(n− 5)-dimensional space Confn(P3). It is further believed [32] that any

MHV or next-to-MHV (NMHV) amplitude, at any loop order L in perturbation theory, can

be expressed in terms of functions of uniform transcendentality weight 2L. A goal of this

paper is to make a sharper statement about the mathematical structure of these functions.

Specifically: that their structure is described by a certain preferred collection of functions

on Confn(P3) which are known in the mathematics literature as cluster X -coordinates. In

this section we provide a simple but illustrative example of this phenomenon.

The simplest nontrivial multi-loop scattering amplitude is the two-loop MHV am-

plitude for n = 6 particles. This was originally computed numerically in [44, 45], then

analytically in [46, 47] in terms of generalized polylogarithm functions, and finally in a

vastly simplified form in terms of only the classical Lim functions in [22]. We present it
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here very mildly reexpressed as

R
(2)
6 =

3∑
i=1

(
Li −

1

2
Li4(−vi)

)
− 1

8

(
3∑
i=1

Li2(−vi)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
, (3.1)

in terms of the functions

Li =
1

384
P 4
i +

3∑
m=0

(−1)m

(2m)!!
Pmi (`4−m(x+

i ) + `4−m(x−i )),

Pi = 2 Li1(−vi)−
3∑
j=1

Li1(−vj),
(3.2)

and

J =
3∑
i=1

`1(x+
i )− `1(x−i ),

`n(x) =
1

2
(Lin(−x)− (−1)n Lin(−1/x)).

(3.3)

Our aim in reproducing this formula here is to highlight two rather astonishing facts.

The first is that the argument of each Lin function is the negative of one of the simple

cross-ratios

v1 =
〈35〉〈26〉
〈23〉〈56〉

, v2 =
〈13〉〈46〉
〈16〉〈34〉

, v3 =
〈15〉〈24〉
〈45〉〈12〉

,

x+
1 =

〈14〉〈23〉
〈12〉〈34〉

, x+
2 =

〈25〉〈16〉
〈56〉〈12〉

, x+
3 =

〈36〉〈45〉
〈34〉〈56〉

, (3.4)

x−1 =
〈14〉〈56〉
〈45〉〈16〉

, x−2 =
〈25〉〈34〉
〈23〉〈45〉

, x−3 =
〈36〉〈12〉
〈16〉〈23〉

(or their inverses). We caution the reader that the x±i here are the negative of the x±i used

in [22], while the vi used here are related to the three ui cross-ratios most commonly seen

in the literature by vi = (1 − ui)/ui. Of course, these 9 variables are not independent —

the dimension of Conf6(P3) is only three — so one could choose any three of them in terms

of which to express all of the others algebraically. It is striking that the argument of each

Lim function in (3.1) is expressible as one of these simple cross-ratios rather than, as might

have been the case, some arbitrary algebraic function of cross-ratios.

The second striking fact about (3.1) is that out of the 45 distinct cross-ratios of the form

r(i, j, k, l) =
〈ij〉〈kl〉
〈jk〉〈il〉

(3.5)

only the 9 shown in (3.4) actually appear. Note that here, as throughout the paper, we

shall never count both x and 1/x separately.

The presentation of (3.1) we have given here also highlights another theme which will

pervade this paper: positivity. The cross-ratios defined in eq. (3.4) all have the manifest

property that they are positive whenever each ordered bracket is positive, i.e. whenever

– 9 –
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〈ij〉 > 0 ∀ i < j (see appendix A.1 for additional details on positive configurations). As

this example and others to be discussed below suggest, we expect all MHV amplitudes

will have particularly rich structure on the positive subset of the domain Confn(P3). The

formula (3.1) is expressed in terms of the natural polylogarithm function on the domain of

positive real-valued x:

Lin(−x) =

∫
∆x

log(1 + t1) d log t2 ∧ · · · ∧ d log tn := Ln(x) (3.6)

where ∆x = {(t1, . . . , tn) : 0 < t1 < t2 < · · · < tn < x}. The proper continuation of eq. (3.1)

to the part of the Euclidean region outside the positive domain was discussed in [22].

In the rest of this paper we will work almost exclusively not with amplitudes but with

coproducts of motivic amplitudes, reviewed in the next section. For such purposes it is

sufficient to highlight in R
(2)
6 only the leading terms

R
(2)
6 =

3∑
i=1

L4(x+
i ) + L4(x−i )− 1

2
L4(vi) + · · · , (3.7)

where the dots stand for products of functions of lower weight, which are killed by the

coproduct δ reviewed in the next section.

In a certain sense this example is too simple, as this amplitude is likely unique in SYM

theory in being expressible in terms of classical polylogarithm functions Lim only. We

do not aim to write explicit formulas for more general amplitudes as there is apparently

no particular preferred or canonical functional form, so the question of what variables the

function depends on requires a more precise definition involving the more sophisticated

mathematics to which we turn our attention in the next section.

4 Polylogarithms and motivic Lie algebras

In this section we review some of the necessary mathematical preliminaries on transcenden-

tal functions and explain ways of distilling the essential motivic content of such functions.

The precise mathematical definitions of motivic avatars of polylogarithm-like functions is

given in [9]. Taking for granted that such avatars exist, our goal is to provide the elements

of motivic calculus necessary to describe their basic properties.

4.1 The motivic avatars of (generalized) polylogarithms

Let us start with the motivic background. Given any field F , there is an as yet hypothetical

mathematical object called the motivic Tate Lie coalgebra L•(F ) of this field [48]. It is

graded by positive integers, the weights, i.e. one has

L•(F ) =
∞⊕
n=1

Ln(F ). (4.1)

There is a cobracket δ, which is a weight preserving linear map

δ : L•(F ) −→ Λ2L•(F ). (4.2)

– 10 –
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It satisfies the property that the following composition is zero:

L•(F )
δ−→ Λ2L•(F )

δ∧Id− Id∧δ−→ Λ3L•(F ). (4.3)

The very existence of this object is known only when F is a number field [49].

Denote by V ∗ the dual vector space to a vector space V . If each of the weight compo-

nents Ln(F ) were a finite-dimensional vector space,1 this would mean that the dual graded

vector space, defined as

L•(F ) :=

∞⊕
n=1

L−n(F ), L−n(F ) := (Ln(F ))∗, (4.4)

is a graded Lie algebra, with the bracket dual to the map δ. Then the condition (4.3)

follows from the Jacobi identity.

Consider the universal enveloping algebra U•(F ) of the Lie algebra L•(F ). It is graded

by non-positive integers. By definition, U0(F ) = Q. Its graded dual

A•(F ) :=

∞⊕
n=0

An(F ), An(F ) := (U−n(F ))∗ (4.5)

has the structure of a commutative graded Hopf algebra with a coproduct ∆. One has

L•(F ) = A•(F )/(A>0(F ) · A>0(F )). (4.6)

So the elements of L•(F ) are the elements ofA•(F ) considered modulo the sums of products

of elements of positive weight.

Now let X be a complex variety and denote by C(X) the field of rational functions

on X. To give a first idea why the Lie coalgebra L•(F ) and the Hopf algebra A•(F ) are

relevant to the analytic theory of polylogarithms and their generalizations, let us start with

a vague statement:

Any weight n polylogarithm-like function F on X gives rise to an element

FM of A•(C(X)). Considered modulo products of such functions, it

provides an element of L•(C(X)).

Precisely, but using terminology which we are not going to explain here, a ‘weight n

polylogarithm-like function F on X’ is a period of a weight n framed variation of mixed

Q-Hodge structures on an open part of X, with the Hodge weights hp,q being zero unless

p = q, which is of ‘geometric origin’. We call such functions Hodge-Tate periods.

It is conjectured that in passing from F to its motivic avatar FM we do not ‘lose any

information about F ’. See [9], where the motivic avatars of multiple polylogarithms were

defined, for a detailed account on the subject. The main point is this:

To know a Hodge-Tate period function F is the same thing as to know its motivic

avatar FM. The vector space An(C(X)) is precisely the linear vector space spanned by

motivic avatars of the weight n Hodge-Tate period functions on open parts of X.

1However this is rarely the case; see [23] for the treatment of duals in the infinite-dimensional situation.
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The benefit of replacing F by FM is that the latter lie in a Hopf algebra. Since this

Hopf algebra is graded by non-negative integers, its elements can be studied by applying

the coproduct to them, which is expressible via similar objects of lower weight. The

fundamental fact is that the kernels of the coproduct maps

∆ : A•(C(X)) −→ ⊗2A•(C(X)), δ : L•(C(X)) −→ Λ2L•(C(X)) (4.7)

are given by constants. Therefore, taking the coproduct does not discard any essential

information about the function.

4.2 Higher Bloch groups

So the key question is to describe the Hopf algebra A•(C(X)), or, equivalently, the Lie

coalgebra L•(C(X)). The structure of L•(F ) for any field F is essentially predicted by the

Freeness Conjecture [23]. We start from its low weight consequences.

Weight 1. First of all, one has

L1(F ) = F ∗ ⊗Z Q. (4.8)

Weight 2. Let us recall the definition of the Bloch group B2(F ) [50, 51]. Let Q[F ] be

the Q-vector space with basis elements {x} for x ∈ F . Recall the cross-ratio

r(x1, x2, x3, x4) =
(x1 − x2)(x3 − x4)

(x2 − x3)(x1 − x4)
. (4.9)

Notice the unusual normalization of the cross-ratio: r(∞,−1, 0, x) = x.

Given any 5 points x1, . . . , x5 on the projective line P1(F ) over F , set

5∑
i=1

{r(xi, xi+1, xi+2, xi+3)} ∈ Q[F ]. (4.10)

Here the indices are considered modulo 5.

Let R2(F ) be the subspace generated by {0} and the five-term relations (4.10). Over

the complex numbers, (4.10) provides Abel’s famous pentagon relation for the dilogarithm.

Precisely, consider the Bloch-Wigner single valued version of the dilogarithm, altered by

the z 7−→ −z argument change:

L2(z) := =(Li2(−z) + arg(1 + z) log |z|), z ∈ C. (4.11)

Then Abel’s pentagon relation for the Bloch-Wigner dilogarithm is

5∑
i=1

L2(r(xi, xi+1, xi+2, xi+3)) = 0. (4.12)

The Bloch-Wigner function also satisfies the reality condition L2(z) + L2(z) = 0. Any

functional equation for the Bloch-Wigner function can be deduced from this and Abel’s

equation. Since the complex-valued dilogarithm certainly does not satisfy in general any
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reality condition, one refers to Abel’s pentagon equation as the generic functional equation

for the dilogarithm.

Now the Bloch group is a Q-vector space given by the quotient

B2(F ) :=
Q[F ]

R2(F )
. (4.13)

In general we denote elements of Bn(F ) by {x}n, with x ∈ F . It can be deduced from

Beilinson’s conjectures [48] and Suslin’s theorem [51], that one should have

L2(F ) = B2(F ). (4.14)

Set F ∗Q := F ∗ ⊗Q. The weight 2 part of the cocommutator map (4.2) is a map

δ : L2(F )→ Λ2L1(F ). (4.15)

The claim is that using the isomorphisms (4.8) and (4.13), it becomes a map

δ : B2(F ) −→ Λ2F ∗Q, {x}2 7−→ (1 + x) ∧ x, {0}2, {−1}2 7−→ 0. (4.16)

This can also be deduced from Suslin’s theorem. A non-trivial but not difficult fact to

check is that the map {x} 7−→ (1 + x) ∧ x kills the five-term relations (4.10), and thus

descends to a map of the space B2(F ).

Notice that, unlike in the more traditional way to present Abel’s pentagon identity,

all terms in this formula appear with a plus sign. Moreover, the arguments of the pen-

tagon equation are nothing else but the cluster X -coordinates on the configuration space

Conf5(P1) (see section 6). In particular, this explains the origin of the non-standard nor-

malization of the classical cross-ratio used in the definition (4.9).

Weight 3. Let us describe now the space L3(F ), following [23]. Consider the triple ratio

of 6 points (z1, . . . , z6) in P2, given by the formula

r3(z1, . . . , z6) := −〈124〉〈235〉〈316〉
〈125〉〈236〉〈314〉

. (4.17)

Here we pick vectors (l1, . . . , l6) in a three-dimensional vector space V3 projecting onto the

points (z1, . . . , z6), and set 〈ijk〉 := ω3(li, lj , lk), where ω3 is a volume form in V3.

It was proved in [23] that the triple ratio r3 plays a similar role for the trilogarithm

as the classical cross-ratio in eq. (4.9) does for the dilogarithm. Precisely, consider the

following single-valued version of the trilogarithm, which is the function from [52] with

argument modified by the change z 7−→ −z:

L3(z) := <
(

Li3(−z)− Li2(−z) log |z| − 1

3
log2 |z| log(1 + z)

)
, z ∈ C. (4.18)

The functional equations for the trilogarithm are provided by configurations of 7 points

(z1, . . . , z7) in CP2. Specifically,

7∑
i=1

(−1)i
(

Alt6 L3(r3(z1, . . . , ẑi, . . . , z7))
)

= 0. (4.19)
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Here Alt6 stands for the skew-symmetrization of the six points z1, . . . , ẑi, . . . , z7.

The function L3(z) satisfies the reality equation L3(z) = L3(z). Just like in the case of

the Bloch-Wigner function, any functional equation for the function L3(z) can be deduced

from the reality equation and the equation (4.19). So the latter is referred to as the generic

functional equation for the trilogarithm.

For an arbitrary field F , given any 7 points on the projective plane over F , consider

an element
7∑
i=1

(−1)i
(

Alt6{r3(z1, . . . , ẑi, . . . , z7)}
)
∈ Q[F ]. (4.20)

Let R3(F ) be the subspace generated by the elements (4.20), where (z1, . . . , z7) are points

in the projective plane over F , and {0}. Set

B3(F ) :=
Q[F ]

R3(F )
. (4.21)

One deduces from the work [23, 53] on the proof of Zagier’s conjecture [52] on special values

of Dedekind ζ-functions at s = 3 that one should have

L3(F ) = B3(F ), (4.22)

However the nature of the triple ratio (4.17) was a mystery. It was realized much later

that the triple ratio is a cluster X -coordinate on the configuration space Conf3(P2), and

moreover it is one which cannot be reduced to cross-ratios of the type in eq. (4.9). We will

return to this later on.

The weight 3 part of the cocommutator map (4.2) is a map2

L3(F )→ L2(F )⊗ L1(F ). (4.23)

It follows from [23] that, using the isomorphisms (4.8), (4.13) and (4.21), it becomes a map

δ : B3(F ) −→ B2(F )⊗ F ∗Q, {x}3 7−→ {x}2 ⊗ x. (4.24)

A quite non-trivial fact to check here is that the map {x} 7−→ {x}2 ⊗ x kills the rela-

tions (4.20) and thus descends to a map defined on the space B3(F ), see [54].

The higher analogs of the B-groups were defined in [23, 53]. The group Bn(F ) is the

quotient of the Q-vector space Q[F ] by the subspace of functional equations for the classical

n-logarithm. Although the functional equations are not known explicitly in general, the

subgroup they generate is defined for all n inductively. Namely, consider a map

δ′n : Q[F ] −→

{
Bn−1(F )⊗ F ∗Q, n ≥ 3

Λ2F ∗Q, n = 2,
{x} 7−→

{
{x}n−1 ⊗ x, n ≥ 3,

(1− x) ∧ x, n = 2.
(4.25)

Now replace F by the field F (t) of rational functions in one variable, and take an element∑
i ai{fi(t)} ∈ Q[F (t)] killed by the map δ′n. We define a subspace Rn(F ) ⊂ Q[F ] as the

2Here and in all that follows we use V ⊗W to denote the summand in Λ2(V ⊕W ) given by vectors of

the form v ⊗ w − w ⊗ v, since the map v ⊗ w ∈ V ⊗W 7−→ v ⊗ w − w ⊗ v ∈ Λ2(V ⊕W ) is injective.
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subspace generated by the elements
∑

i ai({fi(0)} − {fi(1)}), where we added {∞} := 0.

Then we set

Bn(F ) :=
Q[F ]

Rn(F )
. (4.26)

The change of notation from Bn(F ) to Bn(F ) emphasizes that we deal with the definition

where the functional equations are not known explicitly. The map δ′n induces a map

δn : Bn(F ) −→

{
Bn−1(F )⊗ F ∗Q, n ≥ 3,

Λ2F ∗Q, n = 2,
{x}n 7−→

{
{x}n−1 ⊗ x, n ≥ 3,

(1− x) ∧ x, n = 2.
(4.27)

One has Bn(F ) = Bn(F ) for n = 2, 3.

At this point one might ask whether we have Ln(F ) = Bn(F ) for all n. It was shown

in [23] that this is not the case starting with n = 4. Since this is the case we deal with

when studying two-loop amplitudes, let us discuss it in detail.

Weight 4. It is conjectured in [23]3 that the Q-vector space L4(F ) is an extension

0 −→ B4 −→ L4 −→ Λ2B2 −→ 0. (4.28)

Here we start skipping the field F in the notation.

To understand the nature of this extension, let us look at the coproduct map

δ : L4 −→ Λ2L2

⊕
L3 ⊗ L1 = Λ2B2

⊕
B3 ⊗ F ∗Q. (4.29)

The map

δ2,2 : L4 −→ Λ2B2 (4.30)

in (4.28) is just a part of the coproduct. It is known to be surjective. The restriction of

the coproduct to the subspace B4 in (4.28) is described as the map (4.27) for n = 4.

One can reformulate this as follows. Given an element l ∈ L4(F ), one can ask whether

it can be written as a sum of the (motivic) classical 4-logarithms. If δ2,2(l) 6= 0, the answer

is no. Indeed, the coproduct of the classical motivic 4-logarithm is given by

δ : {x}4 7−→ {x}3 ⊗ x ∈ B3(F )⊗ F ∗Q.

Therefore the B2 ∧B2-component is zero. The deeper part of the conjecture tells that if

δ2,2(l) = 0, the answer is yes. So the map (4.30) is precisely the obstruction for an element

l to be a sum of the (motivic) classical 4-logarithms.

In summary, one can express L4 in terms of the higher Bloch groups, which reflect

properties of the classical polylogarithms, which are function of a single variable. The

Freeness Conjecture tells that a similar description is expected for all Ln. Here is its

essential part:

3This is a conjecture about a conjectural object. The point is that the very existence of the Lie coalgebra

L•(F ), although still conjectural, follows from some ‘standard’ conjectures in algebraic geometry. Although

there is a lot of evidence for the conjecture on L4(F ), it is not known how to reduce it to any ‘first

principles’ conjectures.
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Conjecture. Let Lieb•(F ) be the free graded Lie algebra generated by the Q-vector spaces

Bn(F )∗ dual to Bn(F ), where n ≥ 2 and the weight of Bn(F )∗ is −n. Let us denote by

Lieb∗•(F ) the graded dual Lie coalgebra, graded by n = 2, 3, . . . Then one has

L•(F ) = Lieb∗•(F ). (4.31)

For example, when n = 1, 2, 3 we cannot present n as a sum of two integers ≥ 2,

and thus the Freeness Conjecture implies Ln = Bn for n = 1, 2, 3. In contrast with this,

4 = 2 + 2, and so, besides B4, we have an extra contribution to L4 given by Λ2B2. It is the

dual to the commutators of the weight −2 elements in the free Lie algebra Lieb•.

4.3 Symbols

Recall the motivic Hopf algebra A•(F ). One has A1(F ) = F ∗Q. Let ∆n−1,1 : An(F ) −→
An−1(F ) ⊗ A1(F ) be the (n − 1, 1)-component of the coproduct. Iterating it, we get a

sequence of maps

An(F ) −→ An−1(F )⊗A1(F ) (4.32)

−→ An−2(F )⊗A1(F )⊗A1(F )

−→ . . .

−→ ⊗nA1(F ) = ⊗nF ∗Q.

Its composition is a map, called the symbol map:

S : An(F ) −→ ⊗nF ∗Q. (4.33)

4.4 Motivic scattering amplitudes

The L-loop n-particle MHV motivic amplitudes in SYM theory, considered modulo prod-

ucts, are elements AMn,L ∈ L2L. The two-loop motivic amplitudes are therefore elements

AMn,2(Z1, . . . , Zn) ∈ L4(F ), F = Q(Z1, . . . , Zn) (4.34)

defined by a generic configuration of n points (Z1, . . . , Zn) in P3. Therefore, as was ex-

plained above, according to the conjectural description (4.28) of L4, they can be expressed

via Li4(z) if and only if the Λ2B2 obstruction vanishes. This is exactly what happened

in [22] where the two-loop n = 6 MHV amplitude was calculated as a sum of classical

4-logarithms. The problem set out for us here and subsequent work is therefore:

Problem. Calculate the motivic n-particle two-loop MHV amplitudes for n > 6. More

specifically, this amounts to computing the coproduct

δM(AMn,2(Z1, . . . , Zn)) ∈ Λ2B2(F )
⊕

B3(F )⊗ F ∗Q, F = Q(Z1, . . . , Zn). (4.35)

The coproduct determines the amplitude as a function up to a constant and products

of similar functions of lower weight. Unlike the mysterious extension (4.28), which is non-

split, the coproduct is given in terms of the groups Bn, n = 1, 2, 3, and so its calculation

– 16 –



J
H
E
P
0
1
(
2
0
1
4
)
0
9
1

is a precise problem. Let us emphasize that due to the ‘one-variable’ nature of the groups

Bn, to write an element in Λ2B2
⊕

B3⊗F ∗Q we need a collection of functions on the config-

uration space Confn(P3) —the arguments of the dilogarithms and trilogarithms. The only

ambiguity of such a presentation results from the functional equations they satisfy.

As we show below, these functions for the 2-loop n-particle MHV motivic amplitudes,

where n = 6, 7, are cluster X -coordinates on the space Confn(P3). Moreover, although

functional equations do come into the picture, the ones we see for the two-loop amplitudes

are also of cluster nature, and discussed in appendix B.

We would like to stress that without the motivic approach one cannot even formulate

Problem 4.4—there is no way to define the coproduct just on the level of functions. More-

over, due to non-split nature of the extension (4.28), there is even no canonical way to

write a general element of L4.

5 The coproducts of two-loop MHV motivic amplitudes

Using the symbol of the two-loop n-point MHV amplitude, as computed in [55], one can

calculate the coproduct δ(AMn,2) of the corresponding motivic amplitude as defined in the

previous section and summarized in eq. (4.35). For n = 6 the Λ2 B2 component is trivial,

as was noted already in [22], while the B3⊗C∗ part of the coproduct may be read off

immediately from (3.7):

δ(AM6,2)|B3⊗C∗ =
3∑
i=1

{x+
i }3 ⊗ x

+
i + {x−i }3 ⊗ x

−
i −

1

2
{vi}3 ⊗ vi. (5.1)

We defer results for general n to a subsequent publication and present here explicit

results only for n = 7, since our main goal at the moment is to call the reader’s attention

to the same two non-trivial features that we emphasized in section 3. The first feature is

that the entry z appearing inside each {z}2 or {z}3 is a single cross-ratio (rather than, as

might have been the case, some arbitrary algebraic function of cross-ratios); the second

feature is that of the thousands of such cross-ratios one can form at n = 7, only a small

handful actually appear in the motivic amplitudes. The structure of the results presented

here will be extensively discussed in subsequent sections.

5.1 The Λ2 B2 component for n = 7

We find that the Λ2 B2 component of δ(AM7,2) can be expressed as

∑
dihedral

({
〈7× 1, 2× 3, 4× 5〉
〈127〉〈345〉

}
2

∧
{
〈2× 3, 4× 6, 7× 1〉
〈167〉〈234〉

}
2

+
1

2

{
〈312〉〈347〉
〈371〉〈342〉

}
2

∧
{
〈713〉〈746〉
〈716〉〈734〉

}
2

)
+ parity conjugate, (5.2)

where the sum indicates that one should sum over the dihedral group acting on the particle

labels, resulting in a total of 42 distinct terms (the 1/2 in front of the second term is a

symmetry factor).
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It is important to note that this expression is of course not unique. There are two

kinds of ambiguities: first of all, there are dilogarithm identities which hold at the level of

B2 and are a consequence of Abel’s pentagon relation (4.12). One slightly non-trivial, but

easily checked, example is

0 = −
{

〈127〉〈156〉〈345〉
〈157〉〈1× 2, 3× 4, 5× 6〉

}
2

+

{
〈127〉〈256〉〈345〉

〈257〉〈1× 2, 3× 4, 5× 6〉

}
2

(5.3)

+

{
−〈567〉〈1× 2, 3× 4, 5× 6〉
〈256〉〈1× 7, 3× 4, 5× 6〉

}
2

−
{
− 〈127〉〈345〉〈567〉
〈157〉〈2× 7, 3× 4, 5× 6〉

}
2

−
{
〈571〉〈562〉
〈512〉〈567〉

}
2

.

Such identities relate different, but equivalent, expressions for the Λ2 B2 component which

in general have different numbers of terms.

Secondly there is ambiguity in writing (5.2) due to the trivial identities

{x}2 ∧ {y}2 = −{1/x}2 ∧ {y}2 = {1/x}2 ∧ {1/y}2 = −{x}2 ∧ {1/y}2 (5.4)

which preserve the number of terms.

Given these ambiguities one may wonder about the value in providing any explicit

formula such as (5.2). Is there some invariant way of presenting the Λ2 B2 part of the

coproduct of this amplitude, without having to commit any particular representation?

To phrase this question in language familiar to physicists: if we think about the equa-

tions (5.3) and (5.4) as generating some kind of gauge transformations, then what is the

gauge-invariant content of the Λ2 B2 component of this coproduct?

We pose this question here merely as a teaser; to answer it fully requires the mathemat-

ical machinery to be built up in section 6. Nevertheless we will also tease the reader here

with the answer: the 42 terms in (5.2) are naturally in correspondence with certain quadri-

lateral faces of the E6 Stasheff polytope, and this is the shortest manifestly symmetric

(dihedral + parity) representative with this property.

5.2 The B3⊗C∗ component for n = 7

In order to save space, we will make use of the dihedral symmetry and invariance un-

der rescaling of the MHV amplitude to write only the two independent B3 components

necessary to express the full answer. First, for the 〈124〉 component of C∗ we find the

B3 element{
〈127〉〈256〉〈345〉

〈257〉〈1× 2, 3× 4, 5× 6〉

}
3

+

{
〈125〉〈234〉〈567〉

〈257〉〈1× 2, 3× 4, 5× 6〉

}
3

−
{

〈127〉〈234〉〈345〉〈567〉
〈257〉〈347〉〈1× 2, 3× 4, 5× 6〉

}
3

+

{
〈124〉〈157〉
〈127〉〈145〉

}
3

+

{
−〈127〉〈254〉〈516〉
〈124〉〈256〉〈517〉

}
3

−
{
〈214〉〈257〉
〈217〉〈245〉

}
3

+

{
〈412〉〈435〉
〈415〉〈423〉

}
3

−
{
〈412〉〈437〉
〈417〉〈423〉

}
3

−
{
−〈147〉〈452〉〈516〉
〈142〉〈456〉〈517〉

}
3

−
{
−〈247〉〈453〉〈526〉
〈243〉〈456〉〈527〉

}
3

+

{
〈412〉〈457〉
〈417〉〈425〉

}
3

−
{
〈512〉〈547〉
〈517〉〈524〉

}
3

+

{
〈712〉〈745〉
〈715〉〈724〉

}
3
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−
{
〈413〉〈457〉
〈417〉〈435〉

}
3

+

{
〈423〉〈457〉
〈427〉〈435〉

}
3

−
{
−〈241〉〈453〉〈527〉
〈243〉〈457〉〈521〉

}
3

+

{
−〈241〉〈473〉〈725〉
〈243〉〈475〉〈721〉

}
3

+

{
〈512〉〈567〉
〈517〉〈526〉

}
3

−
{
−〈254〉〈576〉〈721〉
〈256〉〈571〉〈724〉

}
3

−
{
〈514〉〈567〉
〈517〉〈546〉

}
3

+

{
−〈452〉〈576〉〈741〉
〈456〉〈571〉〈742〉

}
3

−
{
〈524〉〈567〉
〈527〉〈546〉

}
3

+

{
−〈453〉〈576〉〈742〉
〈456〉〈572〉〈743〉

}
3

. (5.5)

Secondly, for 〈125〉 (this is symmetric under 1↔ 2, 7↔ 3, 6↔ 4) we find

−
{

〈157〉〈234〉
〈1× 2, 3× 4, 5× 7〉

}
3

−
{

〈123〉〈457〉
〈1× 2, 3× 4, 5× 7〉

}
3

−
{

〈127〉〈134〉〈567〉
〈167〉〈1× 2, 3× 4, 5× 7〉

}
3

+

{
〈127〉〈234〉〈567〉

〈267〉〈1× 2, 3× 4, 5× 7〉

}
3

+

{
〈123〉〈345〉〈567〉

〈356〉〈1× 2, 3× 4, 5× 7〉

}
3

−
{

〈124〉〈345〉〈567〉
〈456〉〈1× 2, 3× 4, 5× 7〉

}
3

−
{
〈123〉〈145〉
〈125〉〈134〉

}
3

− 2

{
〈125〉〈167〉
〈127〉〈156〉

}
3

+

{
〈412〉〈435〉
〈415〉〈423〉

}
3

+

{
〈512〉〈534〉
〈514〉〈523〉

}
3

−
{
−〈231〉〈354〉〈526〉
〈234〉〈356〉〈521〉

}
3

+

{
−〈241〉〈453〉〈526〉
〈243〉〈456〉〈521〉

}
3

+

{
〈523〉〈546〉
〈526〉〈534〉

}
3

+ (1↔ 2, 7↔ 3, 6↔ 4). (5.6)

The full B3⊗C∗ part of the coproduct of the two-loop n = 7 MHV motivic amplitude

is assembled in terms of these two building blocks as∑
dihedral

[
(eq. (5.5))⊗ 〈124〉〈567〉

〈127〉〈456〉
+

1

2
(eq. (5.6))⊗ 〈125〉〈167〉〈234〉

〈123〉〈127〉〈456〉

]
. (5.7)

Let us comment briefly on the action of parity (defined and discussed in detail in

appendix A) on eq. (5.7). If we apply parity to the first term in eq. (5.7) and then the

permutation (1, 7, 6, 5, 4, 3, 2), the C∗ term is unchanged. The corresponding B3 terms are

identical up to a 40-term Li3 identity, of the type discussed in appendix B. The parity

invariance of the second term in eq. (5.7) is easier to prove: applying parity followed by

the permutation (4, 5, 6, 7, 1, 2, 3) leaves both the C∗ term and the corresponding B3 part

invariant. Therefore in this case the parity invariance is manifest, without requiring any

Li3 identities. We note with interest that the aforementioned 40-term identity is the only

nontrivial Li3 identity which plays a role in elucidating the structure of this amplitude.

6 Cluster coordinates and cluster algebras

Having presented concrete results of the calculation of the coproduct for the two-loop

n = 7 MHV amplitude, we now turn to a second main theme of the paper: establishing

the connection between the coproduct of motivic amplitudes and cluster algebras. This

section is aimed primarily at physicists since most of this material is a review of fairly
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well-known mathematical facts, with a focus on the intended application to Confn(P3), the

space on which scattering amplitudes live. We start with a short introduction to cluster

algebras, which were discovered and first developed in a series of papers [25, 26] by Fomin

and Zelevinsky. The configuration space Confn(Pk−1) of n points in Pk−1 has the structure

of a cluster Poisson variety [24]—a structure closely related to cluster algebras. Our aim in

this section is to guide the reader quickly to an understanding of what cluster variables are,

and how they may be systematically constructed via a process called mutation. Cluster

coordinates come in two types, referred to as cluster A-coordinates for Grassmannians and

cluster X -coordinates for the configuration spaces Confn(Pk−1).

To guide the reader, let us specify the spaces where different types of cluster coordinates

live. Recall (see section 2) that the Grassmannian Gr(k, n) is birationally isomorphic to the

configuration space of vectors Confn(k). The latter projects onto the space of projective

configurations Confn(Pk−1):

Gr(k, n)
∼−→ Confn(k)

π−→ Confn(Pk−1). (6.1)

Cluster A-coordinates live naturally on the Plücker cone G̃r(k, n) over the Grassmannian

rather than on the Grassmannian itself. This cone can be identified birationally with the

configuration space C̃onfn(k) of n vectors modulo the action of the group SLk rather than

GLk. Abusing terminology, one often refers to them as coordinates on the Grassmannian.

Cluster X -coordinates live naturally on the smaller space Confn(Pk−1) —its dimension is n

less then that of the C̃onfn(k). They describe a collection of log-canonical Darboux coordi-

nate systems for the natural cyclic invariant Poisson structure on the space Confn(Pk−1).

Using the canonical projection

π̃ : G̃r(k, n) −→ Confn(Pk−1)

one can lift the cluster X -coordinates on Confn(Pk−1), and express them as monomials of

the cluster variables in the Grassmannian cluster algebra. One cannot extend, however,

the Poisson structure to the cluster algebra without breaking the cyclic invariance. Notice

that the cluster algebra structure itself on C̃onfn(k) is (twisted) cyclic invariant. The cyclic

invariance is a crucial feature of the planar scattering amplitudes. So it is important that

both Grassmannian cluster algebra and the cluster Poisson structure on Confn(Pk−1) are

cyclic invariant.

6.1 Introduction and definitions

We can informally define cluster algebras as follows: they are commutative algebras con-

structed from distinguished generators (called cluster variables) grouped into non-disjoint

sets of constant cardinality (called clusters), which are constructed iteratively from an ini-

tial cluster by an operation called mutation. The number of variables in a cluster is called

the rank of the cluster algebra.

A simple example is the A2 cluster algebra defined by the following data:

• cluster variables: am for m ∈ Z, subject to am−1am+1 = 1 + am
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• rank: 2

• clusters: {am, am+1} for m ∈ Z

• initial cluster: {a1, a2}

• mutation: {am−1, am} → {am, am+1}.

Using the exchange relation am−1am+1 = 1 + am one sees that

a3 =
1 + a2

a1
, a4 =

1 + a1 + a2

a1a2
, a5 =

1 + a1

a2
, a6 = a1, a7 = a2. (6.2)

Therefore, the sequence am is periodic with period five and the number of cluster variables

is finite.

When expressing the cluster variables am in terms of a1 and a2, we encounter two inter-

esting features. First, the denominators of the cluster variables are always monomials. In

general the structure of an algebra is such that one might expect the cluster variables to be

more general rational functions of the initial cluster variables, but in fact the denominator

is always a monomial. This is known as the ‘Laurent phenomenon’ (see [25, 56]). A second

feature is that, conjecturally, the numerator of each cluster variable, expressed in terms of

the original cluster variables, is always a polynomial with positive integer coefficients.

Some cluster algebras may be defined in terms of another piece of mathematical ma-

chinery: quivers. A quiver is an oriented graph, and in the following we restrict to con-

nected, finite quivers without loops (arrows with the same origin and target) and two-cycles

(pairs of arrows going in opposite directions between two nodes).

Given a quiver and a choice of some node k on that quiver we can define a new quiver

obtained by mutating at node k. The new quiver is obtained by applying the following

operations on the initial quiver:

• for each path i→ k → j, add an arrow i→ j,

• reverse all arrows on the edges incident with k,

• and remove any two-cycles that may have formed.

The mutation at k is an involution; when applied twice in succession at the same node we

come back to the original quiver.

Quivers of the special type under consideration are in one-to-one correspondence with

skew-symmetric matrices defined as

bij = (#arrows i→ j)− (#arrows j → i). (6.3)

Since at most one of the terms above is nonvanishing, bij = −bji. Under a mutation at

node k the matrix b transforms to b′ given by

b′ij =


−bij , if k ∈ {i, j},
bij , if bikbkj ≤ 0,

bij + bikbkj , if bik, bkj > 0,

bij − bikbkj , if bik, bkj < 0.

(6.4)
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If we start with a quiver with n nodes and associate to each node i a variable ai, we

can use the skew-symmetric matrix b to define a mutation relation at the node k by

aka
′
k =

∏
i|bik>0

abiki +
∏

i|bik<0

a−biki , (6.5)

with the understanding that an empty product is set to one. The mutation at k changes

ak to a′k defined by eq. (6.5) and leaves the other cluster variables unchanged.

To illustrate these ideas we note that the initial cluster of the a2 cluster algebra can

be expressed by the quiver a1 → a2. Then, a mutation at a1 replaces it by a′1 = 1+a2
a1
≡ a3

and reverses the arrow. A mutation at a2 replaces it by a′2 = 1+a1
a2
≡ a5 and preserves the

direction of the arrow.

6.2 Cluster Poisson varieties

These are defined using the same combinatorial skeleton: quivers and mutations of quivers.

We assign now to the nodes of the quiver variables {xi} which mutate according to the

following rule:

x′i =

{
x−1
k , i = k,

xi(1 + xsgn bik
k )bik , i 6= k.

(6.6)

There is a natural Poisson bracket on the cluster X -coordinates. It is enough to define the

Poisson bracket between the X -coordinates in a given cluster, for which it is given in terms

of the antisymmetric matrix bij defined in (6.3) by

{xi, xj} = bijxixj . (6.7)

An important property of this Poisson bracket is that it is invariant under mutations, in

the sense that

{x′i, x′j} = b′ijx
′
ix
′
j (6.8)

whenever x′i, x
′
j and b′ij are obtained from xi, xj and bij by a mutation.

Given a quiver described by the matrix b, the cluster A- and X -coordinates can be

related as follows:

xi =
∏
j

a
bij
j . (6.9)

This relation is preserved under mutations (changing, of course, the bij-matrix).

We would like to stress that the cluster A- and X -coordinates live on different spaces

of the same dimension, denoted A and X . Indeed, they are parametrized by the same set,

the set of nodes of the corresponding quiver. Formula (6.9) is just a coordinate way to

express a canonical map of spaces p : A → X . The dimension of the fibers of this map is

the corank of the matrix b.

A sequence of cluster mutations can result in reproducing the original quiver, while

providing a non-trivial transformation of the cluster A- and X -coordinates. Such transfor-

mations form a group, introduced in [24] under the name cluster modular group.
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f1l · · · f13 f12 f11

f2l · · · f23 f22 f21

...
...

...
...

...

fkl · · · fk3 fk2 fk1

//

��

__
// //

��

__
//

��

__

//

��

// //

��

__
//

��

__

�� ��

____

��

Figure 1. The initial quiver for the Gr(k, n) cluster algebra (see refs. [58, 59]).

6.3 Grassmannian cluster algebras and cluster Poisson spaces Confn(Pk−1)

In our application we are interested in a special class of cluster algebras called cluster

algebras of geometric type. They are also described by quivers, but some of the nodes are

special and called frozen nodes. Edges connecting two frozen nodes are not allowed,4 and

we also do not allow mutations on the frozen nodes. The variables associated to the frozen

nodes are called coefficients instead of cluster variables (and the rank of the algebra is

equal only to the number of unfrozen nodes). We define the principal part of such a quiver

to be the quiver obtained by erasing the frozen nodes as well as all edges which connect

them to any of the non-frozen nodes. When drawing these special kinds of quivers, we will

indicate each frozen node by placing its label inside a box.

We now review the cluster algebras of geometric type which arise from the Grass-

mannian Gr(k, n) [57]. The Plücker coordinates 〈i1 . . . ik〉, being the minors obtained by

computing the determinant of the indicated columns i1 . . . ik of a matrix representative of

a point in Gr(k, n), are examples of A-coordinates.

The Plücker coordinates satisfy the relation

〈i, j, I〉〈k, l, I〉 = 〈i, k, I〉〈j, l, I〉+ 〈i, l, I〉〈j, k, I〉, (6.10)

where I is a multi-index with k − 2 entries, which bears a resemblance to the exchange

relation shown in eq. (6.5). Indeed the cluster algebra for Gr(k, n) is constructed by starting

with an initial cluster whose variables are certain Plücker coordinates. The operation of

4There is a different approach, advocated in [24], where half-edges between frozen variables are not only

allowed, but in fact play a crucial role in the amalgamation construction: building bigger cluster structures

from the smaller ones.
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mutation generates additional Plücker coordinates, as well as other, more complicated,

cluster A-coordinates. For general k and n and with l = n − k, the appropriate initial

quiver is given in ref. [58] (this construction is also reviewed in ref. [59]) and shown in

figure 1, where

fij =


〈i+ 1, . . . , k, k + j, . . . , i+ j + k − 1〉

〈1, . . . , k〉
, i ≤ l − j + 1,

〈1, . . . , i+ j − l − 1, i+ 1, . . . , k, k + j, . . . , n〉
〈1, . . . , k〉

, i > l − j + 1

. (6.11)

The boxes identify the frozen variables while the rest of the variables are unfrozen.

In order to obtain the quivers we will use below we need to make one last change

to the quiver above. We rescale all the coordinates, frozen and unfrozen, by 〈1, . . . , k〉.
This produces a frozen variable 〈1, . . . , k〉 which connects to the node labeled by f1l by an

ingoing arrow. After this modification all the unfrozen nodes of the initial quiver have an

equal number of ingoing and outgoing arrows.

The simplest nontrivial example is that of Gr(2, 5), which is relevant for configurations

of five points in P1. In this case the initial quiver is simply

〈13〉 〈14〉 〈15〉

〈45〉〈34〉〈23〉

〈12〉

//
__

��

��
//

__

��

(6.12)

where each node is labeled by its A-coordinate. In this case it is easy to check that

successive mutations on the two unfrozen nodes, in any order, generate only five distinct

quivers. The algebra so generated is nothing but the A2 algebra defined at the beginning

of section 6.1. The name of the algebra comes from the fact that the principal part of this

initial quiver is the same as the Dynkin diagram of the A2 Lie algebra.

Let us use this example to calculate X -coordinates. There is one such coordinate

associated to each unfrozen node k, expressed by taking the product of the A-coordinates

on the nodes connected to k by an incoming arrow, divided by the product of the A-

coordinates on the nodes connected to k by an outgoing arrow. So in the A2 quiver shown

above the X -coordinates associated to the nodes 〈13〉 and 〈14〉 are 〈12〉〈34〉/〈23〉〈14〉 and

〈13〉〈45〉/〈34〉〈15〉 respectively. Cluster A-coordinates are not invariant under rescaling of

the individual vectors in a Gr(k, n) matrix, but the X -coordinates are. Therefore only the

latter are good coordinates on the quotient Gr(k, n)/(C∗)n−1 = Confn(Pk−1) and are hence

appropriate objects to appear in motivic amplitudes.

To connect with the above general discussion of cluster Poisson varieties and X -

coordinates, in this example we use only the unfrozen part of the quiver to build the

X -coordinates. This leads to a reduced cluster X -space X ′, and the map described co-

ordinately in (6.9) reduces to a surjective map p′ : A → X ′ describing the projection

G̃r(k, n)→ Confn(Pk−1).

– 24 –



J
H
E
P
0
1
(
2
0
1
4
)
0
9
1

The two simplest examples relevant to SYM theory scattering amplitudes are those for

6 or 7 points in P3 (or, equivalently, in P1 or P2, respectively). For the former it is evident

from figure 1 that the principal part of the quiver is the same as the A3 Dynkin diagram.

For the latter the initial quiver is slightly more complicated:

〈267〉 〈367〉 〈467〉 〈567〉

〈456〉

〈345〉〈234〉

〈346〉〈236〉

〈123〉

〈126〉

〈127〉

〈167〉

//
__

��

��
//

__

��

//
__

��
//

__

��

__
//

��

//
__

��

. (6.13)

If we label the nodes occupied initially by 〈267〉, 〈367〉, 〈467〉, 〈126〉, 〈236〉, 〈346〉 by

numbers 1 through 6, then after a sequence of mutations at nodes 4, 3, 2, 5, 1, 4, 3, 4, 6,

the principal part of the quiver is brought into the form of the E6 Dynkin diagram5

〈124〉 〈247〉

〈256〉

〈5×6,7×2,3×4〉 〈3×4,5×6,7×1〉 〈157〉
��

// oooo //

. (6.14)

Therefore the Gr(3, 7) cluster algebra is also called the E6 algebra.

In [26] Fomin and Zelevinsky showed that a cluster algebra is of finite type (i.e., it has

a finite number of cluster variables) if there exists a sequence of mutations which turns the

principal part of its quiver into the Dynkin diagram of some classical Lie algebra. However,

if the principal part of the quiver contains a subgraph which is an affine Dynkin diagram,

then the cluster algebra is of infinite type.

In ref. [57], Scott classified all the Grassmannian cluster algebras of finite type. As

discussed in section 2, the relevant Grassmannian for scattering amplitudes in SYM theory

is Gr(4, n), for n ≥ 6. If n = 6 we need Gr(4, 6) = Gr(2, 6) which is of finite type A3.

If n = 7 we need Gr(4, 7) = Gr(3, 7) which is again of finite type E6. However, starting

at n = 8 the relevant cluster algebras are not of finite type anymore. This indicates that

there are infinitely many different A-coordinates which could appear in the symbol of these

amplitudes, and infinitely many different X -coordinates could appear in their coproduct.

Besides the usual Plücker determinants, mutations also lead in general to more com-

plicated A-coordinates. For example, with Gr(4, 8) one encounters

〈12(345) ∩ (678)〉 ≡ 〈1345〉〈2678〉 − 〈2345〉〈1678〉. (6.15)

5If we order them in the same way as in the initial cluster, the A-coordinates after this sequence of

mutations are 〈3× 4, 5× 6, 7× 1〉, 〈256〉, 〈124〉, 〈247〉, 〈5× 6, 7× 2, 3× 4〉, 〈157〉.
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As discussed in section 2, the notation with ∩ emphasizes the following geometrical fact:

the composite bracket 〈12(345)∩ (678)〉 vanishes whenever the points 1 and 2 are coplanar

with the projective line (345) ∩ (678) obtained by intersecting the two projective planes

(345) and (678).

One miraculous feature of the mutations is that the denominator can always be can-

celed by the numerator, after using Plücker identities. Therefore, the A-coordinates always

end up being polynomials in the Plücker coordinates. This is an analog of the Laurent phe-

nomenon mentioned above. An example which appears for Gr(4, 8) is

〈1237〉〈1245〉〈1678〉+ 〈1278〉〈45(671) ∩ (123)〉
〈1267〉

= 〈45(781) ∩ (123)〉. (6.16)

Here the left-hand side is the raw expression obtained for a certain A-coordinate following

some mutation, while the right-hand side is a simplified expression where the denominator

has been canceled by applying a Plücker relation to the numerator in order to pull out all

overall factor of 〈1267〉.
Both of these types of non-Plücker A-coordinates, eqs. (6.16) and (6.15), appear in

the symbol of the two-loop n = 8 MHV amplitude [55], and the simpler ones of the type

in eq. (6.16) appear already for n = 7 —indeed the long formulas in section 5 are littered

with these composite brackets (though expressed there in the P2 language).

However, since the number of A-coordinates is infinite for Gr(4, 8), mutations must

eventually generate even more exotic A-coordinates. A still relatively simple example is

− 〈(123) ∩ (345), (567) ∩ (781)〉. (6.17)

This quantity vanishes when the lines (123) ∩ (345) and (567) ∩ (781) intersect, which is

equivalent to saying that the lines (345) ∩ (567) and (781) ∩ (123) intersect. But there are

even more complicated A-coordinates such as

〈1246〉〈1256〉〈1378〉〈3457〉 − 〈1246〉〈1257〉〈1378〉〈3456〉
− 〈1246〉〈1278〉〈1356〉〈3457〉+ 〈1278〉〈1257〉〈1346〉〈3456〉

+ 〈1236〉〈1278〉〈1457〉〈3456〉. (6.18)

Neither of these complicated quantities appears as an entry in the symbol of the n = 8

MHV amplitude at two loops, but we know of no reason why they cannot appear at higher

loops. It would be extremely interesting to understand more about these algebras and their

relation to amplitudes.

One final, important comment has to do with cyclic symmetry, which is an exact

symmetry of MHV amplitudes (and of all super-amplitudes). Notice that the initial quivers

we have been using break the cyclic symmetry of the configuration of points. In order to

see that the cyclic symmetry is preserved we need to show that by mutations one can reach

another quiver whose labels are permuted by one unit. For the case of Gr(3, 7) described

above, this cannot be done in fewer than six mutations, since all the unfrozen A-coordinates

need to change. Indeed one can easily show that after mutating in the nodes which are

initially labeled by 〈126〉, 〈267〉, 〈236〉, 〈367〉, 〈346〉 and 〈467〉, we obtain the cluster with
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the node labels shifted by one 〈123〉 → 〈234〉, etc. This proves the cyclic symmetry for

Gr(3, 7). It is not hard to imagine that a similar procedure can be applied in the general

Gr(k, n) case, but we do not provide a complete proof of cyclic symmetry here.

6.4 Generalized Stasheff polytopes

In this section we review the connection [33] between cluster algebras and certain polytopes,

including the generalized Stasheff polytope or associahedron [34, 35]. Many additional

details and examples may also be found in [60].

The unfrozen nodes of a cluster algebra of rank r can be taken to be the vertices of

an r − 1-simplex. A k-simplex is a generalization of the notion of a triangle and can be

defined as a convex hull of its k + 1 vertices. A 0-simplex is a point, a 1-simplex is a line,

a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on.

If we take a subset of l+1 vertices of the k+1 vertices of a k-simplex we can form an l-

simplex which is called a face of the k-simplex. The number of l-faces of a k-simplex is
(
k+1
l+1

)
.

When doing a mutation in a cluster algebra of rank r, one of the A-coordinates changes

while the other r−1 stay unchanged. They define an r−2-face of the initial r−1-simplex.

Therefore, after mutation we obtain a new r−1-simplex which shares an r−2-face with the

initial simplex. We can glue them along this face to form an r − 1-dimensional polytope.

For cluster algebras of finite type, by doing all possible mutations, we can build a polytope

out of finitely many simplices.

In this language, the X -coordinates of the cluster algebra correspond to r − 2-faces

of the r − 1-simplex. The number of such faces is
(
r
r−1

)
= r, which equal to the rank of

the algebra. Under mutations, one of the X -coordinates transforms to its inverse while the

others transform in a more complicated way. So more properly we should associate to each

r − 2-face the pair consisting of an X -coordinate and its inverse.

The dual of the polytope we have described is a generalized Stasheff polytope (or

generalized associahedron, for a reason we will describe in the following section) associated

to the cluster algebra. It is a theorem which is deduced from [25], that for any cluster

algebras, the faces are always either quadrilaterals or pentagons. For example, the Stasheff

polytope associated to Gr(2, 6) has 3 quadrilateral faces and 6 pentagonal faces, while the

Gr(3, 7) polytope has 1785 quadrilaterals and 1071 pentagons.

6.5 Poisson bracket and generalized Stasheff polytopes

There is a simple connection between the Poisson bracket and the geometry of the Stasheff

polytope, which plays an important role in elucidating the structure of motivic amplitudes.

Two X -coordinates x1, x2 have zero Poisson bracket if the Stasheff polytope has some

quadrilateral face containing both x1 and x2 at each node in the configuration

{1/x1, x2, . . .}

{1/x1, 1/x2, . . .}{x1, 1/x2, . . .}

{x1, x2, . . .}

, (6.19)
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where the dots stand for other X -coordinates (some of which may overlap between some,

but not all, of the four corners). In such a case the variables x1, x2 form a closed A1 ×A1

subalgebra. Moving left-to-right or up-to-down is accomplished by mutating on x1 or

x2, respectively.

Two X -coordinates x1, x2 have Poisson bracket6 ±1 if they form a closed A2 subalge-

bra. In this case the Stasheff polytope has some pentagonal face containing x1 and x2 in

the configuration

{
x1

1 + x2
, x2 . . .

}
{

1 + x2

x1
,

x1x2

1 + x1 + x2
, . . .

}{
1 + x1 + x2

x1x2
,
1 + x1

x2
, . . .

}
{

1/x1,
x2

1 + x1
, . . .

}
{
x1, 1/x2, . . .

}

, (6.20)

in which case the variables x1, x2 form an A2 subalgebra.

6.6 Parity invariance

In this section we show that the parity operation (reviewed in appendix A) is an element of

the cluster modular group. Specifically, using the identities in appendix A, we verify that

the parity transform of any quiver is related by a sequence of mutations to the original

quiver. This implies that the set of cluster X -coordinates is closed under parity. It would

be very interesting to see if the rest of the cluster modular group plays some role, or has a

nice interpretation when acting on motivic amplitudes.

Of course, in simple cases like six points in P3 the parity invariance of the set of cluster

X -coordinates can be explicitly checked by enumerating all of them. However, due to the

large number of cluster coordinates, this is much more difficult for seven points and it is

impossible for more than seven points since then the cluster algebras are of infinite type.

For six points in P3 the initial quiver is shown in figure 2(a). Parity amounts to

replacing 〈ijkl〉 → [ijkl]. The angle brackets 〈ijkl〉 are invariants made up of twistors

Zi, Zj , Zk, Zk whereas the square brackets [i, j, k, l] are invariants made up of dual twistors

Wi,Wj ,Wk,Wk. Dual twistors can be written in terms of twistors as7 Wi = Zi−1∧Zi∧Zi+1.

6Here and in the following, when we say that two cluster X coordinates have Poisson bracket ±1 we

mean that the Poisson bracket of their logarithms is ±1.
7This is often written as Wi =

Zi−1∧Zi∧Zi+1

〈i−1i〉〈ii+1〉 such that Wi and Zi scale with opposite weight. The

two-brackets 〈ij〉 are defined by choosing an arbitrary line I (also called ‘infinity twistor’) and setting

〈ij〉 = 〈Iij〉. When constructing cross-ratios these two-brackets cancel out so in the following we will not

keep track of them.
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〈1235〉

〈1245〉

〈1345〉

〈2345〉 〈3456〉

〈1456〉

〈1256〉

〈1236〉

〈1234〉

��

__
//

��

��

__
//

��

__
//

(a)

〈2456〉

〈1245〉

〈1246〉

〈1256〉 〈1236〉

〈1234〉

〈2345〉

〈3456〉

〈1456〉

��

__
//

��

��

__
//

��

__
//

(b)

Figure 2. The initial quiver (a) for Gr(4, 6) and its parity conjugate (b).

Then we rewrite the [ijkl] in terms of angle brackets, as follows

[1235] = 〈6123〉〈1234〉〈2456〉, [1245] = 〈6123〉〈3456〉〈1245〉,
[1345] = 〈2345〉〈3456〉〈6124〉, [1234] = 〈6123〉〈1234〉〈2345〉,

cyclic permutations of [1234].

The X -coordinates of the quiver in figure 2(b) generate parity conjugates of the X -

coordinates of the quiver in figure 2(a). This quiver can be obtained from the initial

quiver by mutations, but with opposite directions of the arrows. Switching the direction

of all arrows replaces all the cross-ratios by their inverses. This does not change the set of

cluster coordinates since if a cross-ratio is a cluster X -coordinate then its inverse is also a

cluster X -coordinate.

We should note here that the parity transformation is, up to signs, the same as shifting

all the points by three. For example, 〈1234〉 → 〈1456〉, 〈1235〉 → 〈2456〉.
The seven-point case is a bit more complicated. Here also we start with the initial

quiver in figure 3(a) to which we apply parity 〈ijkl〉 → [ijkl]. Let us focus on the X -

coordinate sitting at the node labeled by 〈1235〉 in figure 3(a). It is given by 〈1234〉〈1256〉
〈1236〉〈1245〉 .

Using equations similar to the ones we used above for six points, we can write the

parity conjugate of the quiver X -coordinate at node 〈1235〉 as

〈1234〉〈1256〉
〈1236〉〈1245〉

→ [1234][1256]

[1236][1245]
=
〈1256〉〈2345〉〈4567〉
〈1245〉〈2567〉〈3456〉

. (6.21)

The parity conjugated cross-ratio is the same as the inverse cross-ratio sitting at the oppo-

site corner, at 〈2456〉 in the partner quiver in figure 3(b). Each of the unfrozen variables has
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〈1235〉

〈1245〉

〈1345〉

〈1236〉

〈1256〉

〈1456〉

〈1234〉

〈1237〉

〈1267〉

〈1567〉

〈4567〉〈3456〉〈2345〉

��

//
__

��

��

//
__

//
__

��

��

//

��

//

__

__

//
__

��

(a)

〈1257〉

〈1256〉

〈2567〉

〈1247〉

〈1245〉

〈2456〉

〈1267〉

〈1237〉

〈1234〉

〈2345〉

〈3456〉〈4567〉〈1567〉

��

//
__

��

��

//
__

//
__

��

��

//

��

//

__

__

//
__

��

(b)

Figure 3. The initial quiver (a) for Gr(4, 7) and its partner (b) which makes the parity conjugation

property manifest.

a correspondent among the unfrozen variables of the partner quiver. The X -coordinates of

nodes which are in correspondence are inverse and parity conjugate to one another. The

correspondence between nodes is defined as follows: the unfrozen nodes fit in a rectangular

pattern. Flip this rectangular pattern along the vertical and the horizontal. After these

flips the pattern of unfrozen nodes fits over the pattern of unfrozen nodes of the partner

quiver (note that after superposition all the arrows point in the opposite directions af-

ter this sequence of operations). For example, the correspondence between the nodes in

figures 3(a), 3(b) is the following: 〈1235〉 ↔ 〈2456〉, 〈1245〉 ↔ 〈1245〉, 〈1256〉 ↔ 〈1256〉,
〈1236〉 ↔ 〈2567〉, 〈1345〉 ↔ 〈1247〉, 〈1456〉 ↔ 〈1257〉.

Now we can show that the set of cluster X -coordinates is closed under parity conju-

gation. First, it is easy to show that the quiver in figure 3(b) can be obtained from the

quiver in figure 3(a) after four mutations. Another way to show that the two quivers can

be obtained from one another by mutations is to notice that the quiver in figure 3(a) can

be transformed to the quiver in figure 3(b) by a dihedral transformation of external data

1 ↔ 2, 3 ↔ 7, 4 ↔ 6. Then the conclusion follows from the dihedral symmetry of the

cluster algebra. So they generate the same cluster algebra. Moreover, for every sequence

of mutations in the quiver in figure 3(a), we can perform the same sequence of mutations

in the corresponding nodes of the partner quiver in figure 3(b) and we obtain the inverses

of parity conjugate X -coordinates. This analysis can be extended without difficulty to the

general case of cluster algebras G(4, n).
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6.7 Cluster algebras and the positive Grassmannian

The positive Grassmannian is defined as the subspace of the real Grassmannian for which

the ordered Plücker coordinates are all positive (see also appendix A for more details):

Gr+(k, n) = {(c1 · · · cn) ∈ Gr(k, n,R) : 〈ca1 · · · cak〉 > 0 whenever a1 < · · · < ak}.

The mutation relation (6.5) clearly respects positivity: if the A-coordinates in the initial

cluster are all chosen to be positive, then all subsequently generated A-coordinates, in

every cluster, will continue to be positive. The same trivially holds for X -coordinates since

they are just products of A-coordinates.

It is manifest that set of positive configurations of points on P3 constitutes a subspace

of what physicists call the Euclidean region, in which scattering amplitudes are expected

to be smooth, real-valued functions. This is in strong accord with the main slogan of [32],

though we are talking here about positivity in the external kinematic data, rather than in

the Grassmannian of internal (i.e., loop integration) variables. It seems clear that the full

power of positivity has not yet been unleashed.

By construction, any cluster X -coordinate x has the property that 1 + x factors into

a product of A-coordinates. We have found empirically that positivity allows for a quick

criterion to go the other way around: suppose we have identified some cross-ratio r for

which 1 + r so factors; how do we determine whether or not r is a cluster X -coordinate?

The answer is simply to evaluate the triple

{r,−1− r,−1− 1/r} (6.22)

at a random point in the positive Grassmannian. In all of our experience to date, one

of these three quantities will be positive and the other two negative; the positive one is

an X -coordinate and the other two are not. Certainly this criterion is valid for n = 6, 7

where we can enumerate all such possibilities, and it has held true at higher n in all cases

we have looked at. However in the infinite-dimensional algebras we cannot exclude the

possibility that there might exist some sufficiently complicated cross-ratio r for which 1+r

factorizes, yet no member of the above list is an X -coordinate. Let us note also that for a

given cross-ratio r, different elements of the above list may be X -coordinates with respect

to different orderings of the external points.

7 Cluster coordinates and motivic analysis for n = 6, 7

We now have built up all of the machinery we need in order to carry out a full motivic

analysis of the two-loop n = 6, 7 MHV amplitudes. To that end we begin this section

with a detailed discussion of the cluster coordinates and Stasheff polytopes for Gr(2, 6)

and Gr(3, 7).

7.1 Clusters and coordinates for Gr(2, 6)

Beginning with the initial quiver for Gr(2, 6), we can generate all of the clusters and their

A- and X -coordinates by successively mutating at various nodes. The A3 cluster algebra
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Figure 4. A triangulation T of the hexagon. One of the edges of the triangulation is marked by E.

generated in this manner has a total of 15 A-coordinates, which are the standard Plücker

coordinates 〈ij〉 on Gr(2, 6). The six coordinates with i and j adjacent (mod 6) are frozen,

while the remaining nine are unfrozen.

However, in the special case of Gr(2, n) cluster algebras the mutations can also be given

a simple geometric interpretation which we now describe. The discussion in this section

follows ref. [24].

We start with a configuration of n points in P1 with coordinates zi, i = 1, . . . , n and

we fix a cyclic ordering. To these points we associate a convex polygon, with each vertex

of the polygon labeled by one coordinate zi. Then, consider a complete triangulation T of

this polygon, as in figure 4.

A triangulation T and a diagonal E of that triangulation uniquely determine a quadri-

lateral for which E is a diagonal. The points in P1 corresponding to the vertices of this

quadrilateral have a cross-ratio in P1. For example, to the diagonal E in figure 4 we

associate the cross-ratio

r(3, 5, 1, 2) = r(1, 2, 3, 5) ≡ (z1 − z2)(z3 − z5)

(z2 − z3)(z1 − z5)
. (7.1)

Note that the vertices of the quadrilateral are read in the same order as the cyclic order

of the n points, starting at one of the points incident with the diagonal E. Note that it

doesn’t matter which of the two points incident with E we start with, due to the identity

r(k, l, i, j) = r(i, j, k, l). (7.2)

Moreover, if we read the list of vertices in the opposite order, we obtain the inverse cross-

ratio since

r(i, l, k, j) =
1

r(i, j, k, l)
. (7.3)

Now we introduce a function b which associates to a pair of diagonals in a triangulation

a number which is 0 or ±1. Two diagonals in a triangulation are called adjacent if they
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Figure 5. A sequence of mutations for five points. At each step the side colored in red gets flipped.

are the sides of one of the triangles of the triangulation. If two diagonals E and F are not

adjacent we set bEF = 0. If E and F are adjacent we set bEF = 1 if E comes before F

when listing the diagonals at E ∩ F in anticlockwise order. Otherwise we set bEF = −1.

Now we can define cluster transformations (or mutations). The starting point is a

triangulation, to which we can associate a set of cross-ratios, as described above (one

cross-ratio for each diagonal). A cluster transformation is obtained by picking one of the

diagonals and replacing it with the other diagonal in the same quadrilateral. A sequence

of such mutations is represented in figure 5, where after five steps we reach the original

configuration.

It is not hard to show that the effect of a mutation on the diagonal labeled by k on

the cross-ratios Xj corresponding to the other diagonals is given by

X ′i = µkXi =

{
X−1
k , i = k,

Xi(1 +X
sgn(bik)
k )bik , i 6= k.

(7.4)

This is the same as eq. (6.6). As we noted before, flipping the diagonal produces the inverse

of the initial cross-ratio. The mutation in eq. (7.4) reproduces this. Also, the cross-ratios

corresponding to diagonals non-adjacent to the diagonal being flipped remain unchanged.

This is obvious since in this case bik = 0.

Now let us specialize to the case n = 6 of interest. A hexagon admits 14 distinct

complete triangulations, each having three diagonals. These correspond to the 14 different

clusters, each with three X coordinates. Out of these 42 are 15 distinct coordinates (as

mentioned before we never count both x and 1/x separately). Nine of these ratios were

already displayed in eq. (3.4); the remaining six have not been given a name in previous
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literature on n = 6 scattering amplitudes since they do not appear in the two-loop MHV

amplitude. For completeness let us list here all 15 X -coordinates

v1 = r(3, 5, 6, 2), v2 = r(1, 3, 4, 6), v3 = r(5, 1, 2, 4),

x+
1 = r(2, 3, 4, 1), x+

2 = r(6, 1, 2, 5), x+
3 = r(4, 5, 6, 3),

x−1 = r(1, 4, 5, 6), x−2 = r(5, 2, 3, 4), x−3 = r(3, 6, 1, 2), (7.5)

e1 = r(1, 2, 3, 5), e2 = r(2, 3, 4, 6), e3 = r(3, 4, 5, 1),

e4 = r(4, 5, 6, 2), e5 = r(5, 6, 1, 3), e6 = r(6, 1, 2, 4),

in terms of the P1 cross-ratio defined in eq. (3.5).

Out of the 45 possible cross-ratios of the form r(i, j, k, l), the 15 X -coordinates are

special in that they are precisely those in which the points i, j, k, l come in cyclic order.

The three most well-known cross-ratios which are not cluster X -coordinates are the ones

known in the literature as

u1 = −r(3, 6, 5, 2), u2 = −r(1, 4, 3, 6), u3 = −r(5, 2, 1, 4). (7.6)

These are related to cluster X -coordinates by ui = 1/(1 + vi).

7.2 The generalized Stasheff polytope for Gr(2, 6)

Let us now discuss the geometry of the Stasheff polytope for the A3 cluster algebra detailed

in the previous section. In this case each cluster is in correspondence with a 2-simplex, or

a triangle. There are 14 clusters, to each of which corresponds a triangle. We can label

each triangle by the three A-coordinates which appear on its vertices:

〈13〉, 〈14〉, 〈15〉, 〈14〉, 〈15〉, 〈24〉, 〈13〉, 〈15〉, 〈35〉, 〈13〉, 〈14〉, 〈46〉,
〈15〉, 〈24〉, 〈25〉, 〈14〉, 〈24〉, 〈46〉, 〈15〉, 〈25〉, 〈35〉, 〈13〉, 〈35〉, 〈36〉,
〈13〉, 〈36〉, 〈46〉, 〈24〉, 〈25〉, 〈26〉, 〈24〉, 〈26〉, 〈46〉, 〈25〉, 〈26〉, 〈35〉,
〈26〉, 〈35〉, 〈36〉, 〈26〉, 〈36〉, 〈46〉.

(7.7)

These triangles fit together in a polytope with 14 triangular faces, shown in figure 6. The

polytope has 9 vertices given by the non-frozen A-coordinates 〈13〉, 〈14〉, 〈15〉, 〈24〉, 〈25〉,
〈26〉, 〈35〉, 〈36〉 and 〈46〉, and 21 edges.

All faces are triangles, but there are two different types of vertices: 〈14〉, 〈25〉 and

〈36〉 have valence four (they are incident with four edges) while the other six vertices have

valence five. The polytope has the topology of a sphere as can be confirmed by computing

the Euler characteristic χ = V − E + F = 9− 21 + 14 = 2.

Now recall that to each edge of the polytope we can associate a pair consisting of an

X -coordinate and its inverse. Let us take a closer look at the X -coordinates corresponding

to the edges incident on the two kinds of vertices. In order for the association between

X -coordinates and edges to be one-to-one, we need to pick an orientation. Consider for

example the valence 4 vertex shown in figure (7(a)). As we go around it we encounter the

cross-ratios
〈14〉〈23〉
〈12〉〈34〉

,
〈14〉〈56〉
〈16〉〈45〉

,
〈12〉〈34〉
〈14〉〈23〉

,
〈16〉〈45〉
〈14〉〈56〉

. (7.8)
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X13\

X14\

X15\

X24\

X35\

X46\

X25\

X36\

X26\

Figure 6. The polytope obtained by gluing together the triangles associated to clusters of the

Gr(2, 6) (i.e., A3) cluster algebra.

〈46〉〈24〉

〈15〉 〈13〉

〈12〉〈34〉
〈14〉〈23〉

〈16〉〈45〉
〈14〉〈56〉

〈14〉〈23〉
〈12〉〈34〉

〈14〉〈56〉
〈16〉〈45〉

〈14〉

(a)

〈46〉

〈36〉

〈35〉〈15〉

〈14〉

〈13〉

〈16〉〈34〉
〈13〉〈46〉

〈34〉〈56〉
〈36〉〈45〉

〈13〉〈56〉
〈16〉〈35〉

〈13〉〈45〉
〈15〉〈34〉

〈16〉〈45〉
〈14〉〈56〉

(b)

Figure 7. The cross-ratios (X -coordinates) around a valence 4 vertex (a) and a valence 5 vertex

(b) of the polytope (figure 6) associated to the Gr(2, 6) cluster algebra. For clarity we have omitted

the crucial overall minus sign in front of each X -coordinate.

The third cross-ratio is an inverse of the first while the fourth is an inverse of the second.

Therefore, the cluster coordinates are the same as for the A1 ×A1 cluster algebra. This is

the dual of the statement shown in eq. (6.19).

On the other hand, if we consider for example the valence 5 vertex shown in figure 7(b),

the corresponding list of cross-ratios is

〈13〉〈45〉
〈15〉〈34〉

,
〈13〉〈56〉
〈16〉〈35〉

,
〈34〉〈56〉
〈36〉〈45〉

,
〈16〉〈34〉
〈13〉〈46〉

,
〈16〉〈45〉
〈14〉〈56〉

. (7.9)
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associahedron. Each of the 14 vertices (clusters) is labeled by its three X -coordinates. The 21

edges connect pairs of clusters which are related to each other by some mutation. The 9 faces

comprise three quadrilaterals (shown in blue) and six pentagons (shown in red). These correspond

respectively to A1 ×A1 and A2 subalgebras.

These are the X -coordinates of an A2 cluster algebra. It can be checked that these are

precisely minus the arguments of dilogarithms in the five-term dilogarithm identity (4.12).

This is the dual of the statement shown in eq. (6.20).

The dual polytope, shown in figure 8, has 14 vertices and 9 faces, three of which are

quadrilaterals and six of which are pentagons. This is the Stasheff polytope or the K5

associahedron. The name associahedron comes from the following construction: consider

n (in the case of K5 we take n = 5) non-commutative variables and all the ways of

inserting parentheses. For example, we have ((ab)(cd))e, (((ab)c)d)e, etc. In total there

are Cn−1 ways of parenthesizing n variables, where Cn is the nth Catalan number. Then,

join together two such expressions if one can be obtained from the other by applying the

associativity rule once. By joining all these expressions, we build up the Stasheff polytope.
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7.3 Cluster coordinates for Gr(3, 7)

Beginning with the initial quiver for Gr(3, 7), we can similarly generate all of the clusters

and theirA- and X -coordinates by successive mutations until all possibilities are exhausted.

The E6 algebra generated in this manner has a total of 49 well-known A-coordinates (see

for example [57]), composed of the 35 Plücker coordinates 〈ijk〉 on Gr(3, 7) together with

14 composite brackets of the form

〈1× 2, 3× 4, 5× 6〉, 〈1× 2, 3× 4, 5× 7〉 (7.10)

and their cyclic images. The seven coordinates 〈123〉, . . . , 〈712〉 are frozen, while the re-

maining forty-two are unfrozen.

Mutation generates 833 distinct clusters, which altogether contain a total of 385 dis-

tinct X -coordinates. We list all of them here by separating them into four classes, and use

the notation

r(a|b, c, d, e) =
〈abc〉〈ade〉
〈acd〉〈abe〉

(7.11)

as well as the P2 cross-ratio defined in eq. (4.9).

First of all there are 3× 7 = 21 coordinates of the form

r(2|1, 3, 5, 6),
〈231〉〈456〉

〈4× 5, 6× 1, 2× 3〉
,

〈127〉〈234〉〈345〉〈567〉
〈257〉〈347〉〈1× 2, 3× 4, 5× 6〉

(7.12)

together with their cyclic images. Each of these cross-ratios is real (that is, equal to its

parity conjugate — see appendix A), and it suffices to take only their cyclic images since

a dihedral transformation (i.e., i→ 8− i) maps this set back to itself.

Secondly there are a further 2× 14 = 28 real cross-ratios of the form

r3(1, 2, 5, 6, 3, 4),
〈127〉〈256〉〈345〉

〈257〉〈1× 2, 3× 4, 5× 6〉
, (7.13)

together with their dihedral images.

Next come 6 × 2 × 7 = 84 complex (that is, not equal to their parity conjugates)

cross-ratios of the form

r(2|1, 3, 4, 5), r(1|6, 3, 4, 5), r(3|2, 4, 5, 1), (7.14)

r3(1, 5, 3, 2, 6, 4), r3(1, 4, 6, 2, 3, 5),
〈127〉〈234〉〈567〉

〈267〉〈3× 4, 5× 7, 1× 2〉
,

together with their parity conjugates and all cyclic images thereof.

Finally we have the 9× 2× 14 = 252 complex cross-ratios

r(1|5, 2, 3, 4), r(1|6, 2, 3, 4), r(1|6, 2, 3, 5), (7.15)

r(1|6, 2, 4, 5), r(2|1, 3, 4, 6),

r3(1, 2, 4, 6, 3, 5), r3(1, 4, 3, 6, 5, 2), r3(1, 3, 5, 6, 2, 4),
〈261〉〈345〉

〈4× 5, 6× 1, 2× 3〉
,

together with their parity conjugates and all dihedral images thereof.
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Note that we have expressed most of the cross-ratios above in a form in which they

do not depend explicitly on point number 7. The three most complicated cross-ratios are

exceptions to this, and for these three we find it worthwhile to display here the non-trivial

factorizations

1 +
〈127〉〈256〉〈345〉

〈257〉〈1× 2, 3× 4, 5× 6〉
=
〈125〉〈7× 2, 3× 4, 5× 6〉
〈257〉〈1× 2, 3× 4, 5× 6〉

,

1 +
〈127〉〈234〉〈567〉

〈267〉〈3× 4, 5× 7, 1× 2〉
=
〈257〉〈1× 2, 3× 4, 6× 7〉
〈267〉〈1× 2, 3× 4, 5× 7〉

,

1 +
〈127〉〈234〉〈345〉〈567〉

〈257〉〈347〉〈1× 2, 3× 4, 5× 6〉
=
〈1× 2, 3× 4, 5× 7〉〈7× 2, 3× 4, 5× 6〉
〈257〉〈347〉〈1× 2, 3× 4, 5× 6〉

.

(7.16)

All three of the cluster X -coordinates on the left-hand side of this equation appear in the

B3⊗C∗ part of the coproduct of the two-loop n = 7 MHV amplitude.

7.4 Structure of the motivic two-loop n = 7 MHV amplitude

Obviously it is impractical for us to display the Stasheff polytope for the Gr(3, 7) cluster

algebra, with its 833 vertices, 2499 edges, and 2856 two-dimensional faces (of which 1785

are quadrilaterals and the other 1071 are pentagons). However, we are in a position now to

carry out a ‘motivic analysis’ of the two-loop n = 7 MHV amplitude using the information

contained in the previous section.

First of all we note the amazing fact that all of the entries of {z}2 and {z}3 in the

results in section 5 are always cluster X -coordinates of Conf7(P2). Interestingly, of the 385

such coordinates available, only 231 of them actually appear in the n = 7 MHV amplitude

at two loops. This might be a two-loop accident, but if it continues to hold at higher loop

order it would be important to find some sort of geometric explanation.

Turning our attention now to the expression for the Λ2 B2 part of the coproduct shown

in eq. (5.2), we note first of all the further highly nontrivial fact that for each term {x1}2∧
{x2}2, there is always at least one of the 833 clusters which contains both x1 and x2. And

more spectacularly, the variables always appear in pairs with Poisson bracket {x1, x2} = 0.

Now we understand the geometric meaning of the ambiguity mentioned in eq. (5.4), in

light of eq. (6.19)—it is exactly the ambiguity of trying to chose one of the four vertices

of a quadrilateral, when there is no reason at all to have to make a choice: each term in

Λ2 B2 corresponds naturally to a certain quadrilateral face.

We conclude that the most canonical, invariant way of expressing the Λ2 B2 part of

the coproduct of the two-loop n = 7 MHV amplitude is not by the formula (5.2), but by

writing it as a sum of 42 quadrilateral faces of the E6 Stasheff polytope. It is obviously of

paramount importance to understand what makes these 42 special, out of the 1785 such

faces available.

An analysis of the B3⊗C∗ part of the coproduct requires a classification of all of the

possible A3, A2×A1 and A1×A1×A1 subalgebras of E6. The generalized Stasheff polytope

of this algebra has 1547 three-dimensional faces, consisting of 357 cubes (A1×A1×A1), 714

pentaprisms (A2 ×A1) and 476 of the A3 polytopes shown in figure 8. We expect these to

play a role in unlocking further structure in the two-loop n-point MHV amplitudes, which

we will explore in future work.
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8 Conclusion

Appropriately defined scattering amplitudes in maximally supersymmetric Yang-Mills the-

ory are functions on Confn(P3) which have a very rich mathematical structure but do not,

in general, appear to admit any particular canonical or even preferred functional represen-

tation. The one important exception is the two-loop MHV amplitude for n = 6 reviewed in

section (3), which does have a canonical form (up to trivial Lim identities): that in which

it is expressed only in terms of the classical polylogarithm functions, with only (minus)

cluster X -coordinates as arguments.

More general amplitudes may be computed numerically if desired (for example all

two-loop MHV amplitudes may be evaluated with reasonable efficiency [61]), but we do

not strive to find any particular explicit analytic formulas for them. It often happens in

physics and in mathematics that when one reaches sufficiently deep into a subject, one

realizes that the appropriate objects of study are not what one originally thought, but

some suitable generalization or modification thereof. In this vein we have proposed that

our focus on the mathematical structure of scattering amplitudes in SYM theory should fall

on what we call motivic amplitudes, and in particular on their coproducts, which capture

the ‘mathematically most complicated part’ of an amplitude.

By drawing on our explicit results for the two-loop n = 6 and n = 7 MHV motivic am-

plitudes, we have shown that an important role is played by cluster coordinates, which are

preferred sets of coordinates on Confn(P3) with very rich mathematical structure. Specif-

ically, we conjecture based on the examples presented here, as well as others that we have

computed, that all coproduct components of all two-loop MHV motivic amplitudes are ex-

pressible in terms of Bloch group elements {x}k with only X -coordinates x appearing. The

algebras relevant for n = 6, 7 are of finite type, being the A3 and E6 algebras respectively,

while for n > 7 the relevant algebras are of infinite type, although only a finite subset of

these variables actually appear at two loops.

If one accepts that cluster X -coordinates answer the ‘kinematical’ question which vari-

ables do motivic amplitudes depend on?, it is natural to turn attention next to the ‘dy-

namical’ question of exactly in which combinations they appear in amplitudes. We have

provided a first glimpse by showing that the terms in Λ2 B2 component of the coproduct

of the two-loop n = 7 MHV amplitude — the component which measures the obstruc-

tion to writing this amplitude in terms of the classical polylogarithm functions only —

are in correspondence with quadrilateral faces of the relevant Stasheff polytope (i.e., with

A1 × A1 subalgebras of the cluster algebra). Again based on other examples which we

have analyzed, we conjecture that this statement remains true for all two-loop MHV am-

plitudes. However a great deal of structure remains to be understood. In particular, only

a very small number of all possible quadrilaterals actually make an appearance in Λ2 B2;

what, if anything, is the special geometric significance of these particular quadrilaterals?

What is the geometric significance of the cluster X -coordinates appearing in B3⊗C∗, or

in non-MHV amplitudes, or at higher loops? A few of these questions will be addressed in

future work.

Many other interesting questions are also raised by our work. For example, Dixon,

Drummond and Henn have employed with great success the strategy of studying the space
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of all integrable, conformally invariant symbols whose letters are drawn from the collection

of available A-coordinates at n = 6. By imposing all physical constraints available to them

at the time, they were able to determine the symbol of the two-loop NMHV amplitude

exactly [62], and that of the three-loop MHV amplitude up to two parameters [63] which

were subsequently determined in [64]. We have proposed that only X -coordinates can

appear in the coproduct of MHV amplitudes, which is a stronger condition than that only

A-coordinates can appear in their symbols. The functions Lim(1 +x) and Lim(1 + 1/x) for

any X -coordinate x for example satisfy the latter but not the former. Hence in particular

we expect to see neither Li3(ui) nor Li3(1 − ui) in the coproduct of any two-loop MHV

motivic amplitudes. It would be very interesting to investigate in detail how restrictive

this condition is in the space of all integrable symbols, in order to see whether our new

‘motivic’ constraint could aid future computations employing this strategy.

It is also important to point out that in the examples we’ve looked at, only a fraction

of all available X -coordinates actually make an appearance. For example in section 3 we

emphasized that only the 9 coordinates (3.4) enter the two-loop n = 6 amplitude, out of the

15 available. Then in section 5 we found that only 231 of the 385 available X -coordinates

make an appearance in the two-loop n = 7 motivic amplitude. We do not yet have an

understanding of the criterion which selects these particular subsets of X -coordinates, nor

whether this phenomenon is just an accident at two loops or continues to hold at higher loop

order. If it does, this obviously constrains the space of possible motivic amplitudes even

more strongly than just the X -coordinate condition discussed in the previous paragraph.

We cannot help but note with amusement the fact that 9/15 = 231/385, but we certainly

have too little data to speculate on whether or not this is just a coincidence.

A number of interesting questions about the connection between motivic amplitudes,

cluster coordinates and other recent approaches to scattering amplitudes can now be asked.

A fair amount of recent work has considered the behavior of amplitudes in various re-

stricted domains, such as two-dimensional or multi-Regge kinematics (see for example [65–

69] or [70–75], respectively), where in either case considerable simplification occurs. Also,

it has long been appreciated that the behavior of amplitudes under collinear (and espe-

cially multi-collinear) limits strongly constrains their structure, and the operator product

expansion (OPE) to the null polygonal Wilson loop [76–79] aims to compute arbitrary am-

plitudes at finite coupling in a systematic expansion around the collinear limit. It would

very nice to have a thorough understanding of these limits and expansions directly at the

level of cluster algebras, or even individual quivers.

Finally, we have so far made no explicit reference to the integrability of planar SYM

theory (see the review [80]), which clearly plays a crucial but so far not fully exploited part

in unlocking the structure of its amplitudes (approaches other than the OPE mentioned

above include for example [81–84]). We hope that motivic amplitudes and cluster coor-

dinates will be found to be useful in these and other endeavors, just as general ‘motivic’

methods based on the symbol calculus of polylogarithm functions are finding ever wider

applications to physical computations in quantum field theory, including Feynman inte-

grals, amplitudes, form factors, correlation functions, and Wilson loops [85–92], not just in

SYM theory but even QCD [93–97] and string theory [10–13] as well.
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A Parity conjugation on Confn(Pk−1)

A.1 Positive configurations

Given a volume form ω in Vk, which is not a part of our data, we can assign to a configu-

ration of k vectors v1, . . . , vk a number:

〈1, . . . , k〉 := 〈v1, . . . , vk〉 := ω(v1, . . . , vk). (A.1)

Given an orientation of a real vector space Vk, we can define positive configurations of

vectors in Vk. Namely, choose a volume form ω compatible with the orientation of the space,

i.e. ω(v1, . . . , vk) > 0 if (v1, . . . , vk) is a positively oriented basis. Then a configuration

(v1, . . . , vn) is positive if 〈vi1 , . . . , vik〉 > 0 for any i1 < · · · < ik. We denote by Conf+
n (k)

the set of positive configurations.

There is a twisted cyclic shift map, obtained by moving the last vector to the front,

and multiplying it by (−1)k−1. It preserves positive configurations of vectors:

c : Conf+
n (k) −→ Conf+

n (k), (v1, . . . , vn) 7−→ ((−1)k−1vn, v1, . . . , vn−1). (A.2)

The subspace of positive configurations of points Conf+
n (RPk−1) is the image of the

restriction of the projection map π : Confn(k) −→ Confn(Pk−1) to positive configurations

of vectors:

Conf+
n (RPk−1) := π(Conf+

n (k)). (A.3)

A.2 Parity conjugation

Let Pn be an oriented convex n-gon. Let us denote by ConfPn(RPk−1) the space of con-

figurations of points of Pk−1 parametrized by the set of vertices of the polygon Pn. It

is the space of orbits of the diagonal action of the group PGLk on collections of points

parametrized by the vertices.

We emphasize that the points are parametrized by the vertices of the polygon, but

there is no special parametrization of the vertices. If we choose an initial vertex v of the

polygon, then there is an isomorphism

iv : ConfPn(RPk−1) −→ Confn(Pk−1) (A.4)
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defined by parameterizing the vertices by the set {1, . . . , n}, starting from the vertex v to

which we assign 1, and going according to the orientation of the polygon.

The parity conjugation is a rational map, i.e. a map defined for generic configurations,

∗ : ConfPn(RPk−1) −→ Conf∗Pn(RPk−1), (A.5)

described as follows. A collection of points {xv} in Pk−1 parametrized by the set of vertices

{v} of the polygon Pn gives rise to a collection of hyperplanes {Hv} in Pk−1 parametrized

by the same set. Namely, let {x1(v), . . . , xk−1(v)} be the points parametrized by the (k−1)

vertices of the polygon obtained by starting at the vertex v and going around the polygon

following the orientation. So x1(v) = xv and so on. We define the hyperplane Hv to be the

span of these points:

Hv := 〈x1(v), . . . , xk−1(v)〉. (A.6)

Viewing the hyperplanes {Hv} as points of the dual projective space, and reversing the

orientation of the polygon, we get a point of Conf∗Pn(RPk−1), which is the result of the

parity conjugation applied to the original configuration of points.

Lemma A.1. The map (A.5) is a perfect duality: ∗2 = Id.

Proof. To calculate the map ∗2 we need to find the intersection of the hyperplanes Hw

corresponding to the vertex v and k − 2 vertices preceding it in the orientation of Pn. All

of them, by the very definition, contain the point xv parametrized by the vertex v.

We emphasize that the map (A.5) is not a map of a space to itself, since there is no

invariant way to identify the left and right spaces in (A.5).

A.3 Parity conjugation on configurations of vectors

Similarly, let us denote by ConfPn(k) the space of configurations of vectors in a k-

dimensional vector space, parametrized by the vertices of the polygon Pn. Let us upgrade

the projective parity conjugation to a parity conjugation on configurations vectors, given

by a rational map

∗ : ConfPn(k) −→ Conf∗Pn(k). (A.7)

Having in mind computing the parity conjugation, we define it now by breaking the

symmetry, i.e. using the isomorphism iv : ConfPn(k) → Confn(k) determined by a choice

of a specific vertex v. So we use the polygon vertex v to order the vectors of a configuration

by (l1, . . . , ln). Let us define a configuration of covectors (g1, . . . , gn) by setting

g1(•) :=
ω(l1, . . . , lk−1, •)
ω(l1, . . . , lk−1, lk)

, (A.8)

and gi obtained by the twisted cyclic shift by i − 1 of this formula. The covectors gi
evidently do not depend on the choice of the form ω.

We define the parity conjugation ∗ as an automorphism of the space Confn(k):

∗ : Confn(k) −→ Confn(k), ∗(l1, . . . , ln) := (g1, . . . , gn). (A.9)
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Abusing notation, we use the same notation ∗. Let us stress again that, although gi’s

are vectors of the dual space, the configurations of vectors in a space and in its dual are

canonically identified.

Proposition A.2. The map

∗ : (l1, . . . , ln) 7−→ (g1, . . . , gn) (A.10)

is a duality.

For computational purposes, we define a non-normalized version of the parity map

f1(•) := ω(l1, . . . , lk−1, •), (A.11)

and fi is obtained by the twisted cyclic shift by i− 1.

A volume form ω in Vk defines the dual volume form ∗ω on V ∗k . We set

[1, . . . , k] := [f1, . . . , fk] := ∗ω(f1, . . . , fk). (A.12)

Lemma A.3. One has

[f1, f2, . . . , fk] = 〈1, 2, . . . , k〉〈2, 3, . . . , k + 1〉 . . . 〈k − 1, k, . . . , 2k − 2〉. (A.13)

For example, for k = 4 we have

[f1, f2, f3, f4] = 〈1, 2, 3, 4〉〈2, 3, 4, 5〉〈3, 4, 5, 6〉. (A.14)

Proof. The left-hand side in (A.13) vanishes if any of the brackets on the right vanishes.

For example, if 〈1, 2, . . . , k〉 = 0, then f1 and f2 are proportional, and thus [f1, . . . , fk] = 0.

Therefore the left hand side is divisible by their product. Since they are polynomials of

the same degree, the claim follows up to a constant. The constant must be ±1: indeed, it

is a rational number; if it is divisible by a prime p, reducing mod p we get a contradiction.

Notice that the two expressions in (A.13) scale the same way under the rescaling vi 7−→ λivi.

Rescaling ω 7−→ λω we rescale f∗ by λ and [∗] by λ−1. Thus both sides scale by λk−1.

Proof of the Proposition. The map ∗2, being projected to configurations of points, is the

identity map. Here it is crucial that the change of the orientation of the polygon Pn is

built in its definition. Lemma A.3 tells

[g1, g2, . . . , gk] = 〈k, . . . , 2k − 1〉−1. (A.15)

Therefore 〈∗g1, . . . , ∗gk〉 = 〈1, . . . , k〉. This implies the proof for odd n, and thus, by

employing a trick, for all n.
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2 1 12

bcd bd ca

Figure 9. r(a, b, c, d) = 〈234〉〈156〉
〈1×2,3×4,5×6〉 (left), and r(a, b, c, d) = 〈123〉〈345〉〈671〉

〈134〉〈1×2,4×5,6×7〉 (right).

A.4 Parity conjugation for the projective plane

It is convenient to use the notation fij for the functional defined as fij(v) := ω(vi, vj , v).

One has

[f12, f23, f34] = 〈1, 2, 3〉〈2, 3, 4〉. (A.16)

[f12, f23, f45] = 〈1, 2, 3〉〈2, 4, 5〉. (A.17)

To prove the second identity, notice that if any of the two factors becomes zero, then the

left hand side is zero. For example, if v5 is a linear combination of v2 and v4, then the left

hand side is proportional to [f12, f23, f24] = 0.

Using this, we easily calculate some examples of the parity involution action for con-

figurations of points in P2:

r(1|2, 3, 4, 5) =
〈123〉〈145〉
〈134〉〈125〉

7−→ r3(2, 5, 4; 1, 6, 3) = −〈251〉〈546〉〈423〉
〈256〉〈543〉〈421〉

, (A.18)

r(1|2, 3, 5, 7) =
〈123〉〈157〉
〈135〉〈127〉

7−→ 〈234〉〈156〉
〈1× 2, 3× 4, 5× 6〉

, (A.19)

r(1|3, 4, 6, 7) =
〈134〉〈167〉
〈146〉〈137〉

7−→ 〈124〉〈345〉〈671〉
〈134〉〈1× 2, 4× 5, 6× 7〉

, (A.20)

r(1|3, 4, 5, 6) =
〈134〉〈156〉
〈145〉〈136〉

7−→ 〈345〉〈124〉〈567〉〈126〉
〈456〉〈125〉〈1× 2, 3× 4, 6× 7〉

, (A.21)

r3(1, 2, 4; 7, 3, 6) = −〈127〉〈243〉〈416〉
〈123〉〈246〉〈417〉

7−→ 〈345〉〈1× 2, 4× 5, 6× 7〉
〈145〉〈2× 3, 4× 5, 6× 7〉

. (A.22)

Let us give two examples of the proofs of these formulas.

1. The formula illustrated in figure 10 was proved in [53]. Here is a different proof:

(f14|f23, f25, f61, f36) =
[f14, f23, f25][f14, f61, f36]

[f14, f25, f61][f14, f23, f36]

(A.16), (A.17)
= (A.23)

〈325〉〈214〉〈361〉〈614〉
〈614〉〈125〉〈236〉〈314〉

= −〈124〉〈235〉〈316〉
〈125〉〈236〉〈314〉

.

The cross-ratio r(f14|f23, f25, f61, f36) can be calculated by viewing the points fij of

the dual projective plane as the lines, denoted by Lij , in the original projective plane.
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Figure 10. r(a, b, c, d) = r(1|2, 4, 3, 25 ∩ 36) = r3(1, 2, 3; 4, 5, 6) = − 〈124〉〈235〉〈316〉〈125〉〈236〉〈314〉 .

abcd

3

4 6

7

5

12

Figure 11. r(a, b, c, d) = (345)(124)(567)(126)
(456)(125)(1×2,3×4,6×7) .

Then it is the cross-ratio of the configuration of four points obtained by intersecting

the line L14 with the lines L23, L25, L61, L36. This configuration is nothing else but

the configuration of points (a, b, c, d) on the line L14. So we arrive at the geometric

interpretation of the triple ratio as the cross-ratio [54] given on the left of figure 10:

r(1|2, 4, 3, 25 ∩ 36) = r3(1, 2, 3; 4, 5, 6) = −〈124〉〈235〉〈316〉
〈125〉〈236〉〈314〉

. (A.24)

Notice that r(2|3, 5, 1, 14 ∩ 36) = r(1|2, 4, 3, 25 ∩ 36); to see this, project onto the

36 line.

2. To check formula (A.19) we write

r(f12|f23, f34, f56, f71) =
[f12, f23, f34][f12, f56, f71]

[f12, f34, f56][f12, f23, f71]

(A.16), (A.17)
= (A.25)

〈123〉〈234〉〈712〉〈156〉
[f12, f34, f56]〈123〉〈271〉

=
〈156〉〈234〉

〈1× 2, 3× 4, 5× 6〉
. (A.26)

This provides the geometric interpretation of the cluster X -coordinate (A.19) as the

cross-ratio given on the left of figure 9.

Therefore all of the more complicated cluster X -coordinates for Conf7(P3) can be

obtained by applying the parity involution to the standard cross-ratios r and the triple

ratios r3.
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Figure 12. Geometric meaning of the first three terms in (B.1), given by cross-ratios (B.2).

B An identity for the trilogarithm in cluster X -coordinates

As we emphasized in section 4, Abel’s pentagon equation for the dilogarithm admits a form

where the set of arguments is the set of all (negated) cluster X -coordinates on the space

of configurations of five points in P1: this is the example of the A2 algebra reviewed in

section 6, though the properties of the pentagram of arguments were studied already by

Gauss [98].

It is natural to ask whether there is a natural generalization of this feature of Abel’s

identity to higher polylogarithms. There is a generic functional equation for the triloga-

rithm related to the space of configurations of seven points in P2, see [53, 54], from which

any functional equation for the trilogarithm can be deduced. Its arguments are the triple

ratios, which, as we now know, are the simplest examples of cluster X -coordinates which go

beyond the P1 cross-ratios. However, the collection of all its arguments is invariant under

the action of the permutation group S7, and so cannot be a subset of the set of cluster

coordinates. Instead, we have found the following

Theorem B.1. Given a configuration of six points in P2, there is a 40-term functional

equation for the classical trilogarithm:

{(1|2, 3, 4, 5)}3 + {(1|2, 4, 5, 6)}3 + {r3(1, 4, 5; 2, 3, 6)}3

+
1

3
{r3(1, 3, 5; 6, 2, 4)}3 + signed dihedral permutations = 0 (B.1)

in B3(C). Here the six cyclic permutations are taken with plus sign, and the six anticyclic

permutations are with minus sign.

The remarkable feature of the functional equation (B.1) for the trilogarithm is that

each of its 40 arguments is a cluster X -coordinate on the space of configurations of six

points in P2. This is the first known functional equation for the trilogarithm with the

property that all arguments are cluster X -coordinates of the same algebra.

Here is a geometric interpretation of the functional equation (B.1). Take a config-

uration of six points (x1, . . . , x6) in P2. Let a := x3x4 ∩ x5x6 be the intersection point

of the lines x3x4 and x5x6. The lines passing through x1 form a projective line. The

points x2, x3, x4, a, x5, x6 determine a configuration of six point on that line, denoted by
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(x1|x2, x3, x4, a, x5, x6), and illustrated on the left in figure 12. The three cross-ratios

r(x1|x2, x3, x4, x5), r(x1|x2, x4, x5, x6), r(x1|x4, a, x5, x2) (B.2)

are the arguments of the first three terms in (B.1), up to the inversion of the third one,

which does not affect the corresponding element of the group B3. Indeed, the identity (A.24)

shows that

r(x1|x4, a, x5, x2) = r(x1|x4, x2, x5, a)−1 = r3(1, 4, 5; 2, 3, 6)−1. (B.3)

The three cross-ratios (B.2) are the cluster X -coordinates on the space of configurations

(x1|x2, x3, x4, a, x5, x6) of six points on P1 corresponding to the triangulation of the hexagon

in figure 12. They are assigned to the three diagonals of the triangulation; the points of

the configuration (x1|x2, x3, x4, a, x5, x6) are situated at the vertices of the hexagon.

Proof of Theorem B.1. We need to check that applying the cobracket δ to the 40-term

expression (B.1) we get zero in B2(C) ⊗ C∗. Due to the (signed) dihedral symmetry, it

is sufficient to calculate the expressions B
〈123〉
2 ⊗〈123〉, B

〈124〉
2 ⊗〈124〉 and B

〈135〉
2 ⊗〈135〉 in

Z[C]⊗C∗. One has B
〈135〉
2 = 0. The other two we present as sums of the five-term relations

of geometric origin. Before we formulate the answer, let us recall that

〈123〉〈456〉
〈1× 2, 3× 4, 5× 6〉

= r(1|2, 3, 4, 34 ∩ 56), (B.4)

〈1× 2, 3× 4, 5× 6〉
〈156〉〈234〉

= r(5|1, 2, 12 ∩ 34, 6). (B.5)

Using this, one can calculate that

B
(123)
2 = −

(
{r(5|6, 1, 3, 4)}2 + {r3(1, 5, 4; 2, 6, 3)}2 + {r3(1, 3, 5; 2, 4, 6)}2

+ {r(1|5, 2, 3, 4)}2 + {r(1|2, 3, 4, 34 ∩ 56)}2
)

−
(
{r(3|2, 4, 6, 1)}2 + {r3(2, 3, 6; 1, 4, 5)}2 + {r3(1, 6, 3; 2, 5, 4)}2

+ {r(6|5, 1, 2, 3)}2 + {r(5|1, 2, 12 ∩ 34, 6)}2
)

+
(
{r(4|5, 1, 2, 3)}2 + {r3(2, 4, 5; 1, 3, 6)}2 + {r3(1, 5, 4; 2, 6, 3)}2

+ {r(5|6, 1, 2, 4)}2 + {r(5|1, 2, 12 ∩ 34, 6)}2
)

−
(
{r(5|2, 3, 4, 6)}2 + {r3(2, 4, 5; 1, 3, 6)}2 + {r3(2, 5, 3; 1, 6, 4)}2

+ {r(2|1, 3, 4, 5)}2 + {r(2|1, 34 ∩ 56, 4, 3)}2
)

− permutation by (321654). (B.6)
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Similarly,

B
(124)
2 =

(
{r(1|2, 4, 5, 6)}2 + {r(2|4, 5, 6, 1)}2 + {r(4|5, 6, 1, 2)}2

+ {r(5|6, 1, 2, 4)}2 + {r(6|1, 2, 4, 5)}2
)

−
(
{r(5|1, 6, 12 ∩ 34, 2)}2 + {r(4|1, 2, 3, 6)}2 + {r3(2, 6, 4; 1, 5, 3)}2

+ {r3(1, 4, 6; 2, 3, 5)}2 + {r(6|1, 2, 4, 5)}2
)

−
(
{r(5|1, 2, 12 ∩ 34, 6)}2 + {r(4|2, 3, 5, 1)}2 + {r3(2, 4, 5; 1, 3, 6)}2

+ {r3(1, 5, 4; 2, 6, 3)}2 + {r(5|2, 4, 6, 1)}2
)
. (B.7)

To present each of the seven five-term summands as a five term relation, define

∂cyc(1, 2, 3, 4, 5) := {r(2, 3, 4, 5)}+ {r(3, 4, 5, 1)}
+ {r(4, 5, 1, 2)}+ {r(5, 1, 2, 3)}+ {r(1, 2, 3, 4)}. (B.8)

We make a similar definition for the case of five intersecting lines. If the lines are (12),

(13), (14), (15), (16), then we define

∂cyc(1|2, 3, 4, 5, 6) := {r(1|2, 3, 4, 5)}+ {r(1|3, 4, 5, 6)}
+ {r(1|4, 5, 6, 2)}+ {r(1|5, 6, 2, 3)}+ {r(1|6, 2, 3, 4)}. (B.9)

Then,

B
(123)
2 = ∂cyc

(
−(1|2, 3, 4, 34 ∩ 56, 5) + (3|12 ∩ 56, 1, 2, 4, 6)

− (4|12 ∩ 56, 1, 2, 3, 5) + (2|1, 3, 4, 34 ∩ 56, 5)
)
, (B.10)

B
(124)
2 = ∂cyc

(
(1, 2, 4, 5, 6)− (4|6, 12 ∩ 56, 1, 2, 3) + (4|5, 12 ∩ 56, 1, 2, 3)

)
. (B.11)

Notice that the configuration (1, 2, 4, 5, 6) in P2 by duality, or by drawing the unique conic

through these five points, determines the configuration of five points on P1.

Thus not only the functional equation (B.1) itself, but also the way it vanishes in

B2⊗C∗ is of cluster origin: the five-term relations (B.10)–(B.11) correspond to certain

pentagon faces in the four-dimensional Stasheff polytope of type D4 describing the cluster

X -variety Conf6(P2).

To complete the proof of the theorem it is sufficient to check that a certain specializa-

tion of the functional equation is zero. We leave this as an exercise.

Finally, one may look for functional equations for the trilogarithm which can be ex-

pressed via cluster X -coordinates on the space Conf7(P2), which is the case of interest for

scattering amplitudes. The six-point identity in eq. (B.1) can obviously also be used for

seven points in P2: as written, it simply does not depend on the seventh point. Other

40-term identities can be obtained from the eq. (B.1) by applying parity conjugation and

dihedral permutations of the points 1, . . . , 7. A less obvious type of transformation is parity
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followed by a transposition of two points. This results in transformations sending points

in P2 to lines in P2. An example of such a transformation is

1→ (34), 2→ (35), 3→ (56), 4→ (67), 5→ (17), 6→ (12). (B.12)

Remarkably, applying this map to the 40-term identity (B.1) we get a functional equation

written via cluster X -coordinates on the space Conf7(P2). After considering all possible

transformations of these types we obtain a total of 35 different 40-term identities written

via cluster X -coordinates on the space Conf7(P2), consisting of five families of seven related

to each other by cyclic rotations of the seven points. Only 22 of these 35 identities are

linearly independent. Of course all of them reduce to the identity in eq. (B.1) by some in

general complicated change of variables. Such changes of variable arise from an embedding

of the D4 cluster algebra (that is, Gr(3, 6)) into the E6 (or Gr(3, 7)) cluster algebra. It

would be very interesting to search for new functional identities of cluster type at higher

weight. Of particular interest is, of course, the next case — weight 4. We have found that

there are no identities at weight 4 involving cluster X -coordinates on Conf8(P2), but we

do expect such identities on Conf8(P3).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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