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ABSTRACT

We present a class of inflationable no-scale GUT supergravity
models with the following characteristic properties: (i) super-
heavy (~MP) or superlight (¢ 1 keV) gravitinos avoiding the
cosmological gravitine problem; (ii) a natural Higgs triplet-
doublet splitting; (iii) groton decay mainly to kaons at an
observable level {_ ~ 10 21 years; (iv) sufficient cosmolo-
gical baryon asymmetry due to the decays of superheavy Higgs
triplets (M, > 1015 GeV); (v) acceptable inflationary picture,
where the ﬁhysics responsible for the slow roll-over and
energy density perturbations is decoupled from the the physics
of reheating, which can be as high as 0(1018) Gev; (vi) rapid,
second order GUT phase transition to the SU(3) x SU(2) x U(1)
minimum triggered by and happening during inflation, allowing
thus for enough GUT magnetic monopole dilution. The inflaton
field knocks the GUT-breaking Higgs (gquton) field out of its
zero minimum. The field responsible for reheating will then
be a mixture of the inflaton and the guton.

CERN-TH.3935/84
June 1984



1. - INTRODUCTIQON

. . 1),2
The inflatory Universe ).2)

appears to offer the only natural soclution
to the horizon and flatness problems of cosmology. By now, it is also
evident that the early inflatory models based on grand unified theories
(GUTs) with a Coleman-Weinberg-type symmetry breaking 3 by radiative cor-
rections have severe problems. In de Sitter space, qguantum fluctuations
cause density perturbations that are scale-invariant when they re—enter the
Friedmann—Robertson-walker horizon4). This is a more than welcome feature,
since this is Jjust the Harrison—Zel'dovichs) spectrum of fluctuations needed
for galaxy formation. Unfortunately, in inflation based on GUT phase tran-
sition, these perturbationsg turn out to be too large by several orders of
magnitude4). This problem, together with some fine-tuning problems, can be
solved if one divorces inflation from GUTs and moves to supergravity. There
inflation is driven by a GUT singlet inflaton field at the gcale of the
Planck mass MP’ where all fine tunings disappear6)-8). The phenomenclogical
models suitable for this purpose are naturally based on softly broken N = 1

o)
supergravity .

In supersymmetric inflation, the properties directly connected with in-
flation appear to be in good shape; namely, the roll-over time scale of the
inflaton and the magnitude of density perturbations. However, when grand
unification, supersymmetry and inflation are considered together, several
problems appear. The questions related to grand unification are the produc-=
tion of the observed baryon asymmetry, and how to make the Universe go from
the GUT phase to the correct SU(3) x SU(2) x U(1) phase. These difficulties
arise because the overall scale of the inflaton potential, which is deter-
mined by the density perturbations, must be at most of the order of 1016
GeV. If the inflaton is decoupled from matter {except for gravitatiomal in-
teractions), the Universe cannot reheat after inflation to much more than
about 10i1 Gev. To accomplish the phase transition at that temperature, one
has to arrange for a very small barrier between the symmetric and broken
minima, and resort to strong coupling phenomena10). One postulates that as
the Universe supercocols in the symmetric phase, the gauge coupling strength
becomegs 0(1) and the theory confines. This is assumed to lead to the disap-
pearance of the light degrees of freedom of the symmetric phase, and thus

the broken phase becomes favourable because of finite temperature effects.

This possibility contains many uncertainties, not the least of them being
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the whole regime of strong coupling. It should also be stressed that the
finite temperature behaviour that has been used to determine the onset of

phase transition has, in fact, been derived assuming weak couplings.

The low reheating temperature TR is not so problematic for mere baryo-
genesis. That can be arranged with low mass (~ 1010 Gev) Higgses. The
problem is rather founded on the possibility that these same Higgses will
also mediate catastrophically rapid proton decay. The low reheating tem—
perature also has a supersymmetric angle. Namely, if the gauge hierarchy is
to be protected by supersymmetry that is broken softly by the gravitino mass
Mg, p ™~ MW' one can show11) that there is a stringent bound on TR. This
bound arises because the density of gravitinos, although initially dilu-

ted12) by inflation, will be regenerated to an unacceptably high value

~

during the reheating unless TR ¢ 109 - 1010 Gev,

A way to aveoid the severe bound on TR imposed by gravitinos is to

decouple the scales of local and global supersymmetry breaking. This can be

achieved in the no-scale supergravity models13)_15) where the mass of the

15
gravitino may be either very large14) or very smaill ). The scale of the
necessary global supersymmetry breaking is set by the gaugino masses, which

can be determined dynamically to be 0(M

).
15),16) v
‘ why the QCD vacuum parameter § is so small. Wwhen no-scale

These models may also ex-
plain
medels are coupled to inflations), it is possible to have a rapid, second
order phasge transition17) that actually prefers SU(3) x SU{(2) x U(1) to
SU(4) x U(1}. Recently, also cosmological baryosynthesis, the questions of
proton decay rate suppression and the gplitting of the GUT and weak scales
within the particle maltiplets [the 5 of Higgses in SU(5), say] have been

8) in no-scale models. The result was a SUSY model that can

investigated1
accommodate baryosynthesis and proton lifetime compatible with experiment,
together with a successful splitting of GUT and weak scales. In that model,

the GUT scale is very close to the Planck mass.

In the present paper, we address the gquestions of how this large GUT
scale can be reconciled with inflation and how the world can undergo a phase
transition from the symmetric to the broken phase. We show that all models
that are effectively globally supersymmetric at the scale of inflation, as
no-scale models are, can lead to a rapid second order phase transition to
the broken phase. In addition, we show that then naturally T, ~ 1018 Gev
and MX ~ 0(10'1)MP, and that despite the relatively high reheating tempera-
ture, the density of monopoles is suppressed because part of the inflation

takes place in the broken phase.



2, - PARTICLE PHYSICS AND COSMOLOGY CONSTRAINTS

In this section, we describe in more detail the various particle
physics and cosmological constraints relevant for a successful unification
of supersymmetric GUTs and inflation. As is well known, the lure of super-
symmetric GUTs is based on the fact that supersymmetry cén protect the gauge

hierarchy from radiative corrections, provided

At 2 2
MB_W\F @.MS ,‘S—B’(Mw) (1)

where m is the scale of global supersymmetry breaking. The scale of local
supergymmetyy breaking is set by the gravitino mass m,,,+ Several pheno-
menological supersymmetry models19) have been constructed by identifying
M3, o ~ Mg Such a gravitino will usually decay to photons and photinos
through d = 5 operateors with a typical lifetime

2
”C=4H3 = 4ulp [lo0GeV | o (2)

Primordal gravitinos will therefore decay after nucleosynthesis, and they
could be a possible cosmoleogical embarragsment, unless their abundance can

2)

o, ]
be suppressed. Although inflation dilutes the initial gravitino density .

11
reheating produces a density )

nyy /Ny o (/M) (2

The constraints on the density of gravitinos come from the requirements that
gravitinos should not disrupt nucleosynthesis, produce too much entropy,
distort the microwave background or dissociate light nuclei such as D, 3He,
“He and 7ILi. The most stringent bound is obtained from deuterium photodis—

soclation, which implies11)



Te £ ax1p” 5, (leogev @
102 GeV "o

where 6B = nB/nY at the time of gravitino decay. For (SB = 102 - 107198, one
obtains the limit T, ¢ 107 - 1040 Gev,

Such a limit on TR implies that the mass M of the particles mediating
baryon-violating interactions and participating in cosmological baryosyn-
thesis should be very low. Clearly, if these particles are to be produced
during reheating, we must have M < TR. Barring some exotic possibilitieszo)
the only natural candidates for baryogynthesig are the Higgs triplets H .
However, a light Higgs triplet will cause the proton to decay too rapidly

18
because of d = 5 operators ). Indeed, to suppress these operators beyond

experimental limits on proton lifetime, one would need21) M > 1015 Gev.

As far as particle physics is concerned, a way out of these conflicting
requirements was pointed out in Ref. 18). As stressed there, a necessary
ingredient of the solution appears to be the decoupling of local and global
supersymmetry breaking scales. This is indeed possible in the no-scale
supergravity GUTs13)_15), where the scale of global supersymmetry breaking
is set by the gaugino masses m,, - These can arise at tree level because of
the non-minimal kinetic termg found in supergravity. It has been shown that
while m ~ 0(M_), the gravitino mass may be either wvery large14), Wy, ~ Mll:"
or very small 5); for instance, in one particular example, my o~ n@/M‘E‘ .

1< p < 2. Therefore the severe bound (4) on TR can be avoided.

In these models, the world is effectively globally supersymmetric at
the high mass scale. The scale of global supersymmetry breaking, together
with the electroweak scale, is determined dynamically by radiative correc-
tions. In Ref. 18), it was discovered that it is indeed possible to write
down such a globally supersymmetric SU(5) model that can give rise to the
obgerved baryon asymmetry while suppressing baryon decay through d = 5

22},23)

operatorg. This model employs the missing partner mechanism to

achieve a natural doublet-triplet splitting. Its superpotential is

4= i 5.0.%T + By B H T+ Xy 6.0.3° (5)
Mg mio T gt
£ ;

(i“‘ = 'l/ 2,)



where ei ~ 50, Hi ~ 5 and & ~ 24. The form of the superpotential (5) is a
consequence of a discrete symmetry imposed on £, under which the fields

iakn

transform as ¢k > e ¢k {here ¢k = ei,ei,Hi,Hi,Z), where g. is gome (irra-

k

tional) number. The model (5) gives sufficient baryon asymmetry provided

the GUT scale MX ~ MP'
Let us now turn to inflation. In the above model, the masses of Higgs

triplets are D(Mi/MP)' On the other hand, after inflation, the coherent

inflaton field oscillations dominate the energy density of the Universe

leading to the reheating temperaure
L
.1- = (r‘ M );L (6)
R ¢ £

where F@ ¢ H is the decay rate of the inflaton, where H = h/R is the Hubble

congtant during inflation. If the inflaton couples to matter only via
gravitational interactions, T¢ ~ mi/M%. The overall scale m, = 1016 Gev of
the inflation potential is fixed by the density perturbations. Indeed, it

has been shown24) that one obtains a stringent upper limit my; << 8.9 x 1016

GeV from the quadrupole anisotropy of the microwave background, which is
determined by energy density perturbations that re-entered the horizon
during the matter-dominated era. Therefore the mass of an inflaton that is
decoupled from other fields is small, m = ma / MP < my. This leads to the
low reheating temperature TR ~ 1010 - 10ll Gev, which appears to be at

variance with the particle physics constraints discussed above.

As emphasized in the Introduction, the low reheating scale is also
associated with the difficulty of effecting the GUT phase transition in the

first place. As we will show in the the following sections, a natural solu-

tion to these problems is to divorce the period of slow roll-over from the

period of reheating by making the mass scales governing the two epochs

totally disjcinted. Indeed, it should be stressed that, for example, the

. i . . 25),2 .
density pexrturbation spectrum is not sensitive ),26) to the details of re-

heating, and therefore inflation and reheating are, in fact, two discon-—
nected phenomena. This separation can be accomplished if we assume, as

seems natural to us, that the inflation is not decoupled from GUT fields.



3. = TWO-COMPONENT INFLATION (I)

We will consider for definiteness an SU(5) SUSY GUT with a single
adjoint field . It is sufficient to consider the effective potential only
in the direction of vanishing D-terms. We assume that, as in no-scale
models, at the onset of inflation the effective potential for the inflaton ¢

and the SU(3) x SU(2) x U(1) singlet g of 24 can be written as

VP«H = E(l¢l,d)[|'|:¢ll+.;:K"(I¢l)le.l2] (7)

Here F = F(¢,Z) is the superpotential, and E and ¢ are some positive scaling

functions which can be present if the effective theory has been derived from

local supersymmetry with non-minimal kinetic terms. When evaluated at the

global minimum, they will give rise to rescaling of the (effective)
)

. . . 17 ,
superpotential. For instance, the no-scale mcdel for 1nflatlon8)' given

by the Kdhler potential

G = - 30 (2+2t + 4 (141)) + g(i) +161%+ 2IF]?

E=- 2 3::.!_ eep (g +1617)
)

K*= 294
Here g¢$ = (azg/a¢a¢*) < 0, h¢$ < 0, and z ig the field breaking supersym-
metry. Apart from the scaling functions E and k2, our effective potential
is globally supersymmetric. Of course, it may turn out that in the correct
model E = 1 and 2 = 2. In any case, in the following we will make the
natural assumption that below MP' E and ¢ are smooth, slowly-varying func-
tions. For most purposes, these scaling functions can be taken to be con-

stants, and the following considerations are not sensitive to their precise

forms.
The global minima of the potential (7) are given by

?:¢ = }?6' = C> (8)

In addition, there should exist a local minimum with a positive cosmological

constant at ¢ = ¢ = 0. Inflation takes place when ¢ starts to roll out from



this minimum, and reheating happens when fields oscillate about the global

minimum (8) where the cosmological constant A = 0.

The effective superpotential F(¢,g) is a priori an arbitrary analytic
function. Because ¢ is an SU{(5) non-singlet, high temperature effects will

force g to be at ¢ = 0 when T ~ M independently of the form of Fl¢,c).

P'
Therefore it is natural to expand F(4¢,g) about this point to obtain

Fld,6) = Ald) + BIPE* + L)+ (9)

assuming that in terms of §, F(4,Z) can be expanded as F =n§2 an(¢)Tan.
Here, A, B and C are unknown functions. The decoupling of inflation from
the GUT field would be achieved if B and C were constants. We see no physi-
cal reason why this should happen. Therefore we take B and C [and cther
higher order coefficients in (9)] to be reasonably smooth and well-behaving
functions of ¢. With the expansion (9), the effective potential (7) can be

written as

Vey = E [lA¢IZ+ aRe (A By 6?) + HBI2I6)12
(10)

+ 6k*I61*Re (B*C 6) + aRe (A3 (4 62) + ]
Here, Ad) = dA/BY, etc.

Higher order terms in expansion (9} are not essential for our discus-
sion and we do not write them down explicitly. At high temperatures g = 0,

and Ve collapses to

ff

V. = E\A(}’[L (1)

O

It is evident that the form of V, must be such that a sufficient amount of
inflation results. This means that the scale of V, = m§ must be my = 1016
GeV to produce correct dengity fluctuations. We take it for granted that
A(¢) can be chosen in such a way that it gives successful inflation. The
various constraints for achieving enough inflation have been extensively
discussed in the literature7)'8)'25), and we assume that these conditions

can be met.



Suppose now that ¢ starts to roll into the real ¢ direction and that F
is a real function. This is no essential restriction, but it simplifies the
following discussion considerabkly. Defining g = (1//2)(UR + icI), the

effective potential is then given by
Vo = E Liag™s (K BABYG + (x*BA,By) o7

+ 3 (BEBL AR C4SE + 5 (ok*Be-By ) 6816 ] 2

2
We assume that the only g-dependence in E is of the form E = EU(|¢})e§IU,',
where § = 0 or 1. This is a reasonable assumption if g is to have canconical

kinetic terms. The masses of Og and o, are then

2R% b
M = E, L *B*+ Y A +A+B¢] .
2 20 2
My - Eo[l(f) +§A¢ —A¢I’>+]
We can assume without loss of generality that A¢ ¢ 0 in the interval 0 < ¢

€ $y+ where ¢, is the point where the inflaton would roll to in the absence

of o. However, this need noct be a global minimum, i.e., it may be that

A¢(¢0)I > 0. Although it may be that ¢, = =, we usually take bg = O(MP).
In Fig. 1, we show a schematic illustration of the inflaton potential in the

¢ direction.

If B¢ 2 0 in the interval 0 < ¢ < ¢y we see that m% > 0 always. How-
ever, as B is basically an arbitrary function, it is natural to assume that
it can have one (or several) zero(s) ¢, with 0 < ¢, < $y- But then, m% < 0

if

SAi (4>*) + A*, (44)’54, (t#,,) < O (14)

signalling the breaking of the SU(5) symmetry and facilitating a rapid phase
transition to the SU(3) x SU(2) x U(1) phase. Note that if § = 0, (14) is
satisfied automatically. The value of ¢, depends on the functional form of
B(¢), and thus the phase transition can happen during any stage of infla-
tion, not only at the end of it, as in Ref. 17). This means that it is pos-
sible that the Universe inflates partly in the broken phase. This will
effectively suppress the density of the monopoles produced by the phase

transition, as in the old Coleman-Weinberg type inflation.



The condition (14) for symmetry breaking can be satisfied whenever

B, (94) 2 |By (0,)

all models having the effective potential (7). Indeed, this means that in

. By naturalness, one would argue that this is possible in

all models having an effective global supersymmetry at the scale of infla-
tion, the GUT phase transition happens during the inflation, is rapid and of

the second order.

4. - TWO-COMPONENT INFLATION {(II)

As has been repeatedly stressed in this paper, the scale of inflation
or V, {see Eq. (11)] is fixed by density perturbations to be roughly mﬁ =
= (1016 Gev)*. In the present approach, there are two natural possibilities

for achieving this:
‘ h
(i) A~vDb~(C ~ 9'(4) J Eo "-’mo

A ~ n\:' ) B~Cn EEO ! E>(1<)

{(ii)

(in natural units MP/VSn = 1}. We take the above tc be overall scales mul-
tiplying the functions in question. Otherwise, we expect these functions to
be typically polynomials with coefficients of the order of 1. The mass of
the ¢g-field as a function of ¢ for both cases is depicted in Fig. 2.
Although for inflatory purposes these two cases are egquivalent, they will
lead to very different physics at the end of inflation. In both cases,
finite T effects push ¢ to origin, where inflation starts, and in both cases
B{¢) = 0 makes SU{(5) breaking phase transition possible, after which the
fields will roll to the broken global minimum (8). It is also evident that

at that minimum og = MX ~ 0(1) and ¢U = Gy -

Because of the overall scale m,, the masses of ¢ and ¢ in case (i) are
necessarily of the order of nﬁ/MP ~ 1013 Gev. 1t is not probable that Higgs
triplets could be this 1light. Therefore, in case (i), the question of
baryogenesis remains open. On the other hand, in case (ii), the scale
my, {{ 1 can be neglected at the global minimum. Therefore, case (ii) gives

rise to a true two-component description of inflation, where the pericds of

slow roll-over and reheating are governed by two totally different scales.

In case (ii), the field oscillating about the global minimum is not the in-
flaton but a mixture of ¢ and o¢. The mass eigenstates at the global mini-

mum {8) are easily calculated and are given for case (ii) as
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2 | 4= 2 v/
- LE y N z] (15)
where we have assumed a real minimum and where x = (FGG/F¢0)2. We expect

F¢d and x to be 0(1/10}-0(1), or M P 0{1/100)-0(1). In this case, the
¢

Universe will reheat to TR = (HMP) = Mg+ As we will show later in the
context of a concrete model, this reheating is sufficient to generate the

cosmolocgical baryon asymmetry.

Let us examine more closely the period during which the phase transi-

tion takes place. We expand the functions A and B about the zero ¢, of B as

B= blé-¢,)
A = ao Tq4(¢"¢*)

In case (i), all coefficients are naturally of the order 1, whereas in case

(i1), b~ 0(1) and a; ~ a, ~ 0(mg). Inserting the above form into Eq. (13),

and solving m% = 0 for ¢~¢p,, one finds in case (i)

lb-d |l ~ 8(1)

That is, the period during which the SU(5) phase transition is possible is
very long, of the order of MP. Therefore, the phase transition would occur
very rapidly after ¢ has tunnelled out of the metastable minimum at ¢ = 0,
and most of the inflation should occur in the broken phase. Although this
would be vwvery effective in diluting the density of magnetic monopoles, the

low reheating temperature makes case (i) unrealistic.

In case (ii), one finds

m - -
M-‘l’*l x ;‘5/,_ ~ Jot ~ o™ (16)

In this case, the period when m% ¢ 0 is wvery short compared to the roll-over
scale. One may even wonder whether it is too short for field fluctuation to
trigger the beginning of the phase transition. Indeed, the semiclassical

evolution of the inflaton field is given by

(17)

be 3Hb + o v V(P = O



During the slow roll-over phase, $ and I'¢ can be neglected. The time scale
of the pericd when m% ¢ 0 can then be evaluated from Egs. (16) and (17) to
be

At ~ 3Hl¢"4>*l ~ m;'1
VHd,)

This is mach shorter than the time scale of thermal fluctuations due to the

Hawking temperature TH = H/2n, which is (At)th o m52. Therefore the
symmetry breaking opening to the g # 0 direction is too narrow for thermal

"

fluctuations to "see" it. However, because the curvature of the potential
at ¢ =~ ¢, in the g-direction is, from (13), O(m&), the g-field is subject to
gquantum fluctuations that occur with a typical time scale (At} a-mgl.
These quantum fluctuations are sufficiently rapid for triggering thz begin-
ning of the GUT phase transition. In effect, in addition to ¢, also ¢

starts rolling.

5. - A TOY MODEL

The evolution of ¢ and g, induced by the potential (10), is in general
quite complicated. Exact quantitative statements would require computer
similations. However, some aspects of the behaviour of the effective poten-
tial can be studied using simplified models. In particular, we wish to show
that it is indeed possible for the fields to roll to the global minimum,

without being trapped in some local minimum with a positive cosmological

constant.

We consider two-component inflation with the superpotential of the

F(46) = Alp)+ b($-4)6%+ c(é-9,)6> re)

where b,c,q;l and ¢, are real constants of the order of 1, and A ~ ma. Ag
explained in Section 3, it is sufficient to consider real ¢ only, provided

we take b > 0. We restrict ourselves to real ¢, and make a further simplifi-

cation by taking the scaling functions to be E(¢,‘g|) = 1 and K2(|¢|) = 2.
This means that our effective potential is globally supersymmetric.
The history of the Universe starts in this toy model from ¢ = o = 0.

Eventually, we expect the Universe to land at the global minimum F¢= F = 0.
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From {18) it is given by
b
C,= My ~~— ¢
o X

(19)
4)0 34’2"‘ 24’1

At the global minimum, the scale m, has disappeared from the potential, and

therefore reheating is independent of the slow roll-over period.

The path to the global minimum is, however, rather complicated. ILet us

take for simplicity c = -1, ¢, = 2¢;+ Then the effective potential for real
o and ¢ is

Voy = Aj+ RLApcrang -4 16™ 2 [apron4)6-24 o?

+ [H§+3(b~:z¢)1]6"-2nxgs +6°

When ¢ = ¢,, the mass of ¢ becomes negative (we take A_ < 0). With B, = -mg ,

the corresponding minimum in the g-direction is at b = ¢

1
v
m, + &\m:)

1
MX
M+ 47

with positive vacuum energy of the order of uﬁ. However, this minimum is

612

{(21)

not stable in the ¢-direction:

V4> (4.“51 ) ~ Iﬁ?J1xd>,l m: + O’(mj)

Note that this means that ¢ actually starts to roll back towards ¢ = 0. The

curvature is V¢¢ = O(mﬁ), so that the potential is not flat enough for addi-

tional inflation.

Let us now consider the region |¢-¢li >> mg. There we can neglect

Foo ~ oo

and the extrema are given by

Vct, = F¢(F‘ =0 e

In our toy model, F¢c = Fc = 0 cannot be satisfied simultaneously, and hence

there is no corresponding stationary point. The case F = F¢ = 0 corres-
ag o}

ponds to a stationary point at ¢ = 3¢1, c = (2/3)Mx. However, calculating



the determinant of the mass matrix, one finds

diA M*= = Vyg < O

That is, this extremum is a maximum in some direction and not stable. This
leaves us with only one stable extremum, F¢ = Fc = 0, which is just the
global minimum. Therefore, whatever adventures the fields may have in
between, in the present model they will finally end at the global minimum.
It is also evident that there will be some additional inflation in the

broken phase; exactly how much is very model dependent.

A possible trajectory of the inflaton field, which is a superposition
of ¢ and the guton g, is shown in Fig. 3. A birds' eye view of this trajec-
tory will generally resemble a meandering river that flows through valleys

overlooked by mountains.

Let us stress that the temperature at the time of the phase transition
is the Hawking temperature TH = H/2nx. Therefore, monopole to photon ratio
is suppressed by a factor T% ~ 10721 if m; ~ 1073. Additional suppression
will be obtained while the Universe inflates in the broken phase. Hence,
it is possible to satisfy the limits on the monopole abundance coming from

7)

the overall density of the Universe2 and even the stringent limits coming
from the more uncertain monopole catalyzed proton decays in neutron stars 8!
There is no need to invoke a very low reheating temperature (TR.i 109 GeV)
to suppress monopoles. Note also that in the present case, the possibility
exists that there is a monopole flux that could be observable in the near

future.

If we take ¢1 ~ 1, the mass eigenstates of the ¢,0 mass matrix are

given from (15) by

2 2 %
}41 o :?11r1x o }12

2 RV I
Mg,:gnx‘m

if Mx = 0.1. If we adopt also the model given in Eq. (5}, the baryon asym-
)

7, (23)
o

metry will pe'C proportional to (a/a)“mil{z x 0(1072), which will then be of
correct magnitude if f ~ 0.1, a ~ 1. The inflaton, being now a superposi-

tion of ¢ and ¢, will couple to Higgs triplets through the superpotential



couplings (5). Note that it does not couple to matter fermions. Therefore,
the lightest eigenstate which will be produced by the coherent field oscil-

lations can decay predominantly to Higgs triplets.

We must still ascertain that the produced Higgs triplets will be out of
equilibrium. From (5), we find that the yH? coupling has a strength Mi.
This, then, will be the order of magnitude for the ¢H2 coupling also. The

triplets will decay out of equilibrium if

4
T, n
L =~ - << 1 (24)
M M=
where TD is the decay temperature of the inflaton, and M = Mi. From (23},

we find that F¢ = Mi and therefore the bound (24) is satisfied if MX =~ 0.1.
With a heavy Higgs mass M_ ~ 1015-1016 Gev, the produced baryon asymmetry
cannot be erasedzs) by the potentially dangerous 2 <+> 2 scattering. As
stressed earlier, such heavy Higgs triplets are sufficient for rendering the
dangerous dimension five operators harmless. The proton decay then proceeds
in the standard way21), producing mainly kaons with a lifetime TP = 1032i1

years, which can hopefully be obgerved in the near future.

6. — CONCLUSIONS

In the present papexr, we have argued that a solution to discrepancies
between cosmological inflation and constraints coming from particle physics
is to separate the scale of the slow roll-over period from the scale of re-
heating. We showed that this separation occurs naturally in no-scale models

13)=-15)

of supergravity » where the scales of glcobal and local supersymmetry

breaking are decoupled. This decoupling allows one to avoid the potentially

n

disastrous limit on the reheating temperature1 obtained in the case of the

gravitino with mass of the order of the weak scale. Indeed, in no-scale

14) or very 1ight15). As a

models, the gravitine may be either very heavy
consequence, we were led to consider primordial inflation in the context of

effectively global supersymmetry.

We have demonstrated how inflation is responsible for triggering a

rapid second order phase transition from SU(%) to SU(3) x sU(2) x U(1)



during inflation. After that, the inflaton is, in fact, a superposition of
the SU(5) breaking Higgs (guton) field and the old inflaton field. Part of
the inflation takes place in the broken phase giving an effective suppres-
sion of monopole abundance. At the end of inflation, the scale characteri-
zing the slow roll-over epoch has disappeared, and consequently the Uni-
verse may reheat to TR'M 0(1016) Gev. This is essentially a two-component

picture of inflation.

Furthermore, we considered a toy model where we showed that fields can
indeed roll to the global minimum, where SU(5) is broken, without being
trapped in any local minimum. In general, we expect the trajectory of the
inflaton field from the origin to the global minimum to be a very compli-

cated one. Our toy model ig a proof of existence for such a trajectory.

We feel that two-component inflation is a promising candidate for uni-
fying all the successful features of GUTs and cosmological inflation. it
can lead to a reheating high enough to be compatible with both the limits on
proton stability and the generation of the cosmological baryon asymmetry by
superheavy (MH > 1019 Gev) Higgs triplets. Indeed, in two-component infla-
tion, one can accommodate GUTs, supersymmetry and early cosmological in-

flation in one single consistent picture.
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FIGURE CAPTIONS

Fig. 1 : A schematic form of the inflaton potential. fThere need be
no minimum of the potential for ¢ > ¢,, where ¢, is the
location of the zero of the coefficient B [see Eq. (9)].

Fig. 2 : The mass sqguared mi(g) of the SU(5) adjoint field as a
function of ¢: a) in case (i}, b) in case (ii) (see text).

Fige. 3 : A possible "snake river" trajectory of the inflaton field

in the (¢,0) plane. The fields roll from ¢ = g = 0 to the

global minimum at ¢ = Mx’ o = dy-
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