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Abstract A search for a standard-model-like Higgs bo-
son in the H → WW and H → ZZ decay channels is re-
ported, for Higgs boson masses in the range 145 < mH <

1000 GeV. The search is based upon proton–proton colli-
sion data samples corresponding to an integrated luminos-
ity of up to 5.1 fb−1 at

√
s = 7 TeV and up to 5.3 fb−1

at
√

s = 8 TeV, recorded by the CMS experiment at the
LHC. The combined upper limits at 95 % confidence level
on products of the cross section and branching fractions
exclude a standard-model-like Higgs boson in the range
145 < mH < 710 GeV, thus extending the mass region ex-
cluded by CMS from 127–600 GeV up to 710 GeV.

1 Introduction

The standard model (SM) of electroweak interactions [1–3]
relies on the existence of the Higgs boson, H, a scalar par-
ticle associated with the field responsible for spontaneous
electroweak symmetry breaking [4–9]. The mass of the bo-
son, mH, is not predicted by the theory. Searches for the
SM Higgs boson at LEP and the Tevatron excluded at 95 %
confidence level (CL) masses lower than 114.4 GeV [10]
and the mass range 162–166 GeV [11], respectively. Previ-
ous direct searches at the Large Hadron Collider (LHC) [12]
were based on data from proton–proton (pp) collisions cor-
responding to an integrated luminosity of up to 5 fb−1, col-
lected at a center-of-mass energy

√
s = 7 TeV. Using the

7 TeV data set the Compact Muon Solenoid (CMS) ex-
periment has excluded at 95 % CL masses from 127 to
600 GeV [13]. In 2012, the LHC pp center-of-mass en-
ergy was increased to

√
s = 8 TeV, and an additional in-

tegrated luminosity of more than 5 fb−1 was recorded by
the end of June. Searches based on these data in the mass
range 110–145 GeV led to the observation of a new boson
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with a mass of approximately 125 GeV [14–16]. Using this
data set the ATLAS experiment excluded at 95 % CL the
mass ranges 111–122 and 131–559 GeV [14]. By the end of
2012 the amount of collected integrated luminosity at 8 TeV
reached almost 20 fb−1. We intend to report findings from
the entire data set in a future publication. However, given
the heightened interest following the recent discovery of the
125 GeV boson, and the fact that the analysis of the full data
taken in 2011–2012 will take time, we present here a search
for the SM-like Higgs boson up to 1 TeV with the same data
set that was used in Refs. [15, 16].

The observation of a Higgs boson with a mass of
125 GeV is consistent with the theoretical constraint com-
ing from the unitarization of diboson scattering at high ener-
gies [17–26]. However, there is still a possibility that the
newly discovered particle has no connection to the elec-
troweak symmetry breaking mechanism [27, 28]. In addi-
tion, several popular scenarios, such as general two-Higgs-
doublet models (for a review see [29, 30]) or models in
which the SM Higgs boson mixes with a heavy electroweak
singlet [31], predict the existence of additional resonances
at high mass, with couplings similar to the SM Higgs bo-
son. In any such models, issues related to the width of the
resonance and its interference with non-resonant WW and
ZZ backgrounds must be understood. This paper reports a
search for a SM-like Higgs boson at high mass, assum-
ing the properties predicted by the SM. The H → WW
and H → ZZ decay channels are used as benchmarks for
cross section and production mechanism in the mass range
145 < mH < 1000 GeV. This approach allows for a self-
consistent and coherent presentation of the results at high
mass.

For a Higgs boson decaying to two W bosons, the
fully leptonic (H → WW → �ν�ν) and semileptonic (H →
WW → �νqq) final states are considered in this analysis.
For a Higgs boson decaying into two Z bosons, final states
containing four leptons (H → ZZ → 2�2�′), two leptons and
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two jets (H → ZZ → 2�2q), and two leptons and two neu-
trinos (H → ZZ → 2�2ν), are considered, where � = e or
μ and �′ = e, μ, or τ . The analyses use pp collision data
samples recorded by the CMS detector, corresponding to in-
tegrated luminosities of up to 5.1 fb−1 at

√
s = 7 TeV and

up to 5.3 fb−1 at
√

s = 8 TeV.

2 The CMS detector and simulations

A full description of the CMS apparatus is available else-
where [32]. The CMS experiment uses a right-handed co-
ordinate system, with the origin at the nominal interaction
point, the x axis pointing to the center of the LHC ring, the
y axis pointing up (perpendicular to the plane of the LHC
ring), and the z axis along the counterclockwise-beam direc-
tion. The polar angle θ is measured from the positive z axis,
and the azimuthal angle φ is measured in the x–y plane. All
angles in this paper are presented in radians. The pseudora-
pidity is defined as η = − ln[tan (θ/2)].

The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter, which provides a
magnetic field of 3.8 T. Within the field volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromag-
netic calorimeter (ECAL), and a brass/scintillator hadron
calorimeter. A quartz-fiber Cherenkov calorimeter extends
the coverage to |η| < 5.0. Muons are measured in gas-
ionization detectors embedded in the steel flux return yoke.
The first level of the CMS trigger system, composed of cus-
tom hardware processors, is designed to select the most in-
teresting events in less than 3 µs, using information from the
calorimeters and muon detectors. The high level trigger pro-
cessor farm decreases the event rate from 100 kHz delivered
by the first level trigger to a few hundred hertz, before data
storage.

Several Monte Carlo (MC) event generators are used
to simulate the signal and background event samples. The
H → WW and H → ZZ signals are simulated using the
next-to-leading order (NLO) package POWHEG [33–35].
The Higgs boson signals from gluon fusion (gg → H), and
vector-boson fusion (VBF, qq → qqH), are generated with
POWHEG at NLO and a dedicated program [36] used for an-
gular correlations. Samples of WH, ZH, and ttH events are
generated using PYTHIA 6.424 [37].

At generator level, events are weighted according to the
total cross section σ(pp → H), which contains contributions
from gluon fusion computed to next-to-next-to-leading or-
der (NNLO) and next-to-next-to-leading-log (NNLL) [38–
49], and from weak-boson fusion computed at NNLO [41,
50–54].

The simulated WW(ZZ) invariant mass mWW (mZZ)
lineshape is corrected to match the results presented in
Refs. [55–57], where the complex-pole scheme for the

Higgs boson propagator is used. In the gluon fusion pro-
duction channel, the effects on the lineshape due to interfer-
ence between Higgs boson signal and the gg → WW and
gg → ZZ backgrounds are included [58, 59]. The theoret-
ical uncertainties on the lineshape due to missing higher-
order corrections in the interference between background
and signal are included in the total uncertainties, in ad-
dition to uncertainties associated with electroweak correc-
tions [56, 58]. Interference outside the Higgs boson mass
peak has sizable effects on the normalization for those fi-
nal states where the Higgs boson invariant mass cannot
be fully reconstructed. A correction is applied, taking into
account the corresponding theoretical uncertainties, in the
WW → �νqq final state [58, 59]. In the WW → �ν�ν and
ZZ → 2�2ν final states, the effect of interference on the
normalization, as computed in [59, 60], is included with an
associated uncertainty of 100 %.

The background contribution from qq → WW produc-
tion is generated using the MADGRAPH package [61], and
the subdominant gg → WW process is generated using
GG2WW [62]. The qq → ZZ production process is sim-
ulated at NLO with POWHEG, and the gg → ZZ process
is simulated using GG2ZZ [63]. Other diboson processes
(WZ, Zγ (∗), Wγ (∗)) and Z + jet are generated with PYTHIA

6.424 and MADGRAPH. The tt and tW events are gener-
ated at NLO with POWHEG. For all samples PYTHIA is
used for parton showering, hadronization, and underlying
event simulation. For leading-order (LO) generators, the de-
fault set of parton distribution functions (PDF) used to pro-
duce these samples is CTEQ6L [64], while CT10 [65] is
used for NLO generators. The τ -lepton decays are simulated
with TAUOLA [66]. The detector response is simulated us-
ing a detailed description of the CMS detector, based on the
GEANT4 package [67], with event reconstruction performed
identically to that for recorded data. The simulated sam-
ples include the effect of multiple pp interactions per bunch
crossing (pileup). The PYTHIA parameters for the underly-
ing events and pileup interactions are set to the Z2 (Z2∗)
tune for the 7 (8) TeV data sample as described in Ref. [68]
with the pileup multiplicity distribution matching that seen
in data.

3 Event reconstruction

A complete reconstruction of the individual particles emerg-
ing from each collision event is obtained via a particle-flow
(PF) technique [69, 70]. This approach uses the informa-
tion from all CMS sub-detectors to identify and reconstruct
individual particles in the collision event, classifying them
into mutually exclusive categories: charged hadrons, neutral
hadrons, photons, electrons, and muons.

The electron reconstruction algorithm combines informa-
tion from clusters of energy deposits in the ECAL with the
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trajectory in the inner tracker [71, 72]. Trajectories in the
tracker volume are reconstructed using a dedicated model of
electron energy loss, and fitted with a Gaussian sum filter.
Electron identification relies on a multivariate (MVA) tech-
nique that combines observables sensitive to the amount of
bremsstrahlung along the electron trajectory, the geometri-
cal and momentum matching between the electron trajectory
and the associated clusters, and shower-shape observables.

The muon reconstruction algorithm combines informa-
tion from the silicon tracker and the muon spectrometer.
Muons are selected from amongst the reconstructed muon-
track candidates by applying requirements on the track com-
ponents in the muon system and on matched energy deposits
in the calorimeters [73].

The τ -leptons are identified in both the leptonic decay
modes, with an electron or muon as measurable decay prod-
uct, and in the hadronic mode (denoted τh). The PF parti-
cles are used to reconstruct τh using the “hadron-plus-strip”
(HPS) algorithm [74].

Jets are reconstructed from PF candidates by using the
anti-kT clustering algorithm [75, 76] with a distance param-
eter of 0.5. Jet energy corrections are applied to account for
the non-linear response of the calorimeters, and other instru-
mental effects. These corrections are based on in-situ cal-
ibration using dijet and γ /Z + jet data samples [77]. The
median energy density due to pileup is evaluated in each
event, and the corresponding energy is subtracted from each
jet [78]. Jets are required to originate at the primary vertex,
which is identified as the vertex with the highest summed
p2

T of its associated tracks. Jets displaced from the primary
vertex in the transverse direction can be tagged as b jets [79].

Charged leptons from W and Z boson decays are typi-
cally expected to be isolated from other activity in the event.
The isolation of e or μ leptons is therefore ensured by apply-
ing requirements on the sum of the transverse energies of all
reconstructed particles, charged or neutral, within a cone of

R = √

(
η)2 + (
φ)2 < 0.4 around the lepton direction,
after subtracting the average pileup energy estimated using
a “jet area” technique [80] on an event-by-event basis.

The magnitude of the transverse momentum (pT) is cal-
culated as pT = √

px
2 + py

2. The missing transverse en-
ergy vector Emiss

T is defined as the negative vector sum of
the transverse momenta of all reconstructed particles in the
event, with Emiss

T = |Emiss
T |.

At trigger level, depending on the decay channel, events
are required to have a pair of electrons or muons, or an elec-
tron and a muon, one lepton with pT > 17 GeV and the
other with pT > 8 GeV, or a single electron (muon) with
pT > 27 (24) GeV.

The efficiencies for trigger selection, reconstruction,
identification, and isolation of e and μ are measured from
recorded data, using a “tag-and-probe” [81] technique based
on an inclusive sample of Z-boson candidate events. These

measurements are performed in several bins of p�
T and |η�|.

The overall trigger efficiency for events selected for this
analysis ranges from 96 % to 99 %. The efficiency of the
electron identification in the ECAL barrel (endcaps) varies
from around 82 % (73 %) at pe

T � 10 GeV to 90 % (89 %)
for pe

T � 20 GeV. It drops to about 85 % in the transition
region, 1.44 < |ηe| < 1.57, between the ECAL barrel and
endcaps. Muons with pT > 5 GeV are reconstructed and
identified with efficiencies greater than ∼98 % in the full
|ημ| < 2.4 range. The efficiency of the τh identification is
around 50 % for pτ

T > 20 GeV [74].

4 Data analysis

The results presented in this paper are obtained by com-
bining Higgs boson searches exploiting different production
and decay modes. A summary of these searches is given in
Table 1. All final states are exclusive, with no overlap be-
tween channels. The results of the searches in the mass range
mH < 145 GeV are presented in Refs. [15, 16]. The presence
of a signal in any one of the channels, at a certain value of
the Higgs boson mass, is expected to manifest itself as an
excess extending around that value for a range correspond-
ing to the Higgs boson width convoluted with the experi-
mental mass resolution. The Higgs boson width varies from
few percents of mH at low masses through up to 50 % at
mH = 1 TeV. The mass resolution for each decay mode is
given in Table 1. It should be noted that the presence of the
boson with mH = 125 GeV effectively constitutes an addi-
tional background especially in the WW → �ν�ν channel
up to approximately mH = 200 GeV, because of the poor
mass resolution of this analysis. To take this effect explic-
itly into account a simulated SM Higgs boson signal with
mH = 125 GeV is considered as background in this paper.

The results of all analyses are finally combined following
the prescription developed by the ATLAS and CMS Col-
laborations in the context of the LHC Higgs Combination
Group [82], as described in Ref. [13], taking into account
the systematic uncertainties and their correlations.

4.1 H → WW → �ν�ν

In this channel, the Higgs boson decays to two W bosons,
both of which decay leptonically, resulting in a signa-
ture with two isolated, oppositely charged, high-pT leptons
(electrons or muons) and large Emiss

T due to the undetected
neutrinos. The analysis is very similar to that reported in
Refs. [15, 16], but additionally uses an improved Higgs bo-
son mass lineshape model, and uses an MVA shape analy-
sis [83] for data taken at

√
s = 8 TeV. Candidate events must

contain two reconstructed leptons with opposite charge, with
pT > 20 GeV for the leading lepton, and pT > 10 GeV for
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Table 1 Summary information on the analyses included in this pa-
per. The column “H production” indicates the production mechanism
targeted by an analysis; it does not imply 100 % purity. The main con-
tribution in the untagged and inclusive categories is always gluon fu-
sion. The (jj)VBF refers to dijet pair consistent with the VBF topol-
ogy, and (jj)W(Z) to a dijet pair with an invariant mass consistent
with coming from a W (Z) dijet decay. For the WW → �ν�ν and

ZZ → 2�2�′ channels the full possible mass range starts from 110 GeV,
but in this paper both analyses are restricted to the masses above
145 GeV. The ZZ → 2�2q analysis uses only 7 TeV data. The nota-
tion “((ee,μμ), eμ) + (0 or 1 jets)” indicates that the analysis is per-
formed in two independent lepton categories (ee,μμ) and (eμ), each
category further subdivided in two subcategories with zero or one jets,
thus giving a total of four independent channels

H decay mode H production Exclusive final states No. of channels mH range [GeV] mH resolution

WW → �ν�ν 0/1-jets ((ee,μμ), eμ) + (0 or 1 jets) 4 145–600 20 %

WW → �ν�ν VBF tag ((ee,μμ), eμ) + (jj)VBF 2 145–600 20 %

WW → �νqq Untagged (eν,μν) + ((jj)W with 0 or 1 jets) 4 180–600 5–15 %

ZZ → 2�2�′ Inclusive 4e, 4μ, 2e2μ 3 145–1000 1–2 %

(ee,μμ) + (τhτh, τeτh, τμτh, τeτμ) 8 200–1000 10–15 %

ZZ → 2�2q Inclusive (ee,μμ) + ((jj)Z with 0, 1, 2b-tags) 6 200–600 3 %

ZZ → 2�2ν Untagged (ee,μμ) + 0, 1, 2 non-VBF jets 6 200–1000 7 %

ZZ → 2�2ν VBF tag (ee,μμ) + (jj)VBF 2 200–1000 7 %

the second lepton. Only electrons (muons) with |η| < 2.5
(2.4) are considered in this channel.

Events are classified into three mutually exclusive cate-
gories, according to the number of reconstructed jets with
pT > 30 GeV and |η| < 4.7. The categories are character-
ized by different signal yields and signal-to-background ra-
tios. In the following these are referred to as 0-jet, 1-jet, and
2-jet samples. Events with more than two jets are consid-
ered only if they are consistent with the VBF hypothesis
and therefore must not have additional jets in the pseudora-
pidity region between the highest-pT jets. Signal candidates
are further divided into same-flavor leptons (e+e−, μ+μ−)
and different-flavor leptons (e±μ∓) categories. The bulk of
the signal arises through direct W decays to electrons or
muons, with the small contribution from W → τν → �+X
decays implicitly included. The different-flavor lepton 0-jet
and 1-jet categories are analysed with a multivariate tech-
nique, while all others make use of sequential selections.

In addition to high-pT isolated leptons and minimal jet
activity, Emiss

T is expected to be present in signal events, but
generally not in background. For this channel, a Emiss

T, projected

variable is employed. The Emiss
T, projected is defined as (i) the

magnitude of the Emiss
T component transverse to the clos-

est lepton, if 
φ(�,Emiss
T ) < π/2, or (ii) the magnitude of

the Emiss
T otherwise. This observable more efficiently rejects

Z/γ ∗ → τ+τ− background events in which the Emiss
T is

preferentially aligned with the leptons, and Z/γ ∗→ �+�−
events with mismeasured Emiss

T . Since the Emiss
T, projected res-

olution is degraded as pileup increases, the minimum of
two different observables is used: the first includes all par-
ticle candidates in the event, while the second uses only the
charged particle candidates associated with the primary ver-
tex. Events with Emiss

T, projected above 20 GeV are selected for
this analysis.

The backgrounds are suppressed using techniques de-
scribed in Refs. [15, 16]. Top quark background is controlled
with a top-quark-tagging technique based on soft muon and
b-jet tagging [79]. A minimum dilepton transverse momen-
tum (p��

T ) of 45 GeV is required, in order to reduce the
W+ jets background. Rejection of events with a third lepton
passing the same requirements as the two selected leptons
reduces both WZ and Wγ ∗ backgrounds. The background
from low-mass resonances is rejected by requiring a dilep-
ton mass m�� > 12 GeV.

The Drell–Yan process produces same-flavor lepton pairs
(e+e− and μ+μ−) and therefore additional requirements are
applied for the same-flavor final state. Firstly, the resonant
component of the Drell–Yan background is rejected by re-
quiring a dilepton mass outside a 30 GeV window centered
on the Z-boson mass. The remaining off-peak contribution
is further suppressed by requiring Emiss

T, projected > 45 GeV.
For events with two jets, the dominant source of misre-
constructed Emiss

T is the mismeasurement of the hadronic
recoil, and optimal performance is obtained by requiring
Emiss

T > 45 GeV. Finally, the momenta of the dilepton sys-
tem and of the most energetic jet must not be back-to-back in
the transverse plane. These selections reduce the Drell–Yan
background by three orders of magnitude, while rejecting
less than 50 % of the signal.

These requirements form the set of “preselection” crite-
ria. The preselected sample is dominated by non-resonant
WW events. Figure 1(top) shows an example of the m�� dis-
tribution for the 0-jet different-flavor-leptons category after
the preselection. The data are well reproduced by the simula-
tion. To enhance the signal-to-background ratio, loose mH-
dependent requirements are applied on m�� and the trans-
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Fig. 1 (Top) Distributions of m�� in the 0-jet different-flavor cate-
gory of the WW → �ν�ν channel for data (points with error bars),
for the main backgrounds (stacked histograms), and for a SM Higgs
boson signal with mH = 500 GeV. The standard preselection is ap-
plied. (Bottom) BDT-classifier distributions for signal and background
events for a SM Higgs boson with mH = 500 GeV and for the
main backgrounds in the 0-jet different-flavor category after requiring

80 < m
��,Emiss

T
T < 500 GeV and m�� < 500 GeV

verse mass, given by:

m
��,Emiss

T
T =

√
2p��

T Emiss
T (1 − cos
φ��,Emiss

T
),

where 
φ��,Emiss
T

is the difference in azimuth between Emiss
T

and p��
T . After preselection, a multivariate technique is em-

ployed for the different-flavor final state in the 0-jet and
1-jet categories. In this approach, a boosted decision tree
(BDT) [84] is trained for each Higgs boson mass hypothesis
and jet category to discriminate signal from background.

The multivariate technique employs the variables used in
the preselection and additional observables including 
R��

between the leptons and the m
��,Emiss

T
T . For the 1-jet cate-

gory the 
φ��,Emiss
T

and azimuthal angle between the p��
T

and the jet are also used. The BDT classifier distributions

for mH = 500 GeV are shown in Fig. 1 (bottom) for the 0-jet
different-flavor category. BDT training is performed using
H → WW as signal and non-resonant WW as background.
The sum of templates for the signal and background are fit-
ted to the binned observed BDT distributions.

The 2-jet category is optimized for the VBF production
mode [50, 51, 53, 85], for which the cross section is roughly
ten times smaller than for the gluon fusion mode. Sequential
selections are employed for this category. The main require-
ments for selecting the VBF-type events are on the mass of
the dijet system, mjj > 450 GeV, and on the angular sep-
aration of the two jets |
ηjj| > 3.5. An mH-dependent re-
quirement on the dilepton mass is imposed, as well as other
selection requirements that are independent of the Higgs bo-
son mass hypothesis.

The normalization of the background contributions re-
lies on data whenever possible and exploits a combination
of techniques [15, 16]. The tt background is estimated by
extrapolation from the observed number of events with the
b-tagging requirement inverted. The Drell–Yan background
measurement is based on extrapolation from the observed
number of e+e−, μ+μ− events with the Z-veto requirement
inverted. The background of W + jets and QCD multi-jet
events is estimated by measuring the number of events with
one lepton passing a loose requirement on isolation. The
probability for such loosely-isolated non-genuine leptons to
pass the tight isolation criteria is measured in data using
multi-jet events. The non-resonant WW contribution is es-
timated from simulation.

Experimental effects, theoretical predictions, and the
choice of event generators are considered as sources of sys-
tematic uncertainty, and their impact on the signal efficiency
is assessed. The impact on the kinematic distributions is
also considered for the BDT analysis. The overall signal
yield uncertainty is estimated to be about 20 %, and is dom-
inated by the theoretical uncertainty associated with missing
higher-order QCD corrections and PDF uncertainties, esti-
mated following the PDF4LHC recommendations [86–90].
The total uncertainty on the background estimation in the
H → WW signal region is about 15 % and is dominated by
the statistical uncertainty on the observed number of events
in the background control regions.

After applying the final selections, no evidence of a SM-
like Higgs boson is observed over the mass range considered
in this paper. Upper limits are derived on the ratio of the
product of the Higgs boson production cross section and the
H → WW branching fraction, σH × B(H → WW), to the
SM expectation. The observed and expected upper limits at
95 % confidence level (CL) with all categories combined are
shown in Fig. 2. The contribution of the 2-jet category to the
expected limits is approximately 10 %.
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Fig. 2 Observed (solid line) and expected (dashed line) 95 % CL up-
per limit on the ratio of the product of production cross section and
branching ratio to the SM expectation for the Higgs boson obtained us-
ing the asymptotic CLS technique [91, 92] in the WW → �ν�ν chan-
nel. The 68 % (1σ ) and 95 % (2σ ) CL ranges of expectation for the
background-only model are also shown with green and yellow bands,
respectively. The horizontal solid line at unity indicates the SM expec-
tation (Color figure online)

4.2 H → WW → �νqq

The WW semileptonic channel has the largest branching
fraction of all the channels presented in this paper. Its advan-
tage over the fully leptonic final state is that it has a recon-
structable Higgs boson mass peak [93]. This comes at the
price of a large W+ jets background. The level to which this
background can be controlled largely determines the sensi-
tivity of the analysis. This is the first time CMS is presenting
a measurement in this decay channel.

The reconstructed electrons (muons) are required to have
pT > 35 (25) GeV, and are restricted to |η| < 2.5 (2.1). The
jets are required to have pT > 30 GeV and |η| < 2.4, and
not to overlap with the leptons, with the overlap determined
by a cone around the lepton axis of radius 
R = 0.3. Events
with electrons and muons, and with exactly two or three jets
are analysed separately, giving four categories in total. The
two highest-pT jets are assumed to arise from the hadronic
decay of the W candidate. According to simulation, in the
case of 2 (3) jet events, the correct jet-combination rate
varies from 68 (26) % for mH = 200 GeV to 88 (84) %
for mH = 600 GeV. For low mH values jets produced in
initial or final state radiation are often more energetic than
jets from W decay, therefore in 3 jet events the correct
jet-combination rate decreases quickly with decreasing mH.
Events with an incorrect dijet combination result in a broad
non-peaking background in the mWW spectrum.

The leptonic W candidate is reconstructed from the
(�,Emiss

T ) system. Events are required to have Emiss
T >

30 (25) GeV for the electron (muon) categories. To re-
duce the background from processes that do not contain

W → �ν decays, requirements of m
�,Emiss

T
T > 30 GeV and

|
φleading jet,Emiss
T

| > 0.8 (0.4) are imposed for electrons

(muons). The m
�,Emiss

T
T is defined as

m
�,Emiss

T
T =

√
2p�

TEmiss
T (1 − cos
φ�,Emiss

T
),

where 
φ�,Emiss
T

is the difference in azimuth between Emiss
T

and p�
T. These criteria reduce the QCD multijet background,

for which in many cases the Emiss
T is generated by a mismea-

surement of a jet energy.
To improve the mWW resolution, both W candidates are

constrained in a kinematic fit to the W-boson mass to within
its known width. For the W → qq candidate the fit uses the
four-momenta of the two highest-pT jets. For the W → �ν

candidate the Emiss
T defines the transverse energy of the neu-

trino and the longitudinal component of the neutrino mo-
mentum, pz, is unknown. The ambiguity is resolved by tak-
ing the solution that yields the smaller |pz| value for the
neutrino. According to simulation over 85 % of signal events
receive a correct |pz| value, thus improving the mass reso-
lution, especially at low mH.

To exploit the differences in kinematics between signal
and background events, a likelihood discriminant is con-
structed that incorporates a set of variables that best dis-
tinguishes the Higgs boson signal from the W + jets back-
ground. These variables comprise five angles between the
Higgs boson decay products, that describe the Higgs boson
production kinematics [36]; the pT and rapidity of the WW
system; and the lepton charge. The likelihood discriminant
is optimized with dedicated simulation samples for several
discrete Higgs boson mass hypotheses, for each lepton fla-
vor (e, μ) and for each jet multiplicity (2-jet, 3-jet) indepen-
dently. Four different optimizations are therefore obtained
per mass hypothesis. For each of them, events are retained
if they survive a simple selection on the likelihood discrim-
inant, chosen in order to optimize the expected limit for the
Higgs boson production cross section.

To simultaneously extract the relative normalizations of
all background components in the signal region, an un-
binned maximum likelihood fit is performed on the invari-
ant mass distribution of the dijet system, mjj. The fit is per-
formed independently for each Higgs boson mass hypoth-
esis. The signal region corresponding to the W mass win-
dow, 65 < mjj < 95 GeV, is excluded from the fit. The mass
window corresponds to approximately twice the dijet mass
resolution. The shape of the mjj distribution for the W + jets
background is determined by simulation. The overall nor-
malization of the W + jets component is allowed to vary in
the fit. The shapes for other backgrounds (electroweak dibo-
son, tt, single top quark, and Drell–Yan plus jets) are based
on simulation, and their normalizations are constrained to
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theoretical predictions, within the corresponding uncertain-
ties. The multijet background normalization is estimated
from data by relaxing lepton isolation and identification re-
quirements. Its contribution to the total number of events is
evaluated from a separate two-component likelihood fit to

the m
�,Emiss

T
T distribution, and constrained in the mjj fit ac-

cording to this fraction within uncertainties. For electrons,
the multijet fraction accounts for several percent of the event
sample, depending on the number of jets in the event, while
for muons it is negligible.

Limits are established based on the measured invariant
mass of the WW system, m�νjj. The m�νjj shape for the ma-
jor background, W + jets, is extracted from data as a lin-
ear combination of the shapes measured in two signal-free
sideband regions of mjj (55 < mjj < 65 GeV, 95 < mjj <

115 GeV). The relative fraction of the two sidebands is de-
termined through simulation, separately for each Higgs bo-
son mass hypothesis, by minimizing the χ2 between the in-
terpolated m�νjj shape in the signal region and the expected
one. The m�νjj shape for multijet background events is ob-
tained from data with the procedure described above. All
other background categories use the m�νjj shape from simu-
lation. The mjj and m�νjj distributions with final background
estimates are shown in Fig. 3, with selections optimized for
a 500 GeV Higgs boson mass hypothesis, for the (μ, 2 jets)
category. The final background m�νjj distribution is obtained
by summing up all the individual contributions and smooth-
ing it with an exponential function. The shapes of the m�νjj

distribution for total background, signal and data for each
mass hypothesis and event category are binned, with bin size
approximately equal to the mass resolution, and fed as input
to the limit-setting procedure.

The largest source of systematic uncertainty on the back-
ground is due to the uncertainty in the shape of the m�νjj

distribution of the total background. The shape uncertainty
is derived by varying the parameters of the exponential fit
function up and down by one standard deviation. The only
other uncertainty assigned to background is the normaliza-
tion uncertainty from the mjj fit. Both of these uncertain-
ties are estimated from data. The dominant systematic un-
certainties on the signal include theoretical uncertainties for
the cross section (14–19 % for gluon fusion) [41] and on
jet energy scale (4–28 %), as well as the efficiency of the
likelihood selection (10 %). The latter effect is computed by
taking the relative difference in efficiency between data and
simulation using a control sample of top-quark pair events
in data. These events are good proxies for the signal, since
in both cases the primary production mechanism is gluon
fusion, and the semi-leptonic final states contain decays of
two W bosons.

The upper limits on the ratio of the production cross sec-
tion for the Higgs boson compared to the SM expectation
are presented in Fig. 4.

Fig. 3 Invariant mass distributions for the mH = 500 GeV mass hy-
pothesis, (μ, 2 jets) category in the H → WW → �νqq channel. (Top)
The dijet invariant mass distribution with the major background contri-
butions. The vertical lines correspond to the signal region of this analy-
sis 65 < mjj < 95 GeV. (Bottom) The WW invariant mass distribution
with the major background contributions in the signal region

Fig. 4 Observed (solid line) and expected (dashed line) 95 % CL up-
per limit on the ratio of the product of production cross section and
branching fraction to the SM expectation for the Higgs boson in the
WW semileptonic channel
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4.3 H → ZZ → 2�2�′

This analysis seeks to identify Higgs boson decays to a pair
of Z bosons, with both decaying to a pair of leptons. This
channel has extremely low background, and the presence of
four leptons in the final state allows reconstruction and iso-
lation requirements to be loose. Due to very good mass reso-
lution and high efficiency of the selection requirements, this
channel is one of the major discovery channels at both low
and high Higgs boson masses. A detailed description of this
analysis may be found in [15, 16, 94, 95].

Events included in the analysis contain Z candidates
formed from a pair of leptons of the same flavor and op-
posite charge. Electrons (muons, τh) are required to be iso-
lated, to originate from the primary vertex, and to have
pT > 7 (5,20) GeV and |η| < 2.5 (2.1,2.3). The event se-
lection procedure results in mutually exclusive sets of Z can-
didates in the H → 2�2� and H → 2�2τ channels, with the
former identified first.

For the 2�2� final state, the lepton pair with invariant
mass closest to the nominal Z boson mass, denoted Z1, is
identified and retained if it satisfies 40 < mZ1 < 120 GeV.
The second Z candidate is then constructed from the re-
maining leptons in the event, and is required to satisfy 12 <

mZ2 < 120 GeV. If more than one Z2 candidate remains,
the ambiguity is resolved by choosing the leptons of highest
pT. Amongst the four candidate decay leptons, it is required
that at least one should have pT > 20 GeV, and that another
should have pT > 10 GeV. This requirement ensures that
selected events correspond to the high-efficiency plateau of
the trigger.

For the 2�2τ final state, events are required to have one
Z1 → �+�− candidate, with one lepton having pT > 20 GeV
and the other pT > 10 GeV, and a Z2 → τ+τ−, with τ de-
caying to μ, e or hadrons. The leptons from τ leptonic de-
cays are required to have pT > 10 GeV. The invariant mass
of the reconstructed Z1 is required to satisfy 60 < m�� <

120 GeV, and that of the Z2 to satisfy mττ < 90 GeV, where
mττ is the invariant mass of the visible τ -decay products.

Simulation is used to evaluate the expected non-resonant
ZZ background as a function of m2�2�′ . The cross section
for ZZ production at NLO is calculated with MCFM [96–98].
The theoretical uncertainty on the cross-section is evaluated

as a function of m2�2�′ , by varying the QCD renormaliza-
tion and factorization scales and the PDF set, following the
PDF4LHC recommendations. The uncertainties associated
with the QCD and PDF scales for each final state are on av-
erage 8 %. The number of predicted ZZ → 2�2�′ events and
their associated uncertainties, after the signal selection, are
given in Table 2.

To allow estimation of the tt, Z + jets, and WZ + jets re-
ducible backgrounds a Z1 + �ng control region is defined,
with at least one loosely defined non-genuine lepton candi-
date, �ng, in addition to a Z candidate. To avoid possible con-
tamination from WZ events, Emiss

T < 25 GeV is required.
This control region is used to determine the misidentifica-
tion probability for �ng to pass the final lepton selections
as a function of pT and η. To estimate the number of ex-
pected background events in the signal region, Z1 + �±�∓,
this misidentification probability is applied to two control
regions, Z1 + �±�∓

ng and Z1 + �±
ng�

∓
ng. The contamination

from WZ events containing a genuine additional lepton is
suppressed by requiring the imbalance of the measured en-
ergy deposition in the transverse plane to be below 25 GeV.
The estimated reducible background yield in the signal re-
gion is denoted as Z + X in Table 2. The systematic un-
certainties associated with the reducible background esti-
mate vary from 30 % to 70 %, and are presented in the
table combined in quadrature with the statistical uncertain-
ties.

The reconstructed invariant mass distributions for 2�2�′
are shown in Fig. 5 for the combination of the 4e, 4μ, and
2e2μ final states in the top plot and for the combination
of the 2�2τ states in the bottom one. The data are com-
pared with the expectation from SM background processes.
The observed mass distributions are consistent with the SM
background expectation.

The kinematics of the H → ZZ → 2�2� process, for a
given invariant mass of the four-lepton system, are fully de-
scribed at LO by five angles and the invariant masses of
the two lepton pairs [36, 99, 100]. A kinematic discrimi-
nant (KD), based on these seven variables, is constructed
based on the probability ratio of the signal and background
hypotheses [101]. The distribution of KD versus m2�2� is
shown in Fig. 6 (top) for the selected event sample, and is

Table 2 Observed and
expected background and signal
yields for each final state in the
H → ZZ → 2�2�′ channel. For
the Z + X background, the
estimations are based on data.
The uncertainties represent the
statistical and systematic
uncertainties combined in
quadrature

Channel 4e 4μ 2e2μ 2�2τ

ZZ background 28.6 ± 3.3 44.6 ± 4.6 70.8 ± 7.5 12.1 ± 1.5

Z + X 2.3+2.1
−1.5 1.1+0.8

−0.7 3.6+2.9
−2.2 8.9 ± 2.5

All backgrounds 30.9+3.9
−3.6 45.7+4.7

−4.7 74.4+8.0
−7.8 21.0 ± 2.9

Observed 26 42 88 20

mH = 350 GeV 5.4 ± 1.4 7.6 ± 1.6 13.2 ± 3.0 3.1 ± 0.8

mH = 500 GeV 1.9 ± 0.9 2.7 ± 1.2 4.6 ± 2.1 1.4 ± 0.7
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Fig. 5 Distribution of the four-lepton reconstructed mass for (top) the
sum of the 4e, 4μ, and 2e2μ channels, and for (bottom) the sum over all
2�2τ channels. Points represent the data, shaded histograms represent
the background, and unshaded histogram the signal expectations. The
reconstructed masses in 2�2τ states are shifted downwards with respect
to the true masses by about 30 % due to the undetected neutrinos in τ

decays

consistent with the SM background expectation. The two-
dimensional KD-m2�2� distribution is used to set upper lim-
its on the cross-section in the 2�2� channel. For the 2�2τ

final state, limits are set using the m2�2τ distribution. The
combined upper limits from all channels are shown in Fig. 6
(bottom).

4.4 H → ZZ → 2�2q

This channel has the largest branching fraction of all
H → ZZ channels considered in this paper, but also a large
background contribution from Z + jets production. The
hadronically-decaying Z bosons produce quark jets, with a
large fraction of heavy quarks compared to the background
that is dominated by gluon and light quark jets. This fea-
ture allows the use of a heavy-flavor tagging algorithm to
enhance the signal with respect to background. The analysis

Fig. 6 (Top) The distribution of events selected in the 2�2� subchan-
nels for the kinematic discriminant, KD, versus m2�2�. Events in the
three final states are marked by filled symbols (defined in the legend).
The colored contours (with the measure on the color scale of the right
axis) represent the expected relative density of background events.
(Bottom) Observed (solid line) and expected (dashed line) 95 % CL
upper limits on the ratio of the product of the production cross section
and branching fraction to the SM expectation in the H → ZZ → 2�2�′
channel. The 68 % (1σ ) and 95 % (2σ ) ranges of expectation for the
background-only model are also shown with green and yellow bands,
respectively (Color figure online)

presented here updates the previously published result [101]
by the use of the most recent theoretical predictions for
the Higgs boson mass lineshape and the correction of a
problem in the background description. The measurement
in this channel uses the same

√
s = 7 TeV data set as the

published paper [101] and uses the same selection require-
ments.

Reconstructed electrons and muons are required to have
pT > 40 (20) GeV for the highest-pT (second-highest-pT)
lepton. Electrons (muons) are required to have |η| < 2.5(2.4),
with the transition region between ECAL barrel and end-
cap, 1.44 < |η| < 1.57, excluded for electrons. Jets are re-
quired to have pT > 30 GeV and |η| < 2.4. Each pair of
oppositely-charged leptons of the same flavor, and each pair
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of jets, are considered as Z candidates. Background contri-
butions are reduced by requiring 75 < mjj < 105 GeV and
70 < m�� < 110 GeV.

In order to exploit the different jet composition of sig-
nal and background, events are classified into three mutu-
ally exclusive categories, according to the number of se-
lected b-tagged jets: 0b-tag, 1b-tag and 2b-tag. An angular
likelihood discriminant is used to separate signal-like from
background-like events in each category [36]. A “quark-
gluon” likelihood discriminant (qgLD), intended to distin-
guish gluon jets from light-quark jets, is employed for the
0b-tag category, which is expected to be dominated by
Z + jets background. A requirement on the qgLD value re-
duces backgrounds by approximately 40 % without any loss
in the signal efficiency. In order to suppress the substantial tt
background in the 2b-tag category, a discriminant λ is used.
This variable is defined as the ratio of the likelihoods of a
hypothesis with Emiss

T equal to the value measured with the
PF algorithm, and the null hypothesis Emiss

T = 0 GeV [102].
This discriminant provides a measure of whether the event
contains genuine missing transverse energy. Events in the
2b-tag category are required to have 2 lnλ < 10. When an
event contains multiple Z candidates passing the selection
requirements, only the ones with jets in the highest b-tag
category are retained for analysis. If multiple candidates are
still present, the ones with mjj and m�� values closest to the
Z mass are retained.

The statistical analysis is based on the invariant mass of
the Higgs boson candidate, mZZ, applying the constraint that
the dijet invariant mass is consistent with that of the Z boson.
Data containing a Higgs boson signal are expected to show
a resonance peak over a continuum background distribution.

The background distributions are estimated from the
mjj sidebands, defined as 60 < mjj < 75 GeV and 105 <

mjj < 130 GeV. In simulation, the composition and distribu-
tion of the dominant backgrounds in the sidebands are ob-
served to be similar to those in the signal region. The distri-
butions derived from data sidebands are measured for each
of the three b-tag categories and used to estimate the nor-
malization of the background and its dependence on mZZ.
The results of the sideband interpolation procedure are in
good agreement with the observed distributions in data. In
all cases, the dominant backgrounds include Z + jets with
either light- or heavy-flavor jets and tt background, both of
which populate the mjj signal region and the mjj sidebands.
The diboson background amounts to less than 5 % of the to-
tal in the 0b and 1b-tag categories, and about 10 % in the 2b-
tag category. No significant difference is observed between
results from data and the background expectation.

The distribution of mZZ for the background is parametr-
ized by an empirical function constructed of a Crystal
Ball distribution [103–105] multiplied by a Fermi function,
f (mZZ) = 1/[1 + e−(mZZ−a)/b], fitted to the shape and with

Fig. 7 Observed (solid line) and expected (dashed line) 95 % CL up-
per limit on the ratio of the product of the production cross section and
branching fraction, to the SM expectation for the Higgs boson in the
H → ZZ → 2�2q channel

normalization determined from the sidebands. The domi-
nant normalization uncertainty in the background estimation
is due to statistical uncertainty of the number of events in
the sidebands. The reconstructed signal distribution has two
components. The Double Crystal Ball function [103–105] is
used to describe the events with well reconstructed Higgs
boson decay products. The mZZ spectrum for misrecon-
structed events is described with a triangle function with
linear rising and falling edges, convoluted with Crystal Ball
function for better description of the peak and tail regions.
The signal reconstruction efficiency and the mZZ distribu-
tion are parametrized as a function of mH. The main un-
certainties in the signal mZZ parametrization are due to ex-
perimental resolution, which is predominantly due to the
uncertainty on the jet energy scale [77]. Uncertainties in b-
tagging efficiency are evaluated with a sample of jet events
enriched in heavy flavors by requiring a muon to be spatially
close to a jet. The uncertainty associated with the qgLD se-
lection efficiency is evaluated using the γ + jet sample in
data, which predominantly contains light quark jets.

The upper limits at 95 % CL on the ratio of the production
cross section for the Higgs boson to the SM expectation, ob-
tained from the combination of all categories, are presented
in Fig. 7. This exclusion limit supersedes the previously pub-
lished one [101].

4.5 H → ZZ → 2�2ν

This analysis identifies Higgs boson decays to a pair of Z
bosons, with one of Z bosons decaying leptonically and the
other to neutrinos. A detailed description of the analysis can
be found in [106]. The analysis strategy is based on a set
of mH-dependent selection requirements applied on Emiss

T
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and mT, where

m2
T =

[√(
p��

T

)2 + m2
�� +

√(
Emiss

T

)2 + m2
��

]2

− [
p��

T + Emiss
T

]2
.

Events are required to have a pair of well identified, iso-
lated leptons of same flavor (e+e− or μ+μ−), each with
pT > 20 GeV, with an invariant mass within a 30 GeV win-
dow centered on the Z mass. The pT of the dilepton system
is required to be greater than 55 GeV. Jets are considered
only if they have pT > 30 GeV and |η| < 5. The presence of
large missing transverse energy in the event is also an essen-
tial feature of the signal.

To suppress Z + jets background, events are excluded
from the analysis if the angle in the azimuthal plane be-
tween the Emiss

T and the closest jet is smaller than 0.5
radians. In order to remove events where the lepton is
mismeasured, events are rejected if Emiss

T > 60 GeV and

φ(�,Emiss

T ) < 0.2. The top-quark background is sup-
pressed by applying a veto on events having a b-tagged jet
with pT > 30 GeV and |η| < 2.4. To further suppress the
top-quark background, a veto is applied on events contain-
ing a “soft muon”, with pT > 3 GeV, which is typically pro-
duced in the leptonic decay of a bottom quark. To reduce the
WZ background, in which both bosons decay leptonically,
any event with a third lepton (e or μ) with pT > 10 GeV,
and passing the identification and isolation requirements, is
rejected.

The search is carried out in two mutually exclusive cate-
gories. The VBF category contains events with at least two
jets with |
ηjj| > 4 and mjj > 500 GeV. Both leptons form-
ing the Z candidate are required to lie in this 
ηjj region,
and there should be no other jets in it. The gluon fusion cat-
egory includes all events failing the VBF selection, and is
subdivided into subsamples according to the presence or ab-
sence of reconstructed jets. The event categories are chosen
in order to optimize the expected cross section limit. In the
case of the VBF category, a constant Emiss

T > 70 GeV and
no mT requirement are used, as no gain in sensitivity is ob-
tained with a mH-dependent selection.

The background composition is expected to vary with the
hypothesised value of mH. At low mH, Z+ jets and tt are the
largest contributions, whilst at higher mH (above 400 GeV),
the irreducible ZZ and WZ backgrounds dominate. The ZZ
and WZ backgrounds are taken from simulation [37, 61] and
are normalized to their respective NLO cross sections. The
Z + jets background is modeled from a control sample of
γ + jets events. This procedure yields an accurate model of
the Emiss

T distribution in Z + jets events, shown in Fig. 8.
The uncertainty associated with the Z + jets background

estimate is affected by any residual contamination in the
γ + jets control sample from processes involving a photon

Fig. 8 The Emiss
T distribution in data compared to the estimated

background in the (top) gluon fusion and (bottom) VBF categories
of the H → ZZ → 2�2ν channel. The dielectron and dimuon chan-
nels are combined. Contributions from ZZ, WZ, non-resonant back-
ground and Z + jets background are stacked on top of each other. The
Emiss

T distribution in signal events for mH = 600 GeVis also shown. The
last bin in each plot contain the overflow entries

and genuine Emiss
T . This contamination could be as large as

50 % of the total Z + jets background. It is not subtracted,
but assigned a 100 % uncertainty.

Background processes that do not involve a Z resonance
(non-resonant background) are estimated with a control
sample of events with dileptons of different flavor (e±μ∓)
that pass the full analysis selection. This method cannot dis-
tinguish between the non-resonant background and a pos-
sible contribution from H → WW → 2�2ν events, which
are treated as part of the non-resonant background estimate.
This treatment considers only the H → ZZ channel as sig-
nal and is combined with the H → WW channel for the
limit calculation. The interference between ZZ and WW
channels is also taken into account [106]. The non-resonant
background in the e+e− and μ+μ− final states is estimated
by applying a scale factor to the selected e±μ∓ events,
estimated from the sidebands of the Z peak events (40 <
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Fig. 9 Observed (solid line) and expected (dashed line) 95 % CL up-
per limit on the ratio of the product of the production cross section and
branching fraction to the SM expectation for the Higgs boson in the
H → ZZ → 2�2ν channel

m�� < 70 GeV and 110 < m�� < 200 GeV). The uncertainty
associated with the estimate of the non-resonant background
is evaluated to be 25 %. No significant excess of events is ob-
served over the SM background expectation. The observed
and expected upper limits as a function of mH are shown in
Fig. 9.

5 Combined results

The expected and observed upper limits on the ratio of the
production cross section for the Higgs boson to the SM ex-
pectation, for each of the individual channels presented in
this paper, are shown in Fig. 10. This figure also shows a
combined limit, calculated using the methods outlined in
Refs. [13, 82]. The combination procedure assumes the rela-
tive branching fractions to be those predicted by the SM, and
takes into account the statistical and experimental system-
atic uncertainties as well as theoretical uncertainties. In the
mass region 145 < mH < 200 GeV the branching fraction
of the most sensitive channel, H → ZZ, is decreasing and
has a typical dependence on mH, which is reflected in both
the expected and observed limits. In this mass region the re-
sult of the combination is determined by the WW → �ν�ν

channel. At masses above 200 GeV the ZZ → 2�2�′ chan-
nel becomes dominant, since low background contributions
in this channel allow to keep high efficiency of the selec-
tion requirements. Starting at approximately 400 GeV the
ZZ → 2�2ν starts to contribute significantly. The branch-
ing fraction of ZZ → 2�2ν is higher than ZZ → 2�2�′, and
the major background contributions decrease with mH in-
crease, thus allowing for selection requirements to be more
and more effective in the 2�2ν channel. The combined ob-
served and expected limits agree well within uncertainties
as shown in Fig. 11.

Fig. 10 (Top) Expected and (bottom) observed 95 % CL limits for all
individual channels and their combination. The horizontal dashed line
at unity indicates the SM expectation

Fig. 11 Observed (solid line) and expected (dashed line) 95 % CL
upper limit on the ratio of the production cross section to the SM ex-
pectation for the Higgs boson with all WW and ZZ channels combined
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The previously expected exclusion range at 95 % CL,
118–543 GeV, is extended up to 700 GeV. Previously pub-
lished results exclude at 95 % CL the SM-like Higgs boson
in the range 127 < mH < 600 GeV [13]. The results of this
analysis extend the upper exclusion limit to mH = 710 GeV.

6 Summary

Results are presented from searches for a standard-model-
like Higgs boson in H → WW and H → ZZ decay chan-
nels, for Higgs boson mass hypotheses in the range 145 <

mH < 1000 GeV. The analysis uses proton-proton colli-
sion data recorded by the CMS detector at the LHC, cor-
responding to integrated luminosities of up to 5.1 fb−1 at√

s = 7 TeV and up to 5.3 fb−1 at
√

s = 8 TeV. The fi-
nal states analysed include two leptons and two neutrinos,
H → WW → �ν�ν and H → ZZ → 2�2ν, a lepton, a neu-
trino, and two jets, H → WW → �νqq, two leptons and two
jets, H → ZZ → 2�2q, and four leptons, H → ZZ → 2�2�′,
where � = e or μ and �′ = e or μ, or τ . The results are
consistent with standard model background expectations.
The combined upper limits at 95 % confidence level on
products of the cross section and branching fractions ex-
clude a standard-model-like Higgs boson in the range 145 <

mH < 710 GeV, thus extending the mass region excluded by
CMS from 127–600 GeV up to 710 GeV.
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