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Abstract
We present a new method of smoothing discrete breakup cross sections cal-
culated by the continuum-discretized coupled-channels method based on the
complex-scaling method. One of advantages of this approach is applicable to
many-body breakup reaction systems. In this work, we apply the new smooth-
ing method to analyses of 12C(6He, nn4He) and 208Pb(6He, nn4He) reactions
at 240 MeV/A.

1 INTRODUCTION
Exploring unstable nuclei far from the stable line is one of the most important subjects in nuclear physics.
Two-neutron halo nuclei near the neutron drip line such as 6He and 11Li have exotic properties, i.e., soft
dipole excitation and a di-neutron correlation. These properties can be investigated via breakup reactions,
where the projectile breaks up into three fragments (core + n + n). One of the most reliable methods
for treating the projectile breakup processes is the method of continuum-discretized coupled channels
(CDCC) [1–3], which has been proposed as solving three-body scattering problems. Recently, we have
developed CDCC as a method of treating four-body breakup processes in scattering of a three-body
projectile [4–9].

Breakup cross sections include properties of continuum and resonance states of a projectile, and
are obtained by the T -matrix elements in theoretically. The T -matrix elements estimated by CDCC, Ti,
are discrete in the excitation energy ε of the projectile, although the exact ones T (ε) are continuous.
Thus one needs a way of smoothing Ti to analyze breakup reactions. For three-body breakup reactions,
we have proposed the smoothing function method and conrmed the validity [6, 7]. However, it is quite
hard to adopt it to four-body breakup processes. Thus, it is highly expected that an accurate and practical
method of smoothing Ti will be proposed.

In this work, we propose a new method to obtain the differential breakup cross section as a
continuous function of ε accurately and practically, by using CDCC and the complex-scaling method
(CSM) [10, 11]. The new method is applied to the 12C(6He, nn4He) reaction at 229.8 MeV/A. A merit
of the present smoothing method is that one can see fast convergence of the calculated breakup cross
section with respect to extending the model space. The method is also applied to 12C(6He, nn4He) and
208Pb(6He, nn4He) reactions at 240 MeV/A and compared with the experimental data. In principle, this
method is applicable not only for four-body breakup reactions but also for many-body breakup reactions.

2 FORMULATION
We consider scattering of a projectile B from a target A. The scattering is described by the Schrödinger
equation with outgoing boundary conditions,

[H −Etot]|Ψ
(+)� = 0, (1)

where the total energy Etot is related to the corresponding incident energy of the center-of-mass system
ECM

in as Etot = ECM
in + ε0 with the ground-state energy ε0 of B. The total Hamiltonian H of this system

is dened as

H = KR + U(ξ,R) +HB, (2)
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whereR is a coordinate between B and A, and ξ is a set of internal coordinates in B. The kinetic energy
operator for R and internal Hamiltonian of B are represented by KR and HB, respectively, and U is a
sum of nuclear and Coulomb potentials between constituents in B and A.

The most fundamental assumption in CDCC is that the scattering takes place in a modelspace,

P =
∑

γ

|Φγ��Φnγ |, (3)

where Φγ is a γth eigenstate obtained by diagonalizing HB with L2-type basis functions. Therefore, the
Schrödinger equation is solved in the modelspace:

P[H − Etot]P|Ψ
(+)

CDCC� = 0. (4)

The T matrix amplitude for breakup processes, in which the nal state of B has an excitation
energy ε, is

T (ε) = �ψ(−)
ε (ξ)χ(−)

ε (R)|Û |Ψ(+)(ξ,R)�ξR, (5)

Û = U(ξ,R)− V Coul
B (R), (6)

where V Coul
B is the Coulomb interaction between B and A. The exact nal channel wave function

ψ
(−)
ε (ξ)χ

(−)
ε (R) with incoming boundary conditions satises

[
KR + V Coul

B (R)− (Etot − ε)
]
|χ(−)

ε (R)� = 0, (7)

[HB − ε] |ψ(−)
ε (ξ)� = 0. (8)

Using Eq. (5), the differential cross section as a function of ε can be calculated as

dσ

dε
=

∫
dε�δ(ε − ε�)|T (ε�)|2 =

1

π
ImR(ε) (9)

with the response function

R(ε) =

∫
dξdξ�O†(ε, ξ)G(−)(ε, ξ, ξ�)O(ε, ξ�), (10)

where the Green’s function G(−) and operator O are dened by

G(−)(ε, ξ, ξ�) = lim
η→+0

�ξ|
1

ε−HB − iη
|ξ��, (11)

O(ε, ξ) = �χ(−)
ε (R)|Û |Ψ(+)(ξ,R)�R. (12)

In order to evaluate R(ε), we use the complex scaling method (CSM), where the scaling transfor-
mation operator is represented by C(θ). The scaled Green’s function is written as

G
(−)

θ (ε, ξ, ξ�) = lim
η→+0

�ξ|
1

ε−Hθ
B − iη

|ξ��, (13)

with the complex-scaled Hamiltonian

Hθ
B = C(θ)HBC

−1(θ). (14)

The scaled Green’s function Gθ is a L2-type operator when −π < θ < 0, so that it can be expanded with
L2-type basis functions with high accuracy:

Gθ(ε, ξ, ξ�) ≈
∑

i

|φθ
i ��φ̃

θ
i |

ε− εθi
, (15)
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where φθ
i is a i-th eigenstate obtained by diagonalizing Hθ

B = C(θ)HBC
−1(θ) in a modelspace spanned

by L2-type basis functions, �φ̃θ
i |H

θ
B|φ

θ
i′� = εθi δii′ . Note that the scaling angle should be taken as negative,

because the Green’s function G(−) satises an incoming boundary condition.
Furthermore the modelspace approximation is applied to the Green’s function and total wave func-

tion, that is, G(−) and Ψ are replaced by PG(−)P and Ψ(+)

CDCC, respectively. This leads to

R(ε) ≈
∑

i

∑

γ′,γ

�Ψ
(+)

CDCC|Û
∗|χ(−)

γ Φγ′�

�Φγ′ |C−1(θ)|φθ
i ��φ̃

θ
i |C(θ)|Φγ�

ε− εθi

× �Φγχ
(−)
γ |Û |Ψ

(+)

CDCC�. (16)

Noting that �Φγχ
(−)
γ |Û |Ψ

(+)

CDCC� is a T -matrix element of CDCC, Tγ , to Φγ , we dene scaled T -matrix
elements by

T̃ θ
i ≡

∑

γ′

�φ̃θ
i |C(θ)|Φγ′�Tγ′ , (17)

T θ
i ≡

∑

γ

T ∗

γ �Φn|C
−1(θ)|φθ

i �. (18)

The nal form of the differential cross section is then obtained by

dσ

dε
=

1

π
Im

∑

i

T θ
i T̃

θ
i

ε− εθi
. (19)

For the diagonalization of HB and Hθ
B, we adopt the Gaussian expansion method (GEM) [12]. In

GEM, the state of the 4He + n + n system is described by a superposition of three channels, each channel
with a different set of Jacobi coordinates, (yc, rc). For each c (channel), the radial parts of the internal
wave functions regarding yc and rc are expanded by a nite number of Gaussian basis functions

ϕjλ(yc) = yλc e
−(yc/ȳj)

2

Yλ(Ωyc),

ϕi�(rc) = r�ce
−(rc/r̄i)

2

Y�(Ωrc), (20)

respectively. Here λ (�) is the angular momentum regarding yc (rc), and the range parameters are taken
to lie in geometric progression:

ȳj = (ȳmax/ȳ1)
(j−1)/jmax , (21)

r̄i = (r̄max/r̄1)
(i−1)/imax . (22)

The parameters depend on c, but we omitted the dependence in Eqs. (21) and (22) for simplicity; see
Ref. [4] for the details of the diagonalization and the denition of Jacobi coordinates. As interactions
Vnn and Vnα in HB, we take the so-called GPT [13] and KKNN [14] potentials, respectively. These
potentials with a Gaussian form reproduce well data of low-energy nucleon-nucleon and nucleon-4He
scattering, respectively. The particle exchange between valence neutrons and neutrons in 4He is treated
approximately with the orthogonality condition model [15].

3 RESULTS AND DISCUSSIONS
First, we prepare the three sets of parameters of basis functions shown in Table 1 to conrm the con-
vergence of the breakup cross section. For the 0+ and 1− states, maximum internal angular momenta
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Table 1: Gaussian range parameters.

Set c jmax ȳ1 (fm) ȳmax (fm) imax r̄1 (fm) r̄max (fm)

I 3 10 0.1 10.0 10 0.5 10.0
1, 2 10 0.5 10.0 10 0.5 10.0

II 3 15 0.1 20.0 15 0.5 20.0
1, 2 15 0.5 20.0 15 0.5 20.0

III 3 20 0.1 50.0 20 0.5 50.0
1, 2 20 0.5 50.0 20 0.5 50.0

�max and λmax are both set to unity. For the 2+ states, we take �max = λmax = 1 for c = 1 and 2, and
�max = λmax = 2 for c = 3. Figure 1 shows the breakup cross sections dσ/dε to the 0+, 1−, and 2+
continua for 12C(6He,nn4He) reaction at 229.8 MeV. For all the cross sections, sets II and III yield the
same result, whereas the result of set I is somewhat different from it. The convergence of CDCC solution
with respect to expanding the model space is thus obtained with set II. Here, we take θ = −14◦ as the
scaling angle, since the converged spectra are obtained at this angle.

In Fig. 2, the breakup cross section dσ/dε calculated by the present method is compared with
the experimental data for 6He + 12C and 6He + 208Pb reactions at 240 MeV/A [16]. These data have
already been analyzed by four-body distorted-wave Born approximation (DWBA) [17] and the eikonal
approximation [18]. In the present analysis, we estimate optical potentials for n-target and 4He-target
based on the double-folding model the Melbourne nucleon-nucleon g-matrix interaction [19] with the
densities obtained by the spherical Hartree-Fock (HF) calculation with the Gogny D1S interaction. [20,
21]. For the result of the 12C(6He, nn4He) reaction, one sees clear peak of the 2+ resonance around 1
MeV as shown in Fig. 2(a). In this analysis, we found that Coulomb breakup effects are negligible and the
present theoretical result is consistent with the experimental data except for the peak of the 2+ resonance
around ε = 1 MeV. On the other hand, Coulomb breakup to the 1− continuum is dominant for the
208Pb(6He, nn4He) reaction as shown in Fig. 2(b). For 208Pb target, the present method underestimates
the experimental data at ε ≥ 2 MeV. A possible origin of this underestimation is that the inelastic
breakup reactions are not included in the present calculation. As mentioned in Ref. [17], the inelastic
breakup effect is not negligible, and the elastic breakup cross section calculated with four-body DWBA
also underestimates the data.
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Fig. 1: Convergence of the breakup cross sections to the 0+ (a), 1− (b), and 2+ (c) continua. In each panel, the
dashed line, the solid line, and the open circles correspond to results of sets I, II, and III, respectively. The dotted
line in (b) shows the result when Coulomb breakup processes are switched off.
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Fig. 2: Comparison of the breakup cross section calculated by CDCC (solid line) with experimental data for (a)
the 6He + 12C scattering at 240 MeV/nucleon and (b) the 6He + 208Pb scattering at 240 MeV/nucleon. The dash-
dotted, dotted, and dashed lines correspond to the contributions of the 0+, 1−, and 2+ breakup, respectively, and
the solid line is the sum of them. The experimental data are taken from Ref. [16].

4 SUMMARY
In summary, we have proposed a practical method of calculating the differential breakup cross section
as a continuous function of the excitation energy of a projectile, by combining CDCC and CSM. One of
advantages of this method is that we do not require to calculate the exact continuum wave functions of
the projectile. In the present formalism, we have to do is just diagonalize the projectile Hamiltonian and
the scaled Hamiltonian with L2-type basis functions. Furthermore, the scaling operator C(θ) operates
only on spatially damping functions and hence the differential breakup cross section converges quickly as
the model space is extended. The method is successful in reproducing the data on 12C(6He, nn4He) and
208Pb(6He, nn4He) reactions at 240 MeV/A. In principle, the present formalism is applicable for many-
body breakup reaction, if the diagonalization of the projectile Hamiltonian and the scaled Hamiltonian
is feasible.
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