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ABSTRACT

We present a new evaluation of the two-
point function built from the colour-
less operators gpAy (yg}ELY. Previous
calculations for the dimension-six
vacuum condensate contributions were
incomplete. We give mew predictions for
the masses and decay amplitudes of 17+
and 07" hermaphrodite wesons.

o

* On leave of absence from USTL (Equi-
pe de Recherche Associ&e au CNRS),
Place ©Eugéne Bataillon, 34100
Montpellier, France.

+) On leave of absence from Department

of Theoretical Physics, University

of Barcelona, Diagonal 647,

Barcelona 08028, Spain.

CERN-TH.3949/84



QCD sum rules have nowadays become a powerful method in the analysis of the
hadron parameters as wgll as in the phenomenologi;al estimate of the QCD and
chiral symmetry-breaking parameters. An earlie; attempt to study the properties
of hermaphrodite (or meikton) mesoms within the framework of QCD sum rules can |
be found elsewhere!). However, i1t has been qoticed later onz) that in Ref. 1
there aré some mistakes in the.evaluationlof the QCD contributions wmaking, unfor-
tunately, their prediction invalid For the masses and decay amplitudes of the
hermaphrodite mesons. Given the complexity and the non-triviality of the QCD
calculations, it becomes necessary to provide a completel? independent calcula-

tion. We shall be concerned with the two—point functions,
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built from the colourless, local .gauge-invariant operators
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which are the unique. lowest—-dimension operators that can be used to study the
L . L. -+ -
properties of the hermaphrodite mesons with quantum numbers 1 and 0 , res-

pectively.

The evalpation of the two—point functioms have been carried out using the
method of Shifman, Vainshtein and Zakharov?) which takes into account the contri-
butions of the non-trivial values of the vacuum condensates. We choose to work
in the same gauge as previous authorsliz), which is the so-called coordinate

Schwinger gauge") (quu(x) = 0). As is well known, this choice simplifies



considerably the evaluation of the coefficients of the vacuum condensates in the
expansion of the two-point functions. We present cur result in the Table. For
the diagrams I to IV we get the same results as in Ref. 2 (hereafter called GZVW),
but for a spurious normalization factor. A discrepancy appears for the coeffi-
cient of the triple gluon condensate, since G*VW have missed diagram V and we
disagree with the sign of diagram VI. For the mixed condensate we realize that
G*VW have only drawn the &iagrams VII, VIII, and IX, and we get for them the same
total contribution. However, one should notice that diagrams X to XIV give a
non-vanishihg contribution. The last two (as well as V) are due to the propaga-—

. *
tion of the quark condensate ).

Collecting all the results given in the Table and writing only those terms
that will give a contribution when the Laplace (Borel) transformation is carried
! ’ . . P += -
out, we obtain that the two-point functions projected in the 1 and 0 channels

are, respectively,
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Notice that we have neglected the contribution of 02 since it 1s of the same

order of magnitude as that of other neglected radiative correction terms.

*) In Ref.5, he corrects his previous result for the baryonic sector due to the
presence of condensate propagation. A useful method for the evaluation of
such a contribution can be seen in Ref. 5.



Spectral function sum rules

We relate the above QCD expression of the two-point function to the lowest
ground state mass MH and decay amplitude f via a spectral function sum rule

approach. We parametrlze the spectral function using the duallty ansatz:

(4
%Im‘ M0 = 2[5 My 8lE=ME) & ALE) © (&= ko)

where /E; is the continuum threshold which should bé inte:preted as an average
of the multiparticle thresholds; A(t) corresponds to the discontinuity coming
from the QCDI) diagrams. One can notice that contrary to the case of the p and
T channels, the QCD continuum receives here also some contributions coming from
the non-perturbative terms. We can work for the analysis with various sum rules

7).

discussed in the literature®® As here we shall be more interested in a

sum rule which is directly semsitive to the lowest ground state mass, we find it

convenient to work with the moment sum rules ratiosas?b):
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where T is the "imaginary time" sum rule variable. The QCD expression of the

. . %
moment 1s, for instance ),
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We give its behaviour in Fig. 1 where we have used aS(FZ) = (0.04 * 0.01) Gev® °,°)

gafabc <F3bc) = (1.1 GeV?) GS(FZ)Q) and &S/ﬂ = -4/(9 log TA?).

Our estimate of the uncertainties on R comes from the radiative corrections

for small T and from an assumed uncertainty of 25% in the estimate of gafabc <F;bc)

*) The analogue of Eqs. (5to 9) for the 0 can be easily obtained®’) from
Eq. (3b). .
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from the lattice calculations for larger 1. Then, the estimated uncertainties

on R are

e \)
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The phenomenological expressicn of the moments is
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The asymptotic coincidence of the QCD and phenomenclogical sides of the sum rule

gives the constraint for small T:
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Such a contraint allows us to eliminate one of the three parameters (fH, M.;, tc)
in the fitting procedure. For instance, we eliminate fH. Then we confront
Egqs. (5) and (7) for the values of 7 less than a critical value T pax using a
two-parameter fit, with the help of the CERN library subroutine FUMILI *°)}*). we

give our results for the 17" and 07~ channels in Figs.. 2 and 3 respectively. TFor

*) More detajls on the uses of such a program within the sum rule are discussed
in Ref. 11.
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instance, in Fig. 2a, we analyse the effect of tc for given values of Tmax and A.
The best fit corresponds to the minimum of ¥?/NDF, which gives a mass of the re-
sonance at 1.66 GeV. In Fig. 2b, we analyse the gffect of Tax for a given value
of tc which comes from the best fit of Fig. 2a. We see iﬁlFig. 2c that the effect
of the value of A in the range of IOO—ZOOIMeV is irrélevant. Qur best fit, which
takes into account the uncertainties comiﬁg from the input parameters, gives for

the 1_+ channel

= (4.3 4 0.4)6eV o {t,

and
&~ 46,4 MeV
(10>

We summarize the analysis of the 0 mass in Fig. 3. The fit is less good than

—+ P ' N . '
for the 1 channel, as a lesser stability is obtained. We deduce the predictions

My- = (3.4 2 0.2 ) GV » ﬁ‘_

and

Fo' o 23.4 MeV (11)

If our results are compared with those of G°VW, one can see that the one in
Eq. 10 is higher than 400 MeV whilst that in Eq. (11) is lower with about the gsame
amount™ . The result in Eq. (10) is in the range of the bag model predictionslz).
Owing to the unorthodox quantum numwbers of the 1t and 0 hermaphrodites, a

better scanning of the heavy quarkonia, pp, or other hadronic data should show

evidence of the existence of these mesons.
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%)  The effects of dimension 8 operators are not clear because they are renormali-
zation scheme.dependent. However, they are numerically irrelevant at the

T-values where we are working.
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Figure captions

Fig. 1
Fig. 2
Fig. 3

Behaviour of the mcoments versus T for given values of the QCD para-

meters.

a)

b)

c)

a)
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Variation of the mass squared Mﬁ and of XZINDF for the 1  meson
at given values of A and Toax for various values of e,
Behaviour of Mé and X?/NDF versus T for A = 0.15 GeV and
max '

t = 3 Gev®,

¢

Behaviour of M; versus A for T =1,5Gev? and t = 3 GeVz.

max c
Variation of M; and of X?/NDF for the 0 meson at given values
of A and T for various values of t .
max c

Behaviour of M; and X?/NDF versus T for A = 0.15 GeV and

max

t =9 CeV?.
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A=0.15GeV; Ty =15 GeV2
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