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Abstract 
This paper gives a brief overview of the general principles of radiation 
protection legislation; explains radiological quantities and units, including 
some basic facts about radioactivity and the biological effects of radiation; 
and gives an overview of the classification of radiological areas at CERN, 
radiation fields at high-energy accelerators, and the radiation monitoring 
system used at CERN. A short section addresses the ALARA approach used 
at CERN. 

1 Introduction 
CERN’s radiation protection policy stipulates that the exposure of persons to radiation and the 
radiological impact on the environment should be as low as reasonably achievable (the ALARA 
principle), and should comply with the regulations in force in the Host States and with the 
recommendations of competent international bodies. This paper gives a brief overview of the general 
principles of radiation protection legislation; explains radiological quantities and units, including some 
basic facts about radioactivity and the biological effects of radiation; and gives an overview of the 
classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the 
radiation monitoring system used at CERN. Finally, a short section addresses the ALARA approach 
used at CERN. 

2 General principles of radiation protection legislation 
The International Commission on Radiological Protection (ICRP) has specified in its 
Recommendation 60 [1] that any exposure of persons to ionizing radiation should be controlled and 
should be based on three main principles, namely: 

– justification: any exposure of persons to ionizing radiation has to be justified; 

– limitation: personal doses have to be kept below legal limits; 

– optimization: personal and collective doses have to be kept as low as reasonably achievable 
(ALARA). 

These recommendations have been fully incorporated into CERN’s radiation safety code [2]. 

3 Radiological quantities and units [3] 
It would be desirable if the legal protection limits could be expressed in directly measurable physical 
quantities. However, this does not allow the biological effects of exposure of the human body to 
ionizing radiation to be quantified. For this reason, protection limits are expressed in terms of so-
called protection quantities, which, although calculable, are not measurable. Protection quantities 
quantify the extent of exposure of the human body to ionizing radiation from both whole-body and 
partial-body external irradiation and from the intake of radionuclides. In order to demonstrate 
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compliance with dose limits, so-called operational quantities are typically used, which are aimed at 
providing conservative estimates of protection quantities. The radiation protection detectors used for 
individual and area monitoring are often calibrated in terms of operational quantities. 

3.1 Physical quantities 

The fluence Φ (measured in units of 1/m2) is the quotient of dN by da, where dN is the number of 
particles incident upon a small sphere of cross-sectional area da: 
 

 Φ = d𝑁
d𝑎

. (1) 

In dosimetric calculations, the fluence is frequently expressed in terms of the lengths l of particle 
trajectories. It can be shown that the fluence is also given by 
 

 Φ = d𝑙
d𝑉

, (2) 

where dl is the sum of the particle trajectory lengths in the volume dV. 

The absorbed dose D (measured in units of grays; 1 Gy = 1 J/kg = 100 rad) is the energy 
imparted by ionizing radiation to a volume element of a specified material divided by the mass of that 
volume element. 

The kerma K (measured in units of grays) is the sum of the initial kinetic energies of all charged 
particles liberated by indirectly ionizing radiation in a volume element of a specified material divided 
by the mass of that volume element. 

The linear energy transfer L or LET (measured in units of J/m, but often given in keV/μm) is 
the mean energy dE lost by a charged particle owing to collisions with electrons in traversing a 
distance dl in matter. Low-LET radiation (L < 10 keV/μm) comprises X-rays and gamma rays 
(accompanied by charged particles due to interactions with the surrounding medium), and light 
charged particles such as electrons that produce sparse ionizing events far apart on a molecular scale. 
High-LET radiation (L > 10 keV/μm) comprises neutrons and heavy charged particles that produce 
ionizing events densely spaced on a molecular scale. 

The activity A (measured in units of becquerels; 1 Bq = 1/s = 27 pCi) is the expectation value of 
the number of nuclear decays in a given quantity of material per unit time. 

3.2 Protection quantities 

The organ absorbed dose DT (measured in units of grays) in an organ or tissue T of mass mT is defined 
by 
 𝐷𝑇 =  1

𝑚𝑇
 ∫ 𝐷 d𝑚𝑚𝑇

. (3) 

The equivalent dose HT (measured in units of sieverts; 1 Sv = 100 rem) in an organ or tissue T is 
equal to the sum of the absorbed doses DT,R in an organ or tissue caused by different radiation types R 
weighted by so-called radiation weighting factors wR: 
 
 𝐻𝑇 = ∑ 𝑤𝑅𝑅 ∗  𝐷𝑇,𝑅. (4) 

This expresses the long-term risks (primarily cancer and leukaemia) from low-level chronic exposure. 
The values of wR recommended by the ICRP [4] are unity for photons, electrons, and muons, 2.0 for 
protons and charged pions, 20.0 for ions, and a function of energy for neutrons (of energy En): 
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 𝑤𝑅 =

⎩
⎪
⎨

⎪
⎧2.5 + 18.2 ∗ e−�

ln(𝐸n)2

6 �                                       if 𝐸n < 1 𝑀𝑒𝑉,

5.0 + 17.0 ∗ e−�
ln(2∗𝐸n)2

6 �               if 1 MeV < 𝐸n < 50 𝑀𝑒𝑉,

2.5 + 3.25 ∗ e−�
ln(0.04∗𝐸n)2

6 �                             if 𝐸n < 50 𝑀𝑒𝑉.

 (5) 

The effective dose E (measured in units of sieverts) is the sum of the equivalent doses, weighted 
by the tissue weighting factors wT (where ∑T wT = 1), for several organs and tissues T of the body that 
are considered to be the most sensitive [4]: 
 𝐸 = ∑ 𝑊𝑇𝑇 ∗  𝐻𝑇. (6) 

3.3 Operational quantities 

The ambient dose equivalent H*(10) (measured in units of sieverts) is the dose equivalent at a point in 
a radiation field that would be produced by a corresponding expanded and aligned field in a 30 cm 
diameter sphere of tissue of unit density at a depth of 10 mm, on the radius vector opposite to the 
direction of the aligned field. The ambient dose equivalent is the operational quantity for area 
monitoring. 

The personal dose equivalent Hp(d) (measured in units of sieverts) is the dose equivalent in 
standard tissue at an appropriate depth d below a specified point on the human body. The specified 
point is normally taken to be where an individual dosimeter is worn. The personal dose equivalent 
Hp(10), with a depth d = 10 mm, is used for the assessment of the effective dose, and Hp(0.07), with d 
= 0.07 mm, is used for the assessment of doses to the skin and to the hands and feet. The personal dose 
equivalent is the operational quantity for monitoring of individuals. 

3.4 Dose conversion coefficients 

Dose conversion coefficients allow the direct calculation of protection or operational quantities from 
the particle fluence and are functions of the particle type, energy, and irradiation configuration. The 
most commonly used coefficients are those for the effective dose and ambient dose equivalent. The 
former are based on simulations in which the dose to organs of anthropomorphic phantoms is 
calculated for approximate actual conditions of exposure, such as irradiation of the front of the body 
(antero-posterior irradiation) or isotropic irradiation. Dose conversion coefficients from fluence to 
effective dose for antero-posterior irradiation are shown in Fig. 1. 
 

 
Fig. 1: Conversion coefficients from fluence to effective dose for antero-posterior irradiation  
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4 Health effects of ionizing radiation 
Radiation can cause two types of health effects, deterministic and stochastic. 

Deterministic effects are tissue reactions which cause injury to a population of cells if a given 
threshold of absorbed dose is exceeded. The severity of the reaction increases with dose. The quantity 
used for tissue reactions is the absorbed dose D. When particles other than photons and electrons (low-
LET radiation) are involved, a dose weighted by the Relative Biological Effectiveness (RBE) may be 
used. The RBE of a given radiation is the reciprocal of the ratio of the absorbed dose of that radiation 
to the absorbed dose of a reference radiation (usually X-rays) required to produce the same degree of 
biological effect. It is a complex quantity that depends on many factors such as cell type, dose rate, 
and fractionation. 

Stochastic effects are malignant diseases and inheritable effects for which the probability of an 
effect occurring, but not its severity, is a function of dose without a threshold. 

4.1 Biological effects 

The biological effect of radiation depends on the type and energy of the radiation (photons, neutrons, 
protons, heavy nuclei, etc.), on whether the irradiation is external or internal, on whether it is from 
radionuclides inhaled or ingested, and on the dose and dose rate received. Furthermore, the type of 
organ irradiated (for example, the bone marrow is much more sensitive than the liver) and whether 
local or total body irradiation has occurred will strongly affect the severity and outcome of the damage 
produced. All this explains the need for and use of various weighting factors to derive equivalent and 
effective doses in radiation protection. 

The cascade of reactions and interactions that occurs when radiation hits a biological system is a 
mixture of direct and indirect effects, each of them occurring on a different time-scale. The damage 
starts with the direct ionization and excitation of biological molecules or the creation of free radicals, 
which gives rise to peroxides, and the interaction of these with DNA molecules produces both 
repairable and non-repairable damage. Breaks in DNA single strands are highly repairable, but the 
problem is to know how much misrepair will occur for various doses and types of radiation. In fact, 
misrepair can either induce programmed cell death, called apoptosis, or produce non-lethal mutations. 
The damage will result either in deterministic effects (cell death, necrosis, or damage to tissues, 
organs, or the body, etc.) or in stochastic effects. The latter, resulting from non-lethal mutations, may 
become visible only many years after irradiation as a cancer or, if the germ cells have been affected, it 
may be transmitted to future generations in the form of inheritable damage. 

The dose for which 50% of individuals will die within 30 days after acute irradiation exposure 
(LD50/30) is 2.5 to 4.5 Gy. More recently, the doses for which 10% and 90% of the population may die 
from acute irradiation have been estimated; these values are 1–2 Gy for LD10 and ~5–7 Gy for LD90, 
respectively. 

For each type of deterministic effect (erythraemia, depletion of bone marrow and blood cells, 
necrosis, vomiting, etc.), there is a dose threshold for the damage to become assessable or visible. The 
various types of damage observable after acute irradiation, and their dose equivalents are listed in 
Table 1. 

In spite of the long controversy about the presence or absence of damage at extremely low doses 
less than 0.2 Gy, the absence of a threshold for the stochastic effects is generally accepted. Based on 
such an assumption, the probability of risk at extremely low doses has been calculated and applied to 
set occupational and public dose limits for radiation protection. More detailed information about the 
biological effects of ionizing radiation is given in Ref. [6]. 
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Table 1: Radiation damage to the human body [5] 

Dose (whole-body irradiation) Effects 

<0.25 Gy No clinically recognizable damage 

0.25 Gy Decrease in white blood cells 

0.5 Gy Increasing destruction of leukocyte-forming organs 
(causing decreased resistance to infections) 

1 Gy Marked changes in the blood (decrease in the numbers 
of leukocytes and neutrophils) 

2 Gy Nausea and other symptoms 

5 Gy Damage to the gastrointestinal tract causing bleeding 
and ~50% death 

10 Gy Destruction of the neurological system and ~100% 
death within 24 h 

5 Radiation levels [3] 
– Natural background radiation. On average, worldwide, the annual whole-body dose equivalent 

due to all sources of natural background radiation ranges from 1.0 to 13 mSv, with an average 
of 2.4 mSv [7]. In certain areas, values up to 50 mSv have been measured. A large fraction 
(typically more than 50%) originates from inhaled natural radioactivity, mostly radon and radon 
decay products. The dose equivalent due to radon can vary by more than one order of 
magnitude: it is 0.1–0.2 mSv per year in open areas, 2 mSv per year on average in houses, and 
more than 20 mSv per year in poorly ventilated mines. 

– Cosmic ray background radiation. At sea level, the whole-body dose equivalent due to cosmic 
ray background radiation is dominated by muons; at higher altitudes, nucleons also contribute. 
The dose equivalent rates range from less than 0.1 μSv/h at sea level to a few μSv/h at aircraft 
altitudes. 

– Cancer induction. The cancer induction probability is about 5% per sievert on average for the 
entire population [4]. 

– Lethal dose. The whole-body dose from penetrating ionizing radiation resulting in 50% 
mortality in 30 days, assuming no medical treatment, is 2.5–4.5 Gy (RBE-weighted when 
necessary), as measured internally on the longitudinal centre line of the body. The surface dose 
varies because of variable body attenuation and may be a strong function of energy. 

– Recommended dose limits. The ICRP recommends a limit for radiation workers of 20 mSv 
effective dose per year averaged over five years, with the provision that the dose should not 
exceed 50 mSv in any single year [4]. The limit in the EU countries and Switzerland is 20 mSv 
per year; in the US, it is 50 mSv per year (or 5 rem per year). Many physics laboratories in the 
US and elsewhere set lower limits. The dose limit for the general public is typically 1 mSv per 
year. 
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5.1 Radiation levels in Switzerland 

 
Fig. 2: Mean radiation exposure in Switzerland per year (in mSv) [8]  

The contributions to the mean radiation exposure in Switzerland [8] are given in Fig. 2. However, the 
contribution of radon to the total radiation exposure varies strongly in Switzerland. This is determined 
mainly by the amount of natural radon (which is a product of the natural decay of uranium and 
thorium) in the soil. A radon map of Switzerland is shown in Fig. 3. 

 

 
Fig. 3: Radon risk in Switzerland. The map is based on measurements performed in buildings 
(occupied rooms) [9]. 
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6 Radiological classification of CERN’s areas, and dose limits 

6.1 Radiological classification at CERN 

The areas inside CERN’s perimeter are classified as a function of the effective dose a person is liable 
to receive during his stay in the area under normal working conditions during routine operation. In line 
with Safety Code F (2006) [2], three types of areas are distinguished: 

– Non-designated Areas; 

– Supervised Radiation Areas; 

– Controlled Radiation Areas. 

The latter two are jointly termed Radiation Areas. 

The potential external and internal exposures have to be taken into account when assessing the 
effective dose that persons may receive when working in an area under consideration. Limitation of 
exposure in terms of effective dose is ensured by limiting an operational quantity, the ambient dose 
equivalent rate H*(10) for exposure from external radiation, and by setting action levels for airborne 
radioactivity and specific surface contamination at the workplace for exposure from incorporated 
radionuclides. The radiological classification used at CERN is shown in Table 2. 

Table 2: Synopsis of the classification of Non-designated Areas and Radiation Areas at CERN 

6.2 Dose limits and classification of workers 

All occupationally exposed persons at CERN are classified into one of two categories: 

Category A: persons who may be exposed in the exercise of their profession to more than 3/10 of the 
limit in terms of effective dose in 12 consecutive months; 

Category B: persons who may be exposed in the exercise of their profession to less than 3/10 of the 
limit in terms of effective dose in 12 consecutive months. 

The CERN dose limits are compliant with those of most European countries or even more restrictive. 
Examples of the dose limits in some European countries are given in Table 3. 
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Table 3: Dose limits at CERN and in some European countries 

 

Dose limits for 12 consecutive months (mSv)  

Non-occupationally exposed 
persons 

Occupationally exposed persons 

Category B Category A 

EURATOM 
members 1 6 20 

Germany and 
France 1 6 20 

CERN 1 6 20 

Switzerland 1 20 

6.3 CERN’s limits for radionuclides of artificial and natural origin 

At CERN, material is considered as radioactive if one or more of the following three criteria are 
fulfilled. 

6.3.1 Specific activity and total activity 
CERN’s Safety Code F [2] applies to any practice involving material containing radionuclides for 
which 

– the specific activity exceeds the CERN exemption limits [10]; and 

– the total activity exceeds the CERN exemption limits [10]. 

For material containing a mixture of radionuclides of artificial origin, the following sum rule is 
applied to exempt it from any further regulatory control: 
 
 ∑ 𝑎𝑖

𝐿𝐸𝑖
𝑛
𝑖=1  < 1, (7) 

where ai is the specific activity (Bq/kg) or the total activity (Bq) of the i-th radionuclide of artificial 
origin in the material, LEi is the CERN exemption limit for that radionuclide, and n is the number of 
radionuclides present. 

6.3.2 Dose rate 
CERN’s Safety Code F [2] applies to all materials for which the ambient dose equivalent rate 
measured at a distance of 10 cm from the item exceeds 0.1 µSv/h after subtraction of the background. 

6.3.3 Surface contamination 

CERN’s Safety Code F [2] applies to all materials for which the surface contamination exceeds 
1 Bq/cm2 in the case of unidentified beta and gamma emitters and 0.1 Bq/cm2 in the case of 
unidentified alpha emitters. Once a radionuclide has been identified, specific CERN CS-values [10] 
can be used, and the following sum rule should be applied: 
 
 ∑ 𝑐𝑖

𝐶𝑆𝑖
𝑛
𝑖=1  < 1, (8) 
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where ci is the value of the surface contamination (Bq/cm2) of the i-th radionuclide, CSi is its CS-
value, and n is the number of identified radionuclides. 

7 Induced radioactivity [11] 
Neutrons are not affected by the Coulomb barrier of nuclei, and can thus react at any energy and 
produce radioactive nuclides. Neutron capture dominates for thermal neutrons, whereas reactions of 
type (n, p), (n, α), (n, 2n), etc. occur with increasing energy. High-energy neutrons cause spallation 
reactions that can produce any nuclide lighter than the target nucleus. 

Charged particles with energies lower than the Coulomb barrier (a few MeV) do not react 
effectively with nuclei. As soon as the energy exceeds the Coulomb barrier, compound nuclei may be 
formed, which de-excite by the emission of photons, nucleons, or light nuclei (e.g., in the case of 
protons, reactions of type (p, n), (p, d), (p, α), etc. can occur). Similarly to neutrons, high-energy 
charged particles interact by spallation reactions. 

Electromagnetic particles may also cause activation through photonuclear interactions, although 
with a much lower cross-section than for hadronic reactions (at high energy, lower by the fine 
structure constant). Thus, activation by electrons and photons is typically not a concern at hadron 
accelerators, whereas it might be important at electron accelerators. The threshold energies for 
photonuclear reactions are a few MeV, depending on the target material. Just above threshold, so-
called giant dipole resonance reactions dominate, in which the nucleus de-excites by the emission of 
neutrons, protons, and light nuclei. 

7.1 Fundamental principles 

Radioactive decay is a random process characterized by a decay constant λ. If a total number Ntot(t) 
atoms of a radionuclide are present at time t, the total activity Atot(t) is determined by 
 
 𝐴tot(𝑡) = d𝑁tot(𝑡)

d𝑡
=  𝜆𝑁tot(𝑡), (9) 

for which the solution at t = T is 
 𝐴tot(𝑇) = 𝐴tot(0)e−𝜆𝑇. (10) 

Often, the time required to decay to half of the original activity, the half-life t1/2, is given; this is 
related to the decay constant by 
 𝑡1/2 = ln 2

𝜆
. (11) 

If we assume steady irradiation of a material with a spatially uniform fluence rate Φ (cm−2·s−1), 
the density of atoms n(t) of the radionuclide of interest per unit volume at time t (cm−3) during the 
irradiation is governed by 
 d𝑛(𝑡)

d𝑡
= − 𝜆𝑛(𝑡) + 𝑁𝜎Φ, (12) 

where σ is the production cross-section (cm2) and N is the density of target atoms (cm−3). This 
equation has the solution 
 𝑛(𝑡) = 𝑁𝜎Φ

 𝜆
(1 − e−𝜆𝑡), (13) 

where the specific activity during irradiation is given by A(t) = λn(t). For t >> t1/2, Eq. (13) yields A(t) 
= Asat = NσΦ, i.e. the saturation activity equals the production rate. 
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The activity after an irradiation period t and a cool-down time tcool can be written as 
 
 ττ //

sattot
coole)e1()( ttATA −−−=  , (14) 

where τ = 1/λ. 

7.2 Radionuclides in solid materials 

The most important medium- and long-lived radionuclides produced in typical accelerator materials 
are given in Table 4. As can be seen, the heavier the elements in the material are, the greater the 
number of radionuclides that can be created. Thus, light materials should be preferred if possible in the 
construction of accelerator components. For example, aluminium supports have better radiological 
characteristics than steel supports owing to the significantly lower number of nuclides produced. 

Reactions with trace elements in materials give rise to additional nuclides which might also be 
important, especially if they are long-lived. A typical example is 60Co, produced by thermal-neutron 
capture reactions with traces of cobalt in aluminium or iron components. This nuclide can dominate 
the activity in a component many years after irradiation, when most other nuclides have already 
decayed. 

The activation properties of the materials used in accelerator construction must be considered 
during the design process as they may have a direct impact on later handling (maintenance and repair) 
and waste disposal. Gamma-emitting nuclides dominate the residual dose rates at longer decay times 
(more than one day), whereas at short decay times β+ emitters are also important (as a result of 
photons produced by β+ annihilation). Owing to their short range, β− emitters are usually relevant only 
to doses to the skin and eyes and doses due to inhalation or ingestion. 

Figures 4 and 5 show the contributions of gamma and β+ emitters, respectively, to the total dose 
rate close to an activated copper sample [12]. Typically, the dose rates at a given decay time are 
determined mainly by radionuclides with half-lives of the order of the decay time. Extended 
irradiation periods might be an exception to this general rule, as in this case the activity of long-lived 
nuclides can build up sufficiently that it dominates over that of short-lived nuclides even at short 
cooling times. 

Activation in concrete is dominated by 24Na (at short decay times) and 22Na (at long decay 
times). Both of these nuclides can be produced either by low-energy neutron reactions with the sodium 
component in the concrete or by spallation reactions with silicon and calcium. At long decay times, 
the nuclides of radiological interest in activated concrete can also include 60Co, 152Eu, 154Eu, and 134Cs, 
all of which are produced by (n, γ) reactions with traces of natural cobalt, europium, and caesium. 
Thus, such trace elements might be important even if their content in the concrete is only a few parts 
per million or less by weight. 

Explicit simulation of radionuclide production with general-purpose Monte Carlo codes has 
become the method most commonly applied to calculate induced radioactivity and its radiological 
consequences. Nevertheless, other more approximate approaches, such as the use of ‘ω-factors’ [13], 
can still be useful for fast order-of-magnitude estimates. These ω-factors give the dose rate per unit 
star density (the density of inelastic reactions above a certain energy threshold, e.g. 50 MeV) in 
contact with an extended, uniformly activated object after 30 days of irradiation and one day of decay. 
The ω-factor for steel or iron is approximately 3 × 10−12 Sv cm3/star. This does not include possible 
contributions from thermal-neutron activation. 
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Table 4: Nuclides of radiological importance in the elements of typical accelerator materials. The 
last column indicates the half-life. 

Element or material Nuclide t1/2 

Carbon 3H 12.3 y 

 7Be 53.29 d 

 11C 20.38 min 

Aluminium All of the above 
plus 

 

 22Na 2.6 y 

 24Na 15.0 h 

Iron m44Sc 2.44 d 

 46Sc 83.8 d 

 48Sc 1.81 d 

 48V 16.0 d 

 51Cr 27.7 d 

 52Mn 5.6 d 

 54Mn 312.1 d 

 55Fe 2.73 y 

 59Fe 44.5 d 

 55Co 17.54 h 

 56Co 77.3 d 

 57Co 271.8 d 

 58Co 70.82 d 

Stainless steel All of the above 
plus 

 

 60Co 5.27 y 

 57Ni 35.6 h 

Copper All of the above 
plus 

 

 63Ni 100 y 

 61Cu 3.4 h 

 64Cu 12.7 h 

 65Zn 244.3 d 
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Fig. 4: Contribution of individual gamma-emitting nuclides to the total dose rate at 12.4 cm from 
an activated copper sample [12]  

 

 
Fig. 5: Contribution of individual positron-emitting nuclides to the total dose rate at 12.4 cm from 
an activated copper sample [12] 

D. FORKEL-WIRTH, S. ROESLER, M. SILARI, M. STREIT-BIANCHI, C. THEIS, HEINZ VINCKE, HELMUT

VINCKE

426



7.3 Radionuclides in liquids 

At accelerators, liquids are used mainly for cooling purposes (e.g. demineralized water and liquid 
helium), but liquid targets also exist (e.g. mercury). 

Spallation reactions of secondary particle showers with oxygen in demineralized water can 
create tritium (t1/2 = 12.3 y), 7Be (t1/2 = 53.29 d), and a number of short-lived β+-emitters (11C, 13N, and 
15O). The production of tritium by thermal-neutron capture in natural hydrogen can be neglected in 
most application owing to the low abundance of deuterons and the small cross-section. Sometimes 
cooling-water circuits also contain nuclides from corrosion products (e.g. cobalt nuclides); however, a 
large fraction of these is collected, together with 7Be, in the resin of ion exchanger cartridges. In 
natural water, radionuclides can also be produced in reactions with trace elements (i.e. minerals). 

During accelerator design, the activation of cooling liquids is most conveniently assessed by 
folding fluence spectra with energy-dependent nuclide production cross-sections. Direct calculation is 
also possible using Monte Carlo codes for nuclides produced from oxygen, but this direct method 
would fail for nuclides produced from trace elements owing to a lack of statistical significance. 

Activated cooling liquids pose contamination hazards during interventions in accelerator 
components and may also cause external irradiation close to pipes and cartridges. Although the decay 
of tritium proceeds only via the emission of a low-energy electron, its concentration in water, 
especially if released off-site, has become a critical parameter as it may attract the attention of the 
public. 

7.4 Radionuclides in air 
Airborne radionuclides are produced mainly by the interaction of beam particles or associated showers 
of secondary particles with air molecules. Other sources include activated dust and outgassing of 
nuclides from activated accelerator components. The latter two sources, however, are typically of 
lower importance and can only be assessed by measurement. 

Table 5 gives the nuclides of highest radiological importance. At hadron and ion accelerators, 
most of them are created by spallation reactions with air molecules. Only 41Ar results from thermal-
neutron capture reactions with argon (σth = 660 mb). At electron accelerators, photonuclear 
interactions of type (γ, n) contribute to the production of 13N and 15O. Although the radiological 
impact of 3H in air is small, it easily becomes attached to humidity and can reach waste water circuits, 
especially via condensation in air conditioning units. 

Table 5: Airborne nuclides of radiological importance (the second column indicates the half-life) 

Nuclide t1/2 
3He 12.3 y 
7Be 53.29 d 
11C 20.38 min 
13N 9.96 min 
15O 2.03 min 
41Ar 1.83 h 

Apart from the list in Table 5, specific situations and exposure pathways may require the 
consideration of further nuclides, such as 32P (t1/2 = 14.26 d), which is produced by spallation reactions 
with argon. This nuclide can reach milk consumed by infants through ground deposition on grazing 
land and thus dominate the committed dose due to ingestion. 
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The low density of air usually renders a direct calculation of the activation of air by Monte 
Carlo models highly inefficient. Instead, particle fluence spectra are multiplied by energy-dependent 
nuclide production cross-sections, which are obtained from Monte Carlo models, experimental data, or 
both (the latter are called evaluated cross-sections). This yields nuclide production rates per unit 
volume or, after application of Eq. (13), the specific activity. 

The results of air activation studies play a crucial role in the design of the ventilation system of 
an accelerator. Closed circuits that are flushed with fresh air prior to access but otherwise remain 
closed have the advantage of reducing the total annual release of short-lived nuclides. However, the 
concentration of long-lived nuclides may build up and lead to undue exposure if the nuclides are 
released at once over a period of time too short for there to be any benefit from changing wind 
conditions. In addition, tritium can build up, attach to water, and accumulate, for example in sumps. 
On the other hand, constant venting with fresh air causes an increased annual release of short-lived 
nuclides, although there is a benefit from natural dilution of long-lived nuclides. Apart from the 
environmental aspects, ventilation systems have safety functions in ensuring the containment of 
radioactive gases and should follow international standards [14]. 

Adjustments for the presence of ventilation can be made by introducing an effective decay 
constant λ′ that includes the physical decay constant along with a ventilation term: 
 
 𝜆′ = 𝜆 + 𝐷

𝑉
, (15) 

where D is the ventilation rate (volume of air exchanged per unit time) and V is the enclosure volume. 
Thus, with ventilation, the saturation activity A′sat becomes 
 
 𝐴′sat = 𝜆𝐴sat

𝜆+𝐷/𝑉
. (16) 

8 Radiation fields around high-energy accelerators 

8.1 Prompt stray radiation fields 

Stray radiation fields are created at high-energy particle accelerators by the intentional interaction of 
the accelerated beam with targets, beam dumps, and collimators and by unintentional beam losses on 
structural components of the machine. 

At electron accelerators, the most important secondary radiation is bremsstrahlung photons and 
high-energy electrons produced in electromagnetic cascades. An electromagnetic cascade is initiated 
when either a high-energy electron or a high-energy photon enters a material. At high energy, photons 
interact with matter mainly via pair production, whereas electrons and positrons lose their energy in a 
medium primarily by emitting bremsstrahlung photons. These two processes continue alternately, 
leading first to an exponential increase in the number of particles present in the cascade, which then 
starts to decline when removal processes (the photoelectric effect, ranging-out of electrons, and 
Coulomb and Compton scattering) dominate over the processes that generate new particles. Finally, 
low-energy electrons lose their residual energy by ionization and excitation processes. 

At high-energy electron accelerators, neutrons are also present, released by photon-induced 
reactions rather than by electrons directly. High-energy neutrons are often the dominant secondary 
radiation outside a thick shield, which usually absorbs most of the bremsstrahlung photons. 

At proton accelerators, interaction of the beam with materials generates a hadron cascade 
containing neutrons, charged hadrons, muons, photons, and electrons, with energy spectra extending 
over a wide range. The number of secondary particles produced per primary proton (the multiplicity) 
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increases as the proton energy increases. The average energy of these secondary particles also 
increases with the energy of the primary proton, making them capable of producing further inelastic 
interactions. The dominant radiation at workplaces outside accelerator shielding is the neutron field, 
with minor contributions from other particles. The neutron spectrum at the source, for example a beam 
loss point, is modified by transport through the shield, so that the energy distribution of neutrons at a 
workplace may be significantly different from the source spectrum. The shape of the spectrum also 
depends on the thickness of the shielding: the various components of the spectrum are attenuated 
differently, and only after a certain depth in the shield does the neutron spectrum reach equilibrium. 
This can be seen in Figs. 6 and 7, which show the neutron energy distributions in the transverse 
direction generated by 250 MeV protons impinging on an iron target thicker than the proton range. 
These figures show the energy distribution of the source neutrons and that behind a thin (20 cm to 
1 m) and a thick (1–5 m) concrete shield. The distributions have been normalized to unit area in order 
to show better the change in the shape of the spectrum with increasing shield thickness. 

 
Fig. 6: Neutron energy distributions EΦ(E) in the transverse direction generated by 250 MeV 
protons impinging on an iron target thicker than the proton range. The distributions are for source 
neutrons and behind concrete shields of thicknesses ranging from 20 cm to 1 m. The distributions 
have been normalized to unit area in order to show better the change in the shape of the spectrum 
with increasing shield thickness.  

 
Fig. 7: Neutron energy distributions EΦ(E) in the transverse direction generated by 250 MeV 
protons impinging on an iron target thicker than the proton range. The distributions are for source 
neutrons and behind concrete shields of thicknesses ranging from 1 m to 5 m. The distributions 
have been normalized to unit area in order to show better the change in the shape of the spectrum 
with increasing shield thickness. 
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Figure 8 shows typical neutron energy distributions outside two types of shield at a multi-GeV 
proton accelerator [15]. The difference between the shapes of the two spectra outside the concrete 
shields is because in one case the neutrons emerging from the shield are scattered further by an 
additional surrounding concrete structure which softens the spectrum, a situation commonly found at 
accelerators. 

 
Fig. 8: Neutron spectral fluences EΦ(E) outside a concrete roof shield (80 cm thickness of 
concrete), an iron roof shield (40 cm thickness of iron), and an 80 cm thick concrete side shield 
(80 cm thickness of concrete, but the neutrons are scattered further by surrounding concrete) at the 
CERF facility at CERN (neutrons per primary beam particle incident on a copper target) [15]  

As an example of the contribution of particles other than neutrons to H*(10), Figs. 9 and 10 plot 
the ratio of the values of H*(10) due to protons, photons, and electrons at various depths in a concrete 
shield to the total, in the forward and transverse directions, for 250 MeV protons impinging on a thick 
iron target. One sees that in the forward direction, protons contribute more than photons, while in the 
transverse direction, the opposite is the case. 

 
Fig. 9: Ratio of H*(10) due to secondary particles at various depth in a concrete shield to the total, 
in the forward direction, for 250 MeV protons impinging on an iron target thicker than the proton 
range. 
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Fig. 10: Ratio of H*(10) due to secondary particles at various depth in a concrete shield to the 
total, in the transverse direction, for 250 MeV protons impinging on an iron target thicker than the 
proton range 

Above about 10 GeV, muon-shielding requirements dominate in the forward direction for high-
intensity proton beams, meaning that a residual muon beam is often present behind a shield thick 
enough to attenuate the hadron component of the field [16]. Muons arise from the decay of pions and 
kaons, either in the particle beam or in cascades induced by high-energy hadrons [17]. They can also 
be produced in high-energy hadron–nucleus interactions. The decay lengths for pions and kaons are 
55.9 m and 7.51 m, respectively, times the momentum (in GeV/c) of the parent particle. Muons are 
weakly interacting particles and can only be stopped by ‘ranging them out’. Muons lose energy mainly 
by ionization, as their cross-section for nuclear interaction is very low. 

Muons from pion decay have a momentum spectrum that extends from 57% of the momentum 
of the parent pion to the pion momentum itself. Secondary pion beams generally have dumps 
containing a longitudinal depth of 1–2 m of Fe, and thus decay muons will penetrate these dumps for 
pion beams with a momentum larger than a few GeV/c. 

To give an example [17], a beam of 107 pions per pulse with a momentum of 20 GeV/c 
travelling over a distance of 50 m will generate about 5 × 105 muons per pulse (5% of the parent 
beam). For a pulse repetition period of 2 s (a typical order of magnitude for a high-energy 
synchrotron), taking an approximate fluence-to-dose-equivalent conversion factor equal to 40 fSv·m2 
[18] and assuming that the muon beam is averaged over a typical area for a human torso of 700 cm2, 
this fluence translates into a non-negligible dose equivalent rate of 500 µSv/h. Thus, under some 
circumstances (e.g. if the area downstream of the beam line is not interlocked for access), a muon 
component can be present in a mixed workplace field and contribute substantially to personnel 
exposure. 

Radiation protection quantities such as the dose rate at workplaces and shielding thickness are 
generally not simple functions of energy. The parameters which most directly affect radiological 
safety are the particle type, the particle energy, the average beam power, and the number of lost 
particles per unit time at a given energy. 
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Some accelerators operate in pulsed mode, which means that the beam is present in the machine 
(or lost somewhere) during only a fraction of the time. With a synchrotron, the relevant parameters are 
the repetition rate (the number of cycles per unit time) and the flat-top duration (the time during which 
the beam is extracted from the accelerator to be transported somewhere else), whereas a cyclotron 
produces a virtually continuous beam. With a linear accelerator, an important parameter is the duty 
factor (DF), which is the fraction of the operating time during which the linac is actually producing 
radiation: 
 DF = 𝑝 ∗ 𝑇p, (17) 

where p is the pulse repetition rate (in Hz) and Tp is the pulse length (in seconds). 

At a given energy E, the dose rate generated by the interaction of the beam with a material is 
directly proportional to the average beam power P (i.e. to the number of ‘lost’ particles). 

8.2 Stray radiation from residual radioactivity 

Residual radioactivity is mainly a problem at proton accelerators, as dose rates at electron machines 
from induced radioactivity in accelerator structures are typically two orders of magnitude lower. At 
most accelerator facilities, the largest contribution to personnel dose actually arises from maintenance 
work near dumps, targets, septa, and collimators and generally near any object hit directly by the 
primary beam or located close to a beam loss point, rather than from exposure during machine 
operation. External (and sometimes internal) exposure to radiation from induced radioactivity can also 
occur in connection with the handling, transport, machining, welding, chemical treatment, and storage 
of irradiated items. A place where personnel can be exposed to such types of radiation can also be a 
workplace. 

In spite of the fact that this radiation source is actually responsible for most of the individual 
and collective doses at accelerator laboratories, the associated radiation field is much simpler than that 
of the prompt radiation generated during accelerator operation, and the personnel exposure is due only 
to beta- and gamma-emitting radionuclides (and whole-body exposure is due essentially only to 
gamma emitters). The most common radionuclides with sufficiently long half-lives found in 
accelerator components are 7Be, 22Na, 54Mn, 65Zn, and the cobalt isotopes 56Co, 57Co, 59Co, and 60Co; 
in activated shielding structures, 133Ba, 134Cs, and 137Cs are found; and in earth used as a shielding 
material, 152Eu and 154Eu are found. 

The monitoring of such workplaces thus requires only beta/gamma monitors, such as ion 
chambers. 

9 Instrumentation for area monitoring 

CERN has a legal obligation to protect the public and persons working on its site from any unjustified 
exposure to ionizing radiation. For this purpose, CERN’s Occupational Health & Safety and 
Environmental Protection (HSE) Unit monitors ambient dose equivalent rates inside and outside 
CERN’s perimeter and releases of radioactivity in air and water. The results of the measurements 
allow the preventive assessment of radiological risks and the minimization of individual and collective 
doses. CERN’s HSE Unit currently operates two radiation monitoring systems: 

– ARCON (ARea CONtroller), which was developed at CERN for LEP and has been in use since 
1988; 

– RAMSES (RAdiation Monitoring System for the Environment and Safety), which was designed 
for the LHC based on current industry standards and has been in use since 2007. 
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About 800 monitors are employed in ARCON and RAMSES, about 400 for each system. Both 
installations comprise data acquisition, data storage, and the triggering of radiation alarms and beam 
interlocks. The most recent CERN facilities (the LHC, CNGS, and CTF3) are equipped with 
RAMSES, whereas the entire LHC injector chain, the remaining facilities (e.g. ISOLDE, n-TOF, and 
AD), and all experimental areas are still equipped with ARCON. In the long run, it is envisaged that 
ARCON will be replaced by the more recent RAMSES technology. 

9.1 Radiation monitors 

Both ARCON and RAMSES use the same or at least very similar types of radiation detectors. 
Environmental radiation protection monitors record stray radiation and the releases of radioactivity 
into air and water. Recording of other measured values such as wind speed, wind direction, and flow 
rates is required to obtain relevant input parameters for calculating doses to members of the public. An 
environmental stray-radiation monitoring station consists of one high-pressure ionization chamber 
filled with argon (from Centronics) for photons and penetrating charged particles such as muons, one 
REM counter (from Berthold) for neutrons, and a locally installed unit for data acquisition, alarm 
generation, and data transfer. The radiation protection part of a CERN water monitoring station 
consists of an NaI detector for in-situ measurements of gamma-emitting radionuclides and a device to 
collect water samples for laboratory analyses such as measurements of tritium and for cross-checks of 
the on-line results. The ventilation monitoring system is based on silicon surface detectors to measure 
the total activity of beta emitters released. In addition, removable filters are installed to allow 
laboratory analysis of radionuclides attached to aerosols using gamma spectroscopy. The active parts 
of the air and water monitoring stations (the Si and NaI detectors) are equipped with alarm functions. 

The Radiation Protection Group uses three different types of monitors to measure ambient dose 
equivalent rates at CERN and in the close neighbourhood of CERN’s facilities. The radiation monitors 
employed to protect workers against prompt ionizing radiation [19] during beam operation are special 
REM counters (from WENDI/Thermo) and hydrogen-filled, high-pressure ionization chambers (from 
Centronics). Both are optimized to measure high-energy neutrons with energies up to the GeV range; 
the hydrogen chamber responds to all particles contributing to the high-energy mixed radiation fields 
[20, 21]. 

The ambient dose equivalent rates which can be monitored inside the machine tunnel and the 
experimental caverns after the beam has been stopped are due to radiation emitted by the decay of 
radionuclides induced during operation of the beam. The energies of the emitted photons do not 
exceed 2.7 MeV (emitted by 24Na) [19]. The induced radioactivity is measured with air-filled plastic 
ionization chambers (from PMI) in order to assess risks during maintenance and repair work [22]. The 
radiation monitoring system is completed by hand and foot monitors at the exits from the accelerator 
and experimental areas and by gate monitors at the exits of the CERN sites (Site Gate Monitors, 
SGMs). The RAMSES system provides an option to connect the SGMs to the access system; that is, 
when there is an alarm, the barriers can remain closed. 

Outside the shield of an accelerator facility, the ambient dose equivalent rates during operation 
range from a few hundreds of microsieverts per year to a few millisieverts per year. To measure such 
rates, one needs detectors that are of high sensitivity or capable of integrating over long periods. 

9.2 Dosimetry at CERN 

Exposure to ionizing radiation (gamma, beta, and particle radiation) accompanies all work at a particle 
accelerator and in the associated experimental facilities. Legal dose limits assure the safety of 
personnel working under these conditions. The dose received by individuals working with ionizing 
radiation at CERN is monitored with personal dosimeters. Every person working at CERN in 
Radiation Areas or with sources of ionizing radiation must wear a CERN dosimeter. The CERN 
dosimeter registers the personal dose from sources of ionizing radiation around particle accelerators. It 
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combines an active detector for gamma and beta radiation based on the Direct-Ion Storage (DIS) 
technology and a passive detector for quantifying neutron doses. 

The gamma/beta dose registered by a CERN dosimeter can be read out as frequently as deemed 
necessary, but it must be read at least once per month on one of the approximately 50 reader stations 
which are installed CERN-wide The monitoring period for the neutron dosimeter is, in principle, one 
year. It must then be returned to the supplier for evaluation. 

For work in Controlled Radiation Areas, where the radiological risk and the dose rate are above 
50 µSv/h, the additional use of an operational dosimeter is required. CERN provides all staff who may 
work in Limited Stay Radiation Areas or High Radiation Areas with a system for active dosimetry 
with an alarm, in the form of an dosimeter, model DMC-2000 from MPG instruments. 

10 ALARA at CERN 
CERN introduced a formalized approach to ALARA [23–25] at the end of 2006, as a result of 
collaboration between the former Accelerator and Beams department and the Radiation Protection 
Group. This approach was applied first to the SPS and LHC complex, and since 2009 has been applied 
to all CERN facilities. The goal was to optimize work coordination, work procedures, handling tools, 
and even the design of entire facilities. Consequently, all work in Radiation Areas has to be optimized. 
In particular, all work in Controlled Radiation Areas must be planned and optimized, including an 
estimate of the collective and individual effective doses to the workers participating in the completion 
of a task. 

Five different criteria were established in 2006 and are used for the determination of the so-
called ALARA level of an intervention. These five criteria are shown in Table 6. Depending on the 
level of the intervention, different means of optimization have to be applied. For example, level 3 
interventions need formal approval from the ALARA Committee, which is chaired by the Director of 
Accelerators. 

Table 6: ALARA criteria at CERN  

Criteria: Ambient dose equivalent 
                                                50 µSv/h                                           2 mSv/h 

Level I Level II Level III 
 
Criteria: Individual dose 
                                                100 µSv                                            1 mSv 

Level I Level II Level III 
 
Criteria: Collective dose 
                                                 500 µSv                                          10 mSv 

Level I Level II Level III 
 
Criteria: Airborne activity in CA values according to [26] 
                                                 5 CA                                               200 CA 

Level I Level II Level III 
 
Criteria: Surface contamination in CS values according to [26] 
                                                10 CS                                               100 CS 

Level I Level II Level III 
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