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Abstract

The production of D∗± mesons in deep inelastic ep scattering has been meas-

ured for exchanged photon virtualities 5 < Q2 < 1000GeV2, using an integrated

luminosity of 363 pb−1 with the ZEUS detector at HERA. Differential cross

sections have been measured and compared to next-to-leading-order QCD cal-

culations. The cross-sections are used to extract the charm contribution to the

proton structure functions, expressed in terms of the reduced charm cross sec-

tion, σcc̄
red. Theoretical calculations based on fits to inclusive HERA data are

compared to the results.
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O. Kuprash15, M. Kuze46, A. Lee37, B.B. Levchenko34, A. Levy45, V. Libov15, S. Limentani40,

T.Y. Ling37, M. Lisovyi15, E. Lobodzinska15, W. Lohmann16, B. Löhr15, E. Lohrmann22, K.R. Long23,
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an also at  Lódź University, Poland
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1 Introduction

The measurement of charm production in deep inelastic ep scattering (DIS) is a powerful

tool to study quantum chromodynamics (QCD) and the proton structure. In leading-order

QCD, charm production occurs through the boson–gluon fusion (BGF) process γ∗g → cc̄,

which is directly sensitive to the gluon content of the proton. Different approaches to

the calculation of the heavy-quark contribution to the proton structure functions are

currently used in global analyses of parton density functions (PDFs) [1–4]. Comparisons

to measurements of charm production in DIS provide direct tests of these approaches [5].

It has also been shown recently that a combined analysis of charm production and inclusive

DIS data can provide a competitive determination of the charm-quark mass [5–7].

Several measurements of charm production in DIS have been performed at HERA, exploit-

ing reconstructed D0 [8], D± [8–10] and D∗± [11–17] mesons, semi-leptonic decays [18],

and inclusive lifetime methods [19, 20] to tag charm. In this paper, a new high-statistics

measurement of D∗± production via the reaction

e(k) p(P ) → e′(k′)D∗±(pD
∗

)X

is presented. The symbols in parenthesis represent the four-momenta of the incoming

(k) and outgoing electron (k′), of the incoming proton (P ), and of the produced D∗±

(pD
∗

). The measurement is performed for photon virtualities, Q2 ≡ −q2 = −(k′ − k)2,

in the range 5 < Q2 < 1000 GeV2 and for inelasticities, y ≡ (P · q)/(P · k), in the range

0.02 < y < 0.7.

The D∗+ mesons1 were reconstructed through the decay D∗+ → D0π+ with D0 → K−π+.

Differential cross sections are presented as a function of Q2, y, the Bjorken-x variable,

and of the fraction of the exchanged-photon energy transferred to the D∗+ meson in the

proton rest frame, zD
∗ ≡ (P · pD∗

)/(P · q), as well as of the D∗+ pseudorapidity, ηD
∗

, and

the transverse momentum, pD
∗

T , in the laboratory frame 2.

Double-differential cross sections in Q2 and y are presented and used to extract the charm

contribution to the proton structure functions in the form of the reduced charm cross

section, σcc̄
red. Previous measurements and theoretical calculations are compared to the

results.

1 Hereafter the charge conjugated states are implied.
2 The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the

proton beam direction, referred to as the “forward direction”, and the X axis pointing towards the

centre of HERA. The coordinate origin is at the nominal interaction point. The pseudorapidity is

defined as η = − ln
(

tan θ
2

)

, where the polar angle, θ, is measured with respect to the proton beam

direction.
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2 Experimental set-up

The measurement was based on e±p collisions collected with the ZEUS detector at HERA

in the period 2004–2007 with an electron3 beam energy, Ee, of 27.5GeV and a proton

beam energy, Ep, of 920GeV, corresponding to a centre-of-mass energy
√
s = 318GeV.

The corresponding integrated luminosity, L = 363±7 pb−1, is four times larger than that

used for the previous ZEUS measurement [11].

A detailed description of the ZEUS detector can be found elsewhere [21]. In the kinematic

range of the analysis, charged particles were tracked in the central tracking detector

(CTD) [22] and in the microvertex detector (MVD) [23]. These components operated

in a magnetic field of 1.43T provided by a thin superconducting solenoid. The CTD

consisted of 72 cylindrical drift chamber layers, organised in nine superlayers covering the

polar-angle region 15◦ < θ < 164◦. The MVD consisted of a barrel (BMVD) and a forward

(FMVD) section with three cylindrical layers and four vertical planes of single-sided silicon

strip sensors in the BMVD and FMVD respectively. The BMVD provided polar-angle

coverage for tracks crossing the three layers from 30◦ to 150◦. The FMVD extended the

polar-angle coverage in the forward region down to 7◦. For CTD–MVD tracks that pass

through all nine CTD superlayers, the momentum resolution was σ(pT )/pT = 0.0029pT ⊕
0.0081⊕ 0.0012/pT , with pT in GeV.

The high-resolution uranium–scintillator calorimeter (CAL) [24] consisted of three parts:

the forward, the barrel, and the rear (RCAL) calorimeters. Under test-beam conditions,

the CAL single-particle relative energy resolutions were σ(E)/E = 0.18/
√
E for electrons

and σ(E)/E = 0.35/
√
E for hadrons, with E in GeV. The energy of electrons hitting

the RCAL was corrected for the presence of dead material using the rear presampler

detector [25] and the small angle rear tracking detector (SRTD) [26].

The luminosity was measured using the Bethe–Heitler reaction ep → eγp by a luminosity

detector which consisted of two independent systems: a lead–scintillator calorimeter [27]

and a magnetic spectrometer [28].

3 QCD calculations

Cross sections for heavy-quark production in DIS were calculated at next-to-leading or-

der (NLO), i.e. O(α2
s), in the fixed-flavour-number scheme (FFNS), in which only light

flavours and gluons are present as partons in the proton and heavy quarks are produced

3 Hereafter “electron” refers to both electrons and positrons unless otherwise stated.
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in the hard interaction [29]. The program Hvqdis [30, 31] was used to compute single-

and double-differential D∗+ cross sections.

The parameters used as input to Hvqdis are listed below, together with the variations

used to evaluate the uncertainty on the theoretical prediction:

• charm-quark pole mass: mc = 1.50± 0.15GeV;

• renormalisation (µR) and factorisation (µF ) scales: µR = µF =
√

Q2 + 4m2
c , varied

independently up and down by a factor two;

• strong coupling constant in the three-flavour FFNS: αnf=3
s (MZ) = 0.105± 0.002;

• the PDFs and their uncertainties, taken from a FFNS variant [5] of theHERAPDF1.0

fit [32]. The central PDF set was obtained from a fit performed using the same values

of mc, µR, µF and αs as used in the Hvqdis program. For each variation of these

parameters in Hvqdis, a different PDF set was used, in which the parameters were

varied consistently.

The NLO calculation provided differential cross sections for charm quarks. The fragment-

ation model described in a previous publication [5] was used to compare to the measured

D∗+ cross sections. This model is based on the fragmentation function of Kartvelishvili et

al. [33], controlled by the parameter αK , to describe the fraction of the charm momentum

transferred to the D∗+ mesons. It also implements a transverse fragmentation component

by assigning to the D∗+ meson a transverse momentum, kT , with respect to the charm-

quark direction. The uncertainty on the fragmentation model was estimated by varying

αK and the average kT according to the original prescription [5]. The fraction of charm

quarks hadronising into D∗+ mesons was set to f(c → D∗+) = 0.2287± 0.0056 [34].

For the inclusive cross section, theoretical predictions were also obtained in the generalised-

mass variable-flavour-number scheme (GM-VFNS). In this scheme, charm quarks are

treated as massive particles for Q2 ≤ m2
c and as massless partons for Q2 ≫ m2

c , in-

terpolating in the intermediate region [35–37]. The calculation was performed using the

Roberts–Thorne (RT) “standard” [38,39] variant of the GM-VFNS at NLO, correspond-

ing to O(α2
s) for the Q2 ≤ m2

c part and to O(αs) for the Q2 ≫ m2
c part. PDFs obtained

from the HERAPDF1.5 [40] fit to inclusive HERA data were used. The central prediction

was obtained for mc = 1.5 GeV. To evaluate the theoretical uncertainty, the calculation

was repeated varying the PDF set and its parameters according to the systematic vari-

ations associated with the HERAPDF1.5 fit. The dominant source of uncertainty was the

charm-quark mass, which was varied in the range 1.35 < mc < 1.65GeV.
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4 Monte Carlo samples

Monte Carlo (MC) samples were used to calculate the experimental acceptance and to

estimate the background contamination. MC samples of charm and beauty DIS events

were generated using Rapgap 3.00 [41]. The main sample consisted of events generated

according to the LO BGF process. Radiative QED corrections to the BGF process were

included through Heracles 4.6 [42]. Additional Rapgap samples were generated for

diffractive charm production and for the resolved-photon processes gg → cc̄ and cg → cg,

in which one of the incoming partons originates from the exchanged photon. Charm

photoproduction was simulated using Pythia 6.2 [43].

Both Rapgap and Pythia use parton showers to simulate higher-order QCD effects and

use the Pythia/Jetset hadronisation model [43]. All samples were generated using

the CTEQ5L [44] proton PDFs and, for resolved-photon processes, the GRV-G LO [45]

photon PDFs. The diffractive samples were generated using the “H1 fit 2” [46] diffractive

PDFs. The heavy-quark masses were set to mc = 1.5GeV and mb = 4.75GeV. Masses,

widths and lifetimes of charmed mesons were taken from PDG2010 [47].

The MC samples correspond to about four times the luminosity of the data and were

passed through a full simulation of the ZEUS detector based on Geant 3.21 [48]. They

were then subjected to the same trigger criteria and reconstructed with the same programs

as used for the data.

5 Event selection and signal extraction

5.1 DIS event selection

A three-level trigger system was used to select DIS events online [21, 49, 50] by requiring

electromagnetic energy deposits in the CAL at the first level and applying loose DIS

selection criteria at the second and third levels.

Offline, the hadronic system was reconstructed using energy-flow objects (EFOs) [51]

which combine tracking and calorimeter information. The electron was identified us-

ing a neural-network algorithm [52]. The kinematical variables Q2, y, and x were re-

constructed using the Σ method [53]. The variable zD
∗

was reconstructed according to

zD
∗

= (ED∗−pD
∗

Z )/(2EeyJB), where yJB is the inelasticity reconstructed with the Jacquet-

Blondel method [54] and ED∗

and pD
∗

Z are the D∗+ energy and longitudinal momentum,

respectively.

The following criteria were applied to select DIS events [55]:
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• Ee′ > 10GeV, where Ee′ is the energy of the scattered electron;

• ye < 0.7, yJB > 0.02, where ye is the inelasticity reconstructed from the scattered

electron;

• 40 <E−PZ< 70GeV, where E−PZ is the global difference of energy and longitudinal

momentum, obtained by summing the electron and the hadronic final state, which is

expected to be 2Ee = 55GeV for fully contained events;

• the Z position of the primary vertex, Zvtx, was required to be in the range |Zvtx| <
30 cm;

• the impact point of the scattered electron on the RCAL was required to lie outside a

square region around the beam-pipe hole: |Xe| > 15 cm or |Ye| > 15 cm;

• 5 < Q2 < 1000 GeV2, where Q2 is reconstructed with the Σ method.

5.2 Selection of D∗+ candidates and signal extraction

The D∗+ mesons were identified using the decay channel D∗+ → D0π+
s with the sub-

sequent decay D0 → K−π+, where π+
s refers to a low-momentum (“slow”) pion accom-

panying the D0.

Tracks from the D∗+ decay products were required to have at least one hit in the MVD

or in the inner superlayer of the CTD and to reach at least the third superlayer. Tracks

with opposite charge and with transverse momentum pK,π
T > 0.4GeV were combined in

pairs to form D0 candidates. The track parameters were improved by fitting the two

tracks to a common vertex. Pairs incompatible with coming from the same decay were

removed by requiring a distance of closest approach of the two tracks of less than 1 mm,

and the χ2 of the two-track vertex fit smaller than 20 for one degree of freedom. The

tracks were alternately assigned the kaon and pion mass and the invariant mass of the

pair, M(Kπ), was calculated. Each additional track, with charge opposite to that of the

kaon track and a transverse momentum pπs

T > 0.12GeV, was assigned the pion mass and

combined with the D0 candidate to form a D∗+ candidate. The πs track was then fitted

to the primary vertex of the event, obtained exploiting the other tracks reconstructed in

the event and the constraint from the average position of the interaction point [8]. The

mass difference ∆M ≡ M(Kππs)−M(Kπ) was used to extract the D∗+ signal. The D∗+

candidates were required to have 1.80 < M(Kπ) < 1.92GeV, 143.2 < ∆M < 147.7MeV,

1.5 < pD
∗

T < 20GeV and |ηD∗| < 1.5.

The distribution of M(Kπ) for D∗+ candidates, without the requirement on M(Kπ), is

shown in Fig. 1. Also shown is the distribution of wrong-sign (WS) candidates, obtained

by combining two tracks with the same charge. The WS distribution provides an estimate
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of combinatorial backgrounds. A clear peak at the D0 mass is visible in the correct-sign

(CS) distribution. The excess of CS candidates at masses below the D0 peak is due to

partly-reconstructed D0 decays, mostly D0 → K−π+π0.

The distribution of ∆M for D∗+ candidates, without the requirement on ∆M , is shown

in Fig. 2. A clear D∗+ peak is seen. The D∗+ signal was extracted by subtracting the

background estimate from the number of candidates in the signal window 143.2 < ∆M <

147.7MeV. The background estimate was obtained by fitting simultaneously the CS and

WS distributions to the parametrisation

WS : fws(ζ) = AζB e−Cζ ,

CS : fcs(ζ) = D fws(ζ),

where A, B, C, D are free parameters of the fit [56] and ζ = ∆M − mπ+ . The fit was

performed in the region ∆M < 168MeV. The region with a possible signal contribution,

140 < ∆M < 150MeV, was removed from the fit to the CS distribution. The parameter

D, which represents the normalisation of the CS background with respect to the WS

distribution, is slightly larger than unity, D = 1.021 ± 0.005. This is consistent with

the MC estimation of the additional combinatorial background component in the CS

distribution due to real D0 → Kπ decays associated with a random track to form a CS

D∗+ candidate. The total signal is ND∗±

data = 12893± 185.

The amount of signal lost due to the tails of the D0 mass peak leaking outside the M(Kπ)

window was estimated by enlarging the mass window to 1.7 < M(Kπ) < 2.0GeV. The

fraction of additional D∗+ found within the enlarged window was 13%, including the

contribution from partly reconstructed D0. This fraction, as well as its dependence on pD
∗

T

and ηD
∗

and on the width of theM(Kπ) window, was found to be well reproduced by MC.

The signal in the tails of the D∗+ peak outside the ∆M window was estimated similarly,

enlarging the signal window to 140 < ∆M < 150MeV. The fraction of additional D∗+

was 6% on average, with a dependence on the transverse momentum of the slow pion,

due to the momentum and angular resolution degrading at low pπS

T . This effect is not

completely reproduced by the MC. An acceptance correction [55] dependent on pπs

T was

then applied, ranging from ≈ 10% at pπs

T = 0.12GeV to ≈ 1% at large pπs

T .

6 Cross-section extraction

The differential cross sections, dσvis/dξ, for producing a D∗+ in the “visible” phase space

1.5 < pD
∗

T < 20GeV, |ηD∗| < 1.5, 5 < Q2 < 1000GeV2 and 0.02 < y < 0.7 was obtained

as
dσvis

dξ
=

ND∗

data −ND∗

γp

∆ξ · A · BR · L · Cr,
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where ND∗

data is the signal extracted in a bin of a given variable ξ, ND∗

γp is the pho-

toproduction background, ∆ξ is the bin size, A is the acceptance, BR = B(D∗+ →
D0π+) × B(D0 → K−π+) = 0.0263 ± 0.0004 [57] is the branching ratio, L is the integ-

rated luminosity and Cr is the QED radiative correction.

The background from charm photoproduction (Q2 < 1.5 GeV2) was evaluated using

the photoproduction MC sample, normalised to the luminosity using the cross sections

previously measured by ZEUS [58].

The acceptance, A, was calculated as the ratio between the number of reconstructed

and generated D∗+ in the bin, using a signal MC based on a mix of charm and beauty

production. The beauty MC was normalised to 1.6 times the cross section given by

Rapgap, consistent with ZEUS measurements [18,59–61]. The charm MC contained non-

diffractive and diffractive components, summed according to the relative cross sections as

given by Rapgap. The normalisation of the charm MC was adjusted such that the sum

of all the MC components reproduced the number of D∗+ mesons in the data. Resolved-

photon processes were not included. They were only used for systematic checks. The ηD
∗

and pD
∗

T distributions of the charm MC were reweighted [55] to improve the agreement

with data, with the pD
∗

T weights dependent on Q2.

The acceptance as determined by the MC was corrected to account for imperfections in

the simulation of the trigger and track-reconstruction efficiencies. One of the main sources

of track-reconstruction inefficiency for charged pions and kaons were hadronic interactions

in the material between the interaction point and the CTD. This effect was studied using

special tracks from ep → eρ0 with ρ0 → π+π− events, reconstructed from MVD hit

information alone [62]. For these tracks, an extension into the CTD was searched for.

In addition, the pT dependence of the tracking efficiency was studied by exploiting the

isotropic angular distribution of pions from K0
S decays. The studies showed that the MC

slightly underestimated the effect of nuclear interactions. For central pions with pT ≈
1GeV, the track-reconstruction inefficiency due to hadronic interactions was measured to

be (7± 1)% while the MC predicted 5%. The track-efficiency correction was applied as a

function of η and pT of each track. For pT > 1.5GeV, no correction was necessary.

The acceptance ranges from A ≈ 10% in the lowest pD
∗

T and Q2 bins to A ≈ 45% in the

highest pD
∗

T and Q2 bins. Fig. 3 shows ND∗

data/∆ξ for ξ = pD
∗

T , ηD
∗

, Q2, y and zD
∗

. The

sum of the different MC samples is compared to the data. The agreement is satisfactory.

The cross sections were corrected to the QED Born level, using a running coupling con-

stant αem(Q
2), such that they can be compared directly to the QCD predictions from

the Hvqdis program. The radiative corrections were obtained as Cr = σBorn
vis /σrad

vis , where

σBorn
vis is the Rapgap cross section with the QED corrections turned off but keeping αem

running and σrad
vis is the Rapgap cross section with the full QED corrections, as in the
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standard MC samples.

7 Systematic uncertainties

The experimental systematic uncertainties are listed below [55], with their typical effect

on the measured cross sections is given in parenthesis:

δ1 energy-scale uncertainty on the hadronic system of ±2% (±1%, up to ±10% at low

y);

δ2 electron energy-scale uncertainty of ±1% [63] (±1%, up to ±7% at low y);

δ3 alignment uncertainty on the electron impact point on the RCAL, estimated by varying

the cut on the electron position in the MC by ±2 mm separately for the Xe and Ye

coordinates [63] (±7% at low Q2 and low y, negligible at large Q2);

δ4 uncertainty on the position of the electron impact point on the RCAL due to imperfec-

tions in the simulation of the shower shape and of the detector resolution, estimated

by loosening the cut on the electron position by 1 cm (|Xe| > 14 cm or |Ye| > 14 cm)

both in data and in MC (up to ±10% at low y and low Q2, negligible at large Q2);

δ5 uncertainty on the background shape in ∆M , estimated by replacing the function

fcs(ζ) by f ′
cs(ζ) = Aζ

2
3 +Bζ + Cζ

1
2 (+0.3%);

δ6 a further uncertainty on the background shape, evaluated by reducing the fit range

from ∆M < 168MeV to ∆M < 165MeV (+0.5%);

δ7 uncertainty on the amount of signal outside the ∆M window, evaluated by varying

the pπS

T -dependent correction by its uncertainty (±1.5%, up to ±3% at low pT );

δ8 uncertainty on the amount of signal outside the M(Kπ) window, estimated by com-

paring data and MC in an enlarged mass range (+2%);

δ9 uncertainty on the track-efficiency, evaluated by varying the track efficiency correction

applied to MC by the associated uncertainty (±2%);

δ10 uncertainty on the trigger efficiency, evaluated using independent triggers (±0.5%);

δ11 statistical uncertainty on the calculation of the acceptance (±1%);

δ12 uncertainty on the normalisation of the beauty MC of ±50% to cover the range allowed

by ZEUS measurements [59, 61] (±0.3%);

δ13 uncertainty on the normalisation of the photoproduction MC of ±100% (up to ±3%

at high y, but negligible elsewhere);
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δ14 uncertainty on the normalisation of the diffractive charm MC of ±50% to cover the

range allowed by data–MC comparison and by previous ZEUS results [64] (up to

±4.5% at low y, but negligible elsewhere);

δ15 uncertainty due to the resolved-photon component, evaluated by adding the resolved-

photon samples to the charm MC normalised according to the generator cross section

(+2%);

δ16 uncertainty on the MC reweighting as a function of pD
∗

T and Q2, which was varied by

±50% (±2%);

δ17 uncertainty on the MC reweighting as a function of ηD
∗

which was replaced by a MC

reweighting as a function of y (from −2% to +3%, depending on y);

δ18 uncertainty on the integrated luminosity of ±1.9%;

δ19 uncertainty on the branching ratio BR of ±1.5%.

All the systematic uncertainties, except the overall normalisations δ18 and δ19, were added

in quadrature to the statistical uncertainties to obtain the total error bars in the figures.

8 Results

Single- and double-differential cross sections have been measured in the phase space

5 < Q2 < 1000GeV2; 0.02 < y < 0.7; 1.5 < pD
∗

T < 20GeV; |ηD∗| < 1.5.

Differential cross sections in pD
∗

T , ηD
∗

and zD
∗

are reported in Tables 1–3 and in Fig. 4.

The cross section decreases steeply with pD
∗

T and is almost constant in ηD
∗

. The NLO

calculations based on Hvqdis and the Rapgap MC implementing the leading-order BGF

process are compared to the data. As the Rapgap MC is based on leading-order matrix

elements, it is not expected to estimate the normalisation correctly. Therefore the Rap-

gap prediction was normalised to the data, scaling it by 1.1, to allow a direct comparison

of the shapes. The data are well described by the NLO calculation and by Rapgap with

the exception of the shape in zD
∗

, which is not well reproduced by the NLO calculation,

suggesting possible imperfections in the fragmentation model.

Differential cross sections in Q2, y and x are reported in Tables 4–6 and in Fig. 5. The

results are reasonably well described by the NLO calculation. The MC predictions repro-

duce the shapes of the data, except for the high-Q2 tail, where the MC prediction is too

high, and for dσ/dy, where the prediction is too low at low y and too high at large y.

These imperfections in the MC are to be expected in the absence of higher-order terms

in Rapgap.
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Visible cross sections in two-dimensional bins of Q2 and y, σvis, are given in Table 7.

The corresponding bin-averaged double-differential cross sections are shown in Figs. 6

and 7. The values of the individual systematic uncertainties on the double-differential

cross sections are given in Table 8. Measurements performed in the same phase space

by the H1 Collaboration [16, 17], which are the most precise previous measurement of

D∗+ production in DIS, are compared to the present results. The two data sets are

in agreement and have similar precision. The double-differential cross sections are well

described by the NLO calculation.

In a previous ZEUS measurement [11], a possible excess in the D∗+ yield in e−p collisions

was observed with respect to e+p collisions. The ratio of observed rates, increasing with

Q2, was re
−p/re

+p = 1.67 ± 0.21(stat.) for 40 < Q2 < 1000GeV2. The measurement

was based on a luminosity of 17 (65) pb−1 of e−p (e+p) collisions. The present meas-

urement is based on an independent data set, consisting of 187 (174) pb−1 of e−p (e+p)

collisions. Fig. 8 shows the cross-section ratio as a function of Q2. Only statistical uncer-

tainties are shown since systematic effects mostly cancel in the ratio. No deviation from

unity is observed, confirming the original interpretation of the e−p excess as a statistical

fluctuation.

9 Charm reduced cross sections

The reduced cross section for charm, σcc̄
red, and the charm contribution to the proton

structure functions, F cc̄
2 and F cc̄

L , are defined as:

d2σcc̄

dx dQ2
=

2πα2
em

xQ4
Y+ σcc̄

red(x,Q
2, s),

σcc̄
red(x,Q

2, s) = F cc̄
2 (x,Q2)− y2

Y+

F cc̄
L (x,Q2),

where Y+ = 1 + (1− y)2.

The Hvqdis program was used to extrapolate the measured visible D∗+ cross sections in

bins of y and Q2, σvis, to the full phase space:

σcc̄
red(x,Q

2) =
(

σvis − σbeauty
vis

)

(

σcc̄
red,Hvqdis(x,Q

2)

σvis,Hvqdis

)

,

where σbeauty
vis is the beauty contribution as predicted by the Rapgap MC, normalised as

discussed in Section 6, and σcc̄
red,Hvqdis, σvis,Hvqdis are the charm reduced and the visible

D∗+ cross sections, respectively, as given by Hvqdis. The reference values of x and Q2

were chosen close to the average x and Q2 of the bins. The kinematic acceptance of the
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visible phase space, defined as Aps = σvis/(σ
cc̄ · 2 f(c → D∗+)), where σcc̄ is the charm

production total cross section in the y and Q2 bin, ranges from 17% to 64%, depending

on the bin.

Following the method used in the previously published combination of ZEUS and H1

results [5], the Hvqdis and fragmentation variations described in Section 3 were used to

determine the theoretical uncertainty on the extraction of σcc̄
red. The scales µR and µF

were varied simultaneously rather than independently as in the theoretical uncertainty

for the differential cross sections. An additional uncertainty originates from the subtrac-

ted beauty component that was varied by ±50%. The theoretical uncertainties due the

extrapolation on σcc̄
red(x,Q

2) are given in Table 9. The experimental part of the uncertain-

ties on σcc̄
red(x,Q

2) is defined as the quadratic sum of the statistical and the experimental

systematic uncertainties described in Section 7.

The results are reported in Table 10 and are shown in Fig. 9. The combined result based

on previous H1 and ZEUS charm measurements [5] and a recent ZEUS measurement

with D+ mesons [9], not included in the combined results, are also shown. All three

measurements are in good agreement. The D∗ measurement has a precision close to that

of the combined result in some parts of the phase space. The GM-VFNS calculation,

based on the HERAPDF1.5 parton-density fit to inclusive HERA data, is compared to

the present measurement and shown in Fig. 10. The uncertainty on the prediction is

dominated by the charm-quark mass. The prediction is in good agreement with the data.

10 Conclusions

Differential cross sections for the production of D∗± mesons in DIS have been measured

with the ZEUS detector in the kinematic range

5 < Q2 < 1000GeV2; 0.02 < y < 0.7; 1.5 < pD
∗

T < 20GeV; |ηD∗| < 1.5,

using data from an integrated luminosity of 363 pb−1. The new data represents one of the

most precise measurements of charm production in DIS obtained to date. The data are

reasonably well described by NLO QCD calculations and are in agreement with previously

published results.

The measurements have been used to extract the reduced cross sections for charm σcc̄
red.

A GM-VFNS calculation based on a PDF fit to inclusive DIS HERA data agrees well

with the results. This demonstrates a consistent description of charm and inclusive data

within the NLO QCD framework.
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pD
∗

T
dσ

dpD
∗

T

δstat δsyst Cr

(GeV) (nb/GeV) (%) (%)

1.50 : 1.88 2.16 9.9 +7.0
−5.5 1.03

1.88 : 2.28 2.30 5.8 +5.4
−5.8 1.04

2.28 : 2.68 1.95 4.4 +5.0
−4.4 1.03

2.68 : 3.08 1.63 4.0 +4.7
−4.0 1.03

3.08 : 3.50 1.22 3.8 +4.9
−4.2 1.04

3.50 : 4.00 9.71×10−1 3.4 +4.4
−3.7 1.03

4.00 : 4.75 6.26×10−1 3.2 +4.2
−3.5 1.05

4.75 : 6.00 3.32×10−1 3.0 +4.3
−3.7 1.01

6.00 : 8.00 1.21×10−1 4.1 +4.1
−3.8 1.06

8.00 : 11.00 3.31×10−2 6.0 +4.4
−3.7 1.11

11.00 : 20.00 3.60×10−3 12 +5.3
−6.1 1.11

Table 1: Differential cross section for D∗± production in pD
∗

T , in the kinematic
range 5 < Q2 < 1000GeV 2, 0.02 < y < 0.7, 1.5 < pD

∗

T < 20GeV , |ηD∗| < 1.5. The
columns list the bin range, the bin-averaged differential cross section, the statistical,
δstat, and systematic, δsyst, uncertainties, and the QED correction factors, Cr. The
overall normalization uncertainties from the luminosity (±1.9%) and branching
ratio of the D∗± decay channel (±1.5%) are not included.
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ηD
∗ dσ

dηD
∗ δstat δsyst Cr

(nb) (%) (%)

−1.50 : −1.25 1.48 7.5 +6.8
−6.7 1.06

−1.25 : −1.00 1.66 5.4 +5.6
−5.3 1.05

−1.00 : −0.75 1.61 4.9 +6.1
−4.4 1.05

−0.75 : −0.50 1.85 4.2 +4.6
−3.8 1.03

−0.50 : −0.25 1.94 4.2 +4.3
−3.5 1.03

−0.25 : 0.00 2.02 4.0 +4.3
−3.7 1.04

0.00 : 0.25 1.90 4.4 +4.2
−3.4 1.04

0.25 : 0.50 1.97 4.4 +4.3
−3.3 1.05

0.50 : 0.75 1.96 4.7 +4.5
−3.6 1.03

0.75 : 1.00 2.02 4.9 +4.8
−4.2 1.02

1.00 : 1.25 2.00 5.8 +5.3
−5.1 1.01

1.25 : 1.50 1.84 7.7 +7.4
−5.6 1.01

Table 2: Differential cross section of D∗± production in ηD
∗

. See Table 1 for
other details.

zD
∗ dσ

dzD
∗ δstat δsyst Cr

(nb) (%) (%)

0.000 : 0.100 3.02 12 +8.6
−7.1 1.00

0.100 : 0.200 6.83 6.1 +6.1
−5.0 1.01

0.200 : 0.325 8.18 3.5 +5.5
−4.9 1.02

0.325 : 0.450 9.20 2.5 +4.6
−3.8 1.03

0.450 : 0.575 9.14 2.3 +4.6
−4.0 1.05

0.575 : 0.800 5.12 2.4 +6.5
−5.1 1.07

0.800 : 1.000 0.063 9.1 +9.9
−8.5 1.07

Table 3: Differential cross section of D∗± production in zD
∗

. See Table 1 for
other details.
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Q2 dσ
dQ2 δstat δsyst Cr

(GeV2) (nb/GeV2) (%) (%)

5.0 : 8.0 0.499 3.9 +6.7
−6.1 1.03

8.0 : 10.0 0.307 4.3 +6.0
−5.2 1.03

10.0 : 13.0 0.222 4.0 +4.9
−4.1 1.02

13.0 : 19.0 0.125 3.5 +5.6
−5.0 1.03

19.0 : 27.5 0.752×10−1 3.7 +4.9
−4.0 1.04

27.5 : 40.0 0.415×10−1 3.9 +4.8
−3.8 1.04

40.0 : 60.0 0.169×10−1 4.7 +5.6
−5.6 1.05

60.0 : 100.0 0.747×10−2 5.0 +7.1
−5.1 1.06

100.0 : 200.0 0.171×10−2 7.8 +6.6
−4.4 1.07

200.0 : 1000.0 0.140×10−3 13 +6.1
−5.2 1.14

Table 4: Differential cross section of D∗± production in Q2. See Table 1 for other
details.

y dσ
dy

δstat δsyst Cr

(nb) (%) (%)

0.02 : 0.05 1.20 ×101 7.9 +16
−12 1.07

0.05 : 0.09 2.07 ×101 3.4 +6.7
−6.5 1.05

0.09 : 0.13 1.79 ×101 3.4 +4.5
−4.0 1.04

0.13 : 0.18 1.37 ×101 3.6 +4.6
−4.8 1.04

0.18 : 0.26 1.13 ×101 3.3 +4.8
−3.7 1.04

0.26 : 0.36 8.03 3.7 +4.8
−4.0 1.03

0.36 : 0.50 5.09 4.2 +5.2
−4.5 1.02

0.50 : 0.70 2.90 6.0 +9.3
−7.1 1.01

Table 5: Differential cross section of D∗± production in y. See Table 1 for other
details.
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x dσ
dx

δstat δsyst Cr

(nb) (%) (%)

(0.8 : 4.0) ×10−4 0.475 ×104 3.5 +6.0
−5.3 1.06

(0.4 : 1.6) ×10−3 0.198 ×104 2.1 +4.8
−3.9 1.03

(1.6 : 5.0) ×10−3 0.357 ×103 2.6 +4.9
−3.9 1.02

(0.5 : 1.0) ×10−2 0.553 ×102 5.7 +6.3
−5.1 0.99

(0.1 : 1.0) ×10−1 0.159 ×101 10.7 +9.2
−8.4 1.08

Table 6: Differential cross section of D∗± production in x. See Table 1 for other
details.

19



Q2 y σvis δstat δsyst σbeauty
vis Cr

(GeV2) (pb) (%) (%) (pb)

5 : 9

0.020 : 0.050 120 23 +19
−20 0.0 1.04

0.050 : 0.090 279 10 +11
−11 1.5 1.04

0.090 : 0.160 421 6.0 +6.8
−7.0 5.2 1.04

0.160 : 0.320 550 5.3 +6.5
−5.8 11.0 1.03

0.320 : 0.700 456 6.8 +6.3
−5.5 18.2 1.02

9 : 14

0.020 : 0.050 108 14 +17
−12 0.1 1.05

0.050 : 0.090 178 6.5 +7.0
−6.0 1.2 1.04

0.090 : 0.160 220 5.8 +4.7
−4.6 2.9 1.03

0.160 : 0.320 352 5.1 +4.5
−3.7 8.1 1.02

0.320 : 0.700 307 7.2 +6.6
−5.0 12.5 1.00

14 : 23

0.020 : 0.050 65.1 15 +16
−12 0.2 1.07

0.050 : 0.090 160 6.4 +6.2
−7.2 1.2 1.04

0.090 : 0.160 205 5.6 +4.7
−4.7 3.1 1.03

0.160 : 0.320 267 5.9 +4.9
−4.4 9.0 1.03

0.320 : 0.700 250 7.4 +5.7
−6.7 13.5 1.01

23 : 45

0.020 : 0.050 37.1 29 +18
−18 0.1 1.08

0.050 : 0.090 134 7.0 +7.5
−7.8 0.9 1.06

0.090 : 0.160 196 5.3 +4.4
−4.3 3.6 1.05

0.160 : 0.320 275 5.1 +4.1
−3.4 10.2 1.03

0.320 : 0.700 284 6.1 +6.4
−4.5 14.7 1.02

45 : 100

0.020 : 0.050 14.2 38 +35
−18 0.0 1.25

0.050 : 0.090 72.1 9.6 +8.0
−7.2 1.2 1.07

0.090 : 0.160 87.0 8.4 +4.9
−4.6 3.9 1.04

0.160 : 0.320 182 5.7 +5.3
−3.9 9.4 1.04

0.320 : 0.700 175 7.6 +6.6
−5.6 14.0 1.02

100 : 158

0.020 : 0.350 80.2 11 +7.6
−4.2 5.8 1.1

0.350 : 0.700 45.1 16 +7.6
−7.8 5.0 0.99

158 : 251

0.020 : 0.300 49.8 14 +4.8
−6.3 3.5 1.16

0.300 : 0.700 37.3 17 +6.6
−4.9 4.3 1.04

251 : 1000

0.020 : 0.275 28.4 24 +8.2
−10 2.4 1.26

0.275 : 0.700 46.7 21 +8.7
−5.1 6.9 1.07

Table 7: Visible cross sections, σvis, for D
∗± production in bins of Q2 and y. The

second but last column reports the estimated contribution from beauty decays, based
on the Rapgap beauty MC rescaled to ZEUS data. See Table 1 for other details.
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Q2 (GeV2) y δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ9 δ11 δ12 δ13 δ14 δ15 δ16 δ17

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

5 : 9

0.020 : 0.050 +11

−12

+1.8

+0.6

+7.4

−2.7

+9.0

−9.0
-7.0 -3.4 +2.5

−2.4

+2.5

−2.5

+8.8

−8.8

+0.0

−0.0

+0.0

+0.0

−4.2

+4.2
+1.8 +0.1

−0.1
+2.2

0.050 : 0.090 +3.5

−4.0

+5.1

−4.8

+2.3

−3.0

+6.6

−6.6
+0.7 -1.9 +2.4

−2.2

+2.1

−2.1

+3.4

−3.4

−0.1

+0.1

+0.0

+0.0

−1.9

+2.3
+3.0 −0.7

+0.8
-1.6

0.090 : 0.160 +1.5

−3.4

+3.3

−4.0

+2.6

−1.5

+1.1

−1.1
+1.0 +0.5 +2.3

−2.2

+1.8

−1.8

+2.3

−2.3

+0.1

−0.1

+0.0

+0.0

+0.6

−0.8
+1.8 −1.4

+1.5
-2.0

0.160 : 0.320 +0.9

+0.1

+2.9

−2.7

+1.1

−0.8

+3.5

−3.5
+0.6 +0.3 +2.2

−2.1

+1.8

−1.8

+1.6

−1.6

−0.0

−0.0

+0.3

−0.5

+0.7

−0.9
-0.5 −1.7

+1.8
+0.7

0.320 : 0.700 −1.5

+1.7

+1.9

−0.7

+0.5

−0.6

+1.9

−1.9
+0.2 -1.5 +2.0

−1.9

+1.9

−1.9

+1.7

−1.7

−0.0

−0.0

+1.4

−2.8

+0.3

−0.4
-0.6 −1.4

+1.5
+3.1

9 : 14

0.020 : 0.050 +11

−6.9

−4.8

+7.3

+1.5

−2.5

−2.5

+2.5
-0.1 -2.1 +2.2

−2.1

+2.4

−2.4

+6.1

−6.1

+0.1

−0.1

+0.0

+0.0

−4.5

+4.7
+3.0 −0.7

+0.7
+1.4

0.050 : 0.090 +3.1

−3.2

+0.2

+1.9

+1.0

−1.3

+2.1

−2.1
+0.6 +0.1 +2.2

−2.1

+2.0

−2.0

+2.4

−2.4

+0.0

−0.0

+0.0

−0.0

−1.2

+1.5
+2.7 −1.2

+1.2
-1.6

0.090 : 0.160 +0.5

−0.6

−0.1

+0.3

+1.2

−0.6

+1.6

−1.6
+0.5 -0.3 +2.1

−2.0

+1.7

−1.7

+1.7

−1.7

−0.2

+0.2

−0.0

+0.0

−0.1

+0.1
+0.8 −1.6

+1.7
-2.0

0.160 : 0.320 +0.0

+0.5

+0.2

+0.5

+0.3

−0.7

−0.5

+0.5
+0.3 +0.5 +2.1

−2.0

+1.8

−1.8

+1.5

−1.5

−0.1

+0.1

+0.1

−0.1

+0.6

−0.7
+1.1 −1.8

+1.9
+0.4

0.320 : 0.700 −2.8

+3.8

+1.1

−0.7

+0.1

−0.1

−0.4

+0.4
+0.4 -0.2 +1.9

−1.9

+1.8

−1.8

+1.9

−1.9

+0.2

−0.3

+0.8

−1.6

+0.4

−0.5
+0.2 −1.8

+2.0
+2.8

14 : 23

0.020 : 0.050 +12

−8.8

−3.8

+6.4

+0.4

−0.2

−0.0

+0.0
+0.3 +2.5 +2.1

−2.0

+2.4

−2.4

+6.0

−6.0

+0.2

−0.2

+0.0

+0.0

−2.7

+2.4
+4.1 −0.8

+0.8
+1.7

0.050 : 0.090 +2.5

−3.9

−3.8

+1.5

+0.3

−0.3

−0.9

+0.9
+0.2 +1.0 +2.1

−2.0

+2.0

−2.0

+2.3

−2.3

+0.1

−0.1

+0.0

+0.0

−0.9

+1.1
+2.3 −1.9

+1.8
-1.7

0.090 : 0.160 +1.3

+0.4

−0.4

+0.8

+0.2

−0.3

−0.3

+0.3
-1.0 -1.6 +2.0

−1.9

+1.7

−1.7

+1.6

−1.6

−0.1

+0.1

+0.0

−0.0

+0.3

−0.4
+0.7 −2.3

+2.2
-2.0

0.160 : 0.320 −0.9

+0.5

−0.6

−0.2

+0.0

−0.0

+0.6

−0.6
-0.9 +1.7 +1.9

−1.9

+1.7

−1.7

+1.4

−1.4

+0.1

−0.2

+0.2

−0.3

+1.0

−1.3
+0.4 −2.6

+2.6
+0.4

0.320 : 0.700 −2.9

+1.3

−0.3

−1.7

+0.0

−0.0

+0.1

−0.1
-0.3 -3.1 +1.9

−1.8

+1.8

−1.8

+1.8

−1.8

+0.2

−0.3

+1.0

−1.9

+0.3

−0.4
-1.5 −2.7

+2.7
+2.9

23 : 45

0.020 : 0.050 +9.5

−8.4

−6.7

+12

+0.0

−0.0

−0.0

+0.0
+1.3 -13 +1.9

−1.8

+2.2

−2.2

+7.0

−7.0

−0.3

+0.3

+0.0

+0.0

−2.3

+2.4
+3.7 −0.6

+0.6
+1.7

0.050 : 0.090 +4.3

−4.6

−4.8

+4.3

+0.0

−0.0

−0.0

+0.0
-0.3 -0.2 +1.8

−1.7

+1.9

−1.9

+2.3

−2.3

+0.0

−0.0

+0.0

+0.0

−0.4

+0.5
+0.1 −1.5

+1.6
-1.4

0.090 : 0.160 +0.9

−1.1

−1.4

+1.8

+0.0

−0.0

−0.0

+0.0
+0.3 -0.1 +1.8

−1.7

+1.6

−1.6

+1.5

−1.5

+0.2

−0.3

−0.0

+0.0

−0.3

+0.3
+0.0 −1.7

+1.7
-2.1

0.160 : 0.320 −1.0

+1.2

−0.3

−0.4

+0.0

−0.0

−0.0

+0.0
+0.2 +0.1 +1.8

−1.7

+1.6

−1.6

+1.3

−1.3

+0.1

−0.2

+0.1

−0.2

+0.0

−0.1
+0.7 −1.8

+1.8
+0.4

0.320 : 0.700 −2.6

+3.5

+0.0

+1.1

+0.0

−0.0

−0.0

+0.0
+1.0 +0.0 +1.8

−1.7

+1.8

−1.8

+1.5

−1.5

−0.2

+0.1

+0.6

−1.3

+0.2

−0.2
+2.1 −1.7

+1.7
+2.4

45 : 100

0.020 : 0.050 +26

−6.4

−9.7

+18

+0.0

−0.0

−0.0

+0.0
-0.1 +2.3 +1.5

−1.4

+2.0

−2.0

+13

−13

+0.0

+0.0

+0.0

+0.0

−2.6

+3.4
+5.0 −2.2

+2.0
+3.5

0.050 : 0.090 +4.2

−3.5

−4.0

+3.7

+0.0

−0.0

−0.0

+0.0
-2.0 -0.1 +1.5

−1.5

+1.8

−1.8

+3.1

−3.1

+0.1

−0.1

+0.0

+0.0

−0.2

+0.0
+3.3 −1.4

+1.3
-1.6

0.090 : 0.160 +1.1

−0.7

−2.0

+2.4

+0.0

−0.0

−0.0

+0.0
-0.8 -0.3 +1.5

−1.4

+1.5

−1.5

+1.7

−1.7

+0.3

−0.4

+0.0

−0.0

−0.0

+0.0
+1.5 −1.9

+1.7
-2.1

0.160 : 0.320 −0.7

−0.1

−1.5

+1.9

+0.0

−0.0

−0.0

+0.0
+0.3 +0.5 +1.6

−1.5

+1.5

−1.5

+1.4

−1.4

+0.6

−0.7

+0.0

−0.0

−0.0

+0.0
+3.0 −2.3

+2.1
+0.2

0.320 : 0.700 −2.8

+3.2

−0.8

−0.3

+0.0

−0.0

−0.0

+0.0
-0.6 -2.4 +1.7

−1.6

+1.6

−1.6

+1.6

−1.6

+0.5

−0.7

+0.4

−0.9

−0.6

+0.7
+2.4 −2.7

+2.5
+2.9

100 : 158

0.020 : 0.350 +1.7

−0.6

−1.3

+4.4

+0.0

−0.0

−0.0

+0.0
-2.2 +4.4 +1.3

−1.3

+1.4

−1.4

+1.8

−1.8

+0.9

−1.1

+0.0

−0.0

−0.2

+0.2
+1.3 −1.3

+1.2
-0.2

0.350 : 0.700 −5.3

+0.8

−2.5

−0.9

+0.0

−0.0

−0.0

+0.0
+1.8 +4.4 +1.4

−1.4

+1.5

−1.5

+2.9

−2.9

+2.6

−3.2

+0.5

−1.1

+0.1

−0.4
-0.2 −1.3

+1.1
+2.9

158 : 251

0.020 : 0.300 +0.3

−0.8

−4.3

+2.0

+0.0

−0.0

−0.0

+0.0
-1.9 -0.3 +1.2

−1.2

+1.3

−1.3

+3.0

−3.0

+0.8

−1.0

+0.1

−0.1

+0.4

−0.6
-1.3 −0.9

+0.8
+0.1

0.300 : 0.700 −2.6

+2.6

−0.2

+0.6

+0.0

−0.0

−0.0

+0.0
+1.8 +1.7 +1.4

−1.3

+1.4

−1.4

+3.0

−3.0

+0.1

−0.7

+0.5

−1.0

+0.3

−0.5
+1.1 −1.0

+0.9
+3.0

251 : 1000

0.020 : 0.275 −0.6

−2.2

−5.8

+5.9

+0.0

−0.0

−0.0

+0.0
-4.6 -0.0 +1.2

−1.2

+1.3

−1.3

+4.6

−4.6

+0.8

−1.3

+0.0

+0.0

−1.0

+0.9
-3.3 +0.1

−0.1
-0.3

0.275 : 0.700 −0.8

+4.3

−1.7

+3.8

+0.0

−0.0

−0.0

+0.0
+2.5 +3.5 +1.4

−1.3

+1.4

−1.4

+3.6

−3.6

−0.1

−0.1

+0.7

−1.4

−0.5

+0.4
-1.4 −1.0

+0.9
+0.9

Table 8: Individual systematical uncertainties as defined in Section 7 for the
double-differential cross sections in bins of Q2 and y. The uncertainty δ8 and
δ10 are not reported as δ8 is constant (+2%) and δ10 was found to be negligible.
The overall normalisation uncertanties δ18 = ±1.9% and δ19 = ±1.5% are also not
listed.
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Q2 x δmc
δµ δαs

δαK
δkT

δb

( GeV2) (%) (%) (%) (%) (%) (%)

0.00160 +8.3
−5.6

−6.5
+14

+0.6
+0.2

−4.5
+7.5

−0.2
+0.6 ±0.0

0.00080 +0.3
+1.0

−3.9
+7.8

−0.3
+0.6

−3.5
+6.1

−1.3
+1.3 ±0.3

7 0.00050 −1.3
+2.0

−3.2
+5.0

+0.1
+0.8

−2.9
+6.5

−1.3
+1.8 ±0.6

0.00030 −3.2
+3.3

−1.4
+0.2

−0.9
+1.2

−2.6
+5.9

−2.5
+2.2 ±1.0

0.00013 −3.7
+5.7

+4.7
−6.3

−1.6
+2.5

−2.4
+5.9

−4.0
+4.2 ±2.1

0.00300 +9.5
−6.2

−6.5
+15

+1.4
+0.0

−3.6
+8.0

+1.6
+0.1 ±0.0

0.00150 +0.1
−1.1

−5.4
+7.8

−0.1
−0.6

−3.3
+5.3

−0.7
−0.1 ±0.3

12 0.00080 −0.6
+0.8

−3.8
+5.7

−0.1
+0.1

−2.5
+5.5

−0.9
+1.0 ±0.7

0.00050 −2.5
+2.2

−2.5
+2.0

−0.5
+0.0

−2.4
+5.0

−1.9
+1.2 ±1.2

0.00022 −3.2
+3.9

+3.1
−4.4

−1.6
+1.7

−2.2
+5.4

−3.1
+1.8 ±2.1

0.00450 +8.8
−6.1

−6.5
+13

+0.9
+0.7

−3.2
+6.2

+1.1
−1.0 ±0.1

0.00250 +0.3
−0.9

−5.7
+7.0

+0.4
−0.6

−3.2
+3.7

−0.3
−0.6 ±0.4

18 0.00135 −0.4
+0.8

−4.4
+6.1

+0.6
+0.1

−2.4
+4.8

−0.5
+0.6 ±0.8

0.00080 −1.5
+1.0

−4.0
+3.2

+0.3
+0.3

−1.9
+4.4

−0.9
+0.7 ±1.7

0.00035 −3.0
+2.7

+1.8
−3.7

−1.0
+1.0

−2.5
+4.5

−2.9
+1.4 ±2.9

0.00800 +8.4
−7.3

−7.0
+11

+0.6
−0.5

−3.5
+5.1

+0.3
−1.7 ±0.1

0.00550 +1.3
−0.0

−5.8
+8.4

+0.5
−0.3

−1.9
+3.2

+0.3
−0.3 ±0.3

32 0.00240 +0.5
+0.5

−3.6
+6.4

−0.1
+0.3

−1.7
+3.9

−0.2
+0.0 ±0.9

0.00140 −0.5
+1.3

−3.5
+4.6

+0.2
+0.1

−1.6
+3.9

−0.4
+0.6 ±1.9

0.00080 −2.9
+3.0

−0.4
−1.6

−0.8
+0.5

−2.2
+3.6

−2.2
+1.1 ±2.7

0.01500 +9.3
−6.5

−5.2
+10

+0.6
+0.4

−1.8
+6.2

+1.6
+0.4 ±0.0

0.00800 +0.6
−1.7

−4.8
+6.0

−0.3
−0.7

−1.9
+2.3

−0.1
−0.6 ±0.9

60 0.00500 −0.2
+0.8

−3.9
+5.2

+0.1
−0.0

−1.4
+2.7

−0.3
+0.3 ±2.3

0.00320 −0.9
+1.4

−3.7
+5.0

−0.1
−0.2

−1.6
+2.8

−0.4
+0.0 ±2.7

0.00140 −2.4
+1.8

−1.5
+1.3

−0.1
−0.0

−1.8
+2.8

−1.3
+0.6 ±4.4

0.01000 +0.2
+0.8

−4.6
+5.3

+0.4
+0.1

−1.5
+2.3

+0.0
+0.3 ±3.9

120 0.00200 −0.8
+1.3

−2.0
+2.3

+0.4
−0.5

−1.3
+1.9

−1.0
+0.8 ±6.3

0.01300 −0.1
−0.1

−3.7
+3.8

+0.4
−0.1

−0.9
+1.4

+0.1
+0.0 ±3.8

200 0.00500 −1.9
+1.3

−3.8
+3.8

−0.3
−0.6

−1.5
+1.2

−0.1
+0.1 ±6.5

0.02500 −0.5
+0.4

−3.8
+3.4

−0.4
−0.0

−0.7
+1.2

+0.4
−0.4 ±4.6

350 0.01000 −0.2
+1.3

−2.8
+3.7

+0.0
+0.3

−0.6
+0.9

+0.0
+0.1 ±8.7

Table 9: Breakdown of the theoretical uncertainty on σcc̄
red(x,Q

2), showing the
uncertainty from the variation of charm mass (δmc

), of the renormalisation and
factorisation scales (δµ), of αS (δαs

), of the fragmentation function (δαK
), of the

transverse fragmentation (δkT ), and of the expected beauty component (δb). The
upper (lower) value gives the effect of a positive (negative) variation of the para-
meter.
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Q2 x σcc̄
red δstat. δsyst. δtheo. Aps

(GeV2) (%) (%) (%) (%)

0.00160 0.057 23 +19
−20

+18
−9.7 0.248

0.00080 0.124 10 +11
−11

+10
−5.4 0.412

7 0.00050 0.166 6.1 +6.8
−7.1

+8.7
−4.7 0.480

0.00030 0.191 5.4 +6.7
−6.0

+7.3
−5.2 0.481

0.00013 0.258 7.1 +6.6
−5.7

+11
−9.0 0.327

0.00300 0.098 14 +17
−12

+19
−9.7 0.280

0.00150 0.153 6.6 +7.1
−6.0

+9.4
−6.5 0.462

12 0.00080 0.177 5.9 +4.7
−4.6

+8.1
−4.7 0.536

0.00050 0.244 5.2 +4.6
−3.8

+6.0
−4.9 0.538

0.00022 0.350 7.5 +6.9
−5.2

+8.1
−7.1 0.363

0.00450 0.081 15 +16
−12

+17
−9.5 0.286

0.00250 0.169 6.5 +6.2
−7.2

+8.0
−6.7 0.499

18 0.00135 0.202 5.7 +4.7
−4.8

+7.9
−5.1 0.578

0.00080 0.224 6.1 +5.1
−4.6

+5.9
−5.0 0.595

0.00035 0.343 7.8 +6.1
−7.1

+6.5
−6.8 0.404

0.00800 0.068 29 +18
−18

+15
−11 0.258

0.00550 0.160 7.0 +7.5
−7.9

+9.1
−6.2 0.523

32 0.00240 0.238 5.5 +4.5
−4.4

+7.6
−4.1 0.613

0.00140 0.277 5.3 +4.3
−3.5

+6.5
−4.4 0.649

0.00080 0.412 6.4 +6.8
−4.7

+5.6
−5.4 0.470

0.01500 0.068 38 +35
−18

+15
−8.6 0.182

0.00800 0.176 9.7 +8.1
−7.3

+6.6
−5.6 0.508

60 0.00500 0.169 8.8 +5.1
−4.9

+6.4
−4.7 0.624

0.00320 0.273 6.0 +5.6
−4.1

+6.5
−5.0 0.682

0.00140 0.359 8.2 +7.2
−6.1

+5.7
−5.7 0.564

0.01000 0.141 12 +8.2
−4.5

+7.0
−6.2 0.536

120 0.00200 0.329 18 +8.5
−8.8

+7.1
−6.9 0.638

0.01300 0.191 16 +5.1
−6.8

+5.6
−5.4 0.508

200 0.00500 0.275 19 +7.4
−5.5

+7.8
−8.0 0.682

0.02500 0.113 27 +8.9
−11

+5.8
−6.0 0.474

350 0.01000 0.234 24 +10
−6.0

+9.6
−9.2 0.696

Table 10: The reduced cross-section σcc̄
red(x,Q

2) with statistical, systematic and
theoretical uncertainties. The last column shows the kinematical acceptance.
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Figure 1: Distribution of M(Kπ) for D∗± candidates with 143.2 < ∆M <
147.7 MeV (filled circles) and for wrong-sign combinations (empty circles). The
D0 signal region is marked as a shaded area.
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Figure 2: Distribution of the mass difference, ∆M = M(Kππs) − M(Kπ),
for the D∗± candidates with 1.80 < M(Kπ) < 1.92 GeV (filled circles) and for
wrong-sign combinations (empty circles). The background fit described in the text
is shown as a dashed (continuous) line for correct-sign (wrong-sign) combinations.
The D∗± signal region is marked as a shaded area.
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Figure 3: Number of reconstructed D∗± (filled circles), divided by bin size, as a
function of pD

∗

T , ηD
∗

, Q2, y and zD
∗

. Data are compared to a MC mixture contain-
ing non-diffractive and diffractive charm production in DIS, beauty production, and
charm photoproduction. The sum of the MC samples is normalised to the number
of D∗± in the data.
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Figure 4: Differential D∗± cross sections as a function of (a) pD
∗

T , (b) ηD
∗

and
(c) zD

∗

(filled circles). The error bars show the statistical and systematic uncer-
tainties added in quadrature, the inner bars show the statistical uncertainties alone.
Also shown are NLO QCD predictions calculated using Hvqdis (dashed line and
shaded area for the uncertainties) and Rapgap MC prediction for charm creation
via boson-gluon fusion (long-dashed line). The contribution from b-quark decays,
calculated with the Rapgap MC (continuous line), is included in the predictions.
The MC cross sections for charm (beauty) are scaled by 1.1 (1.6) as described in
the text.
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Figure 5: Differential D∗± cross sections as a function of (a) Q2, (b) y and (c)
x. Other details as in Fig. 4.
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Figure 6: Double-differential D∗± cross sections as a function of Q2 and y for
5 < Q2 < 100 GeV 2 (filled circles). The measurements from the H1 collaboration
(empty squares) are also shown [17]. Other details as in Fig. 4.
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Figure 7: Double-differential D∗± cross sections as a function of Q2 and y for
100 < Q2 < 1000 GeV 2 (filled circles). The measurements from the H1 collabora-
tion (empty triangles) are also shown [16]. Other details as in Fig. 4.
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Figure 8: Ratio of e−p to e+p visible D∗± cross sections as a function of Q2.
Only statistical uncertainties are shown. Bin boundaries are as in Table 4.
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Figure 9: Reduced charm cross sections from D∗± (filled circles) compared to
the ZEUS D+ measurement [9] (empty squares) and the combination of previous
HERA results [5] (empty circles). The outer error bars include experimental and
theoretical uncertainties added in quadrature. The inner error bars in the ZEUS
D∗ and D+ measurements show the experimental uncertainties. The inner error
bars of the combined HERA data represent the uncorrelated part of the uncertainty.

32



ZEUS

0

0.1

0.2

0.3

0.4σ re
dcc_

Q2= 7 GeV2 Q2= 12 GeV2 Q2= 18 GeV2

0

0.1

0.2

0.3

0.4
Q2= 32 GeV2 Q2= 60 GeV2

10
-4

10
-3

10
-2

x

Q2= 120 GeV2

0

0.1

0.2

0.3

0.4

10
-4

10
-3

10
-2

Q2= 200 GeV2

10
-4

10
-3

10
-2

x

Q2= 350 GeV2

HERAPDF1.5 NLO
mc=1.5 GeV
total uncertainty
excluding m c

ZEUS D* 363 pb -1

Figure 10: Reduced charm cross sections (filled circles) compared to a GM-VFNS
calculation based on HERAPDF1.5 parton densities. The inner error bars show the
experimental uncertainties and the outer error bars show the experimental and the-
oretical uncertainties added in quadrature. The outer bands on the HERAPDF1.5
predicition show the total uncertainty while the inner bands correspond to the sum
in quadrature of all uncertainties excluding the charm-mass variation.
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