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Abstract
In this short letter we briefly address two important points of two–neutron
transfer reactions, namely the successive nature of the process and the role
of pairing correlations during this sequential transfer. The discussion is made
within the 2–step DWBA formalism. The calculations were carried out mak-
ing use of software specifically developed for this purpose, which includes
successive, simultaneous and non–orthogonality contributions to the process.
Microscopic form factors are used which take into account the relevant struc-
ture aspects of the process, such as the nature of the single–particle wavefunc-
tions, the spectroscopic factors, and the interaction potential responsible for
the transfer.

1 Introduction
The specific probe to study the superconducting state is Cooper pair tunneling. Therefore, important
progress in the understanding of pairing in atomic nuclei may arise from the systematic study of two–
particle transfer reactions. Although this subject of research started about the time of the BCS papers,
the quantitative calculation of absolute cross sections taking properly into account the full non–locality
of the Cooper pairs (correlation length much larger than nuclear dimensions) is still an open question,
which we address here within the 2–step DWBA reaction mechanism (see, for example, [1,5,7,10]). This
method have been successfully applied to obtain absolute values of the two–neutron transfer differential
cross sections without free parameters [1, 7–9].

In the two following sections we will stress the sequential nature of two–neutron transfer pro-
cesses, and how the pairing correlations are kept during the whole process despite the separation of the
two neutrons forming the correlated Cooper pair. We will do so in the context of the study of the reaction
A + a(= b + 2) → B(= A + 2) + b, which will virtually populate several states of the intermediate
nuclei f(= b+ 1) and F (= A+ 1).

2 Successive process
Let us consider the exact eigenfunction

∣∣Ψ(+)(ξb, ξA, rb1, rb2,R)
〉
, with energy E, of the Hamiltonian

H = Ha(ξb, rb1, rb2) +HA(ξA) + TaA(R) + V (ξb, ξA, rb1, rb2,R), (1)

written in the prior representation. In the above expression, ξb, ξA stand for the spatial coordinates of
the nucleons in the cores b, A, while rb1, rb2 are the coordinates of neutrons 1, 2 with respect to core b
and R is the relative coordinate between the cores. Spin degrees of freedom are not explicitly taken into
account for the sake of simplicity. Since we are interested in the two–neutron transfer process from core
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b (i.e., nucleus a) to core A (nucleus B), we need to evaluate the transition amplitude

T2NT =
〈
χβ(R)φb(ξb)ψB(ξA, rA1, rA2)

∣∣∣ [V (ξb, ξA, rb1, rb2,R)− U(R)]
∣∣∣Ψ(+)(ξb, ξA, rb1, rb2,R)

〉
,

(2)

where the wavefunction |χβ(R)φb(ξb)ψB(ξA, rA1, rA2)� corresponds to the final channel, in the sense
that, when R → ∞ so that the residual nucleus can be collected in the detector, it describes a state in
which the two transferred neutrons are bounded to the core A to form the nucleus B. The distorted wave
|χβ(R)� is the solution of the Scrhödinger equation with the optical potential U(R), and we schemati-
cally write the structure part as

|ψB(ξA, rA1, rA2))� = |φA(ξA)�
∑
n

Sn(B)|ϕA
n (rA1)ϕ

A
n (rA2)�. (3)

Similarly, the asymptotic form of the wavefunction of the entrance channel is |χα(R)ψa(ξb, rb1, rb2)φA(ξA)�,
with

|ψa(ξb, rb1, rb2))� = |φb(ξb)�
∑
m

Sm(a)|ϕb
m(rb1)ϕ

b
m(rb2)�. (4)

We could of course be more general in our description by coupling the two–neutron states to different
configurations of the cores b and A, but this would not change the conclusions of the present letter and
we can safely avoid the extra complication.

The 2–step DWBA consists in approximating
∣∣Ψ(+)(ξb, ξA, rb1, rb2,R)

〉
by a state containing the

entrance channel and the one–neutron transfer channels,
∣∣∣Ψ(+)

〉
≈ |χα(R)ψa(ξb, rb1, rb2)ψA(ξA)�

+
∑
n

|χn(R)ψfn(ξb, rb1)ψFn(ξA, rA2)�, (5)

with

|ψfn(ξb, rb1)� = |φb(ξb)�|ϕb
n(rb1)�,

|ψFn(ξA, rA2)� = |φA(ξA)�|ϕA
n (rA2)�. (6)

We can split in four terms the interaction V defined in (1) and write it as

V = VbA(ξb, ξA,R) + V1(rA1) + V2(rA2) + Vres(ξb, ξA, rb1, rb2,R), (7)

where we expect the residual term Vres(ξb, ξA, rb1, rb2,R) to be small. If, in addition, we define the
optical potential such as

U(R) = �φb(ξb)φA(ξA)|VbA(ξb, ξA,R)|φb(ξb)φA(ξA)�, (8)

we are left with just the single–particle term V1(rA1) + V2(rA2) as the interaction potential responsible
for the transfer. The substitution of (5) in (2) gives rise to three terms, corresponding to the simultaneous,
non–orthogonality and successive contributions [5, 10]. The simultaneous and non–orthogonality terms
arise because of the finite overlap between the wavefunctions ϕb(r) and ϕA(r). In fact, as a two–
particle transfer reaction is a process in which two nucleon change state, it is of (at least) second order
in the single–particle interaction potential V1(rA1) + V2(rA2). It is then not surprising that the non–
orthogonal amplitude tend to cancel the simultaneous transfer contribution, which is only a spurious
consequence of the fact that the initial and final states are described with non–orthogonal wavefunctions.
This cancellation is exact if the number of intermediate states form a complete basis of the two–particle
Hilbert space, and the two–neutron transfer reaction is a pure successive, two–step process. In Fig. 1 we
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show an actual numerical realization of this cancellation. To further emphasize this important point, let
us consider the following complete set of orthogonal wavefunctions:

|ϕ̃b
0(rb)� = |ϕb

0(rb)�,
|ϕ̃A

0 (rA)� = |ϕA
0 (rA)� − �ϕ̃b

0(rb)|ϕA
0 (rA)� |ϕ̃b

0(rb)�,
|ϕ̃b

1(rb)� = |ϕb
1(rb)� − �ϕ̃b

0(rb)|ϕb
1(rb)� |ϕ̃b

0(rb)� − �ϕ̃A
0 (rA)|ϕb

1(rb)� |ϕ̃A
0 (rA)�,

|ϕ̃A
1 (rA)� = |ϕA

1 (rA)� − �ϕ̃b
0(rb)|ϕA

1 (rA)� |ϕ̃b
0(rb)�

− �ϕ̃A
0 (rA)|ϕA

1 (rA)� |ϕ̃A
0 (rA)� − �ϕ̃b

1(rb)|ϕA
1 (rA)� |ϕ̃b

1(rb)�,
...

|ϕ̃b
k(rb)� = |ϕb

k(rb)� −
k−1∑
n=0

�ϕ̃b
n(rb)|ϕb

k(rb)� |ϕ̃b
n(rb)�

−
k−1∑
m=0

�ϕ̃A
m(rA)|ϕb

k(rb)� |ϕ̃A
m(rA)�,

|ϕ̃A
k (rA)� = |ϕA

k (rA)� −
k∑

n=0

�ϕ̃b
n(rb)|ϕA

k (rA)� |ϕ̃b
n(rb)�

−
k−1∑
m=0

�ϕ̃A
m(rA)|ϕA

k (rA)� |ϕ̃A
m(rA)�.

(9)

Noting that all the overlaps in the above expressions tend to zero as R → ∞, it is clear that |ϕ̃n(r)� →
|ϕn(r)� when R → ∞, and we can use the channel states

|ψa(ξb, rb1, rb2))� = |φb(ξb)�
∑
m

Sm(a)|ϕ̃b
m(rb1)ϕ̃

b
m(rb2)�, (10)

|ψB(ξA, rA1, rA2))� = |φA(ξA)�
∑
n

Sn(B)|ϕ̃A
n (rA1)ϕ̃

A
n (rA2)� (11)

instead of (3) and (4), as they are asymptotically identical. When we express the transition amplitude in
terms of the new set, the first term of (5) gives no contribution. We turn our attention to the contribution to
the transition amplitude (2) of the second term, for which we need the distorted waves in the intermediate
channels χn(R), that is

χn(R) = −2μ

�2

∫
dR�Gn(R,R�)�ϕ̃A

n (rA2)|V2(rA2)|ϕ̃b
n(rb2)�, (12)

where the Green function Gn(R,R�) is the solution of
(
−∇2

R − k2n +
2μ

�2
U(R)

)
Gn(R,R�) = δ(R−R�). (13)

The Green function Gn(R,R�) propagates each virtual intermediate state with a kinetic energy

�2k2n
2μ

= E − εfn − εFn, (14)

where εfn, εFn are the internal energies of nuclei f, F in the intermediate channel n. We thus obtain an
expression for the transition amplitude
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Fig. 1: Contributions to the total two–neutron transfer cross section of the different amplitudes (simultaneous,
successive and non–orthogonal), for the 112Sn(p,t)110Sn reaction at a laboratory energy of 26 MeV. Note that the
simultaneous and non–orthogonal contributions are in anti–phase, so that the contribution corresponding to the
coherent superposition of these two amplitudes tend to cancel. The calculated total cross section thus essentially
coincides with the successive contribution.

Fig. 2: Depiction of one of the successive single–particle orbital transfer processes contributing to
the total successive amplitude in the 112Sn(p,t)110Sn reaction. All five contributions (arising from the
(1g7/2)

2, (2d5/2)
2, (3s1/2)

2, (2d3/2)
2, (1h11/2)

2 configurations) contribute coherently to the total cross section.

T2NT = Tsucc = −4μ

�2
∑
n

�ϕ̃A
n (rA1)|V1(rA1)|ϕ̃b

n(rb1)�

×
∫

dR′Gn(R,R′)�ϕ̃A
n (rA2)|V2(rA2)|ϕ̃b

n(rb2)� (15)

which only contains a successive, two–step term. This is clearly a direct consequence of neglecting
the residual interaction Vres in (7), which should be much smaller than the mean field single particle
potential V1(r), V2(r). This is in general the case, but the validity of this approximation can break down
in particular cases. For example, if some relevant intermediate states are strongly off shell (i.e. the kinetic
energy (14) becomes negative), their contribution is significantly quenched. An interesting case can arise
when this situation becomes operative for all possible intermediate states, in which case they can only be
virtually populated, thus emphasizing the role of simultaneous transfer through the residual interaction
Vres.
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Fig. 3: In the left figure we show the contributions to the total 112Sn(p,t)110Sn cross section of each (nlj)
2

configuration. The figure in the right–hand side compares the coherent (σ) with the incoherent (σinc, see text)
cross sections for the same reaction, together with the experimental data [6].

3 Coherence of the successive transfer
We wish to emphasize that the fact that the transfer process arises through the successive migration of
the neutrons from one core to the other by no means imply any correlation loss. The two nucleons are
correlated over a distance ξ = �vF /Ecorr, where vF is the Fermi velocity and Ecorr plays the role of
the pairing gap for open shell, super- fluid, nuclei. In the case of, e.g., 210Pb, Ecorr ≈ 1.2 MeV. Thus
ξ = 25 fm. Of course, if the two nucleons are subject to an external field (the central potential generated
by, e.g., the 208Pb core), they cannot move away from each other more than 14 fm, in keeping with the
fact that the radius of 208Pb is ≈ 7 fm. On the other hand, in a heavy ion reaction with e.g. impact
parameter 17 fm, the central single–particle potential acting on one of the two nucleons to be transferred
is much stronger than typical values of the pairing field Vres. It will thus be this potential responsible
for the transfer of one partner of the Cooper pair, and this two–step process will take place without loose
of (pairing) correlation between the two nucleons, because the Cooper pair is equally well formed in the
intermediate states, where the relative distance between the two neutrons is always less than 15 fm.

To illustrate this point, we present the results of the 2–step DWBA formalism applied to the
212Sn(p, t)210Sn reaction with a proton beam of energy Ep = 26 MeV. The 212Sn is a superfluid nucleus,
and in its ground state the valence neutrons form a Cooper pair condensate. This state of correlated pairs
of neutrons can be described by mixing single-particle configurations corresponding to the outer shell,
namely the 1g7/2, 2d5/2, 3s1/2, 2d3/2, 1h11/2 orbitals. Being a collective mode, this state is characterized
by an enhanced absolute value of the two-nucleon differential cross section, measured in terms of the
average pure two-particle units [2–4]. As we have exemplified in Fig.1, each single–particle orbital con-
tribution T (nlj) to the total transition amplitude (see Fig. 2) arise essentially from a successive process.
Despite that, they all contribute coherently to the total cross section σ, so

σ ∼ |T (1g7/2) + T (2d5/2) + T (3s1/2) + T (2d3/2) + T (1h11/2)|2. (16)

In Fig.3 we compare this two–neutron transfer cross section, together with the experimental points, with
the uncorrelated result σunc obtained by combining incoherently the transition amplitudes, schematically

σinc ∼ |T (1g7/2)|2 + |T (2d5/2)|2 + |T (3s1/2)|2 + |T (2d3/2)|2 + |T (1h11/2)|2. (17)

That the uncorrelated cross section fall well below the data while the correlated cross section reproduce
the experimental findings testifies to the fact that the pairing correlations among the two transferred
neutrons is not lost during the two–step process.
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4 Conclusions
It is well established that single Cooper pair transfer is the specific tool to probe pairing correlations in
nuclei. The reaction formalism of 2–step DWBA have proved to be successful in predicting the abso-
lute values of the differential transfer cross sections in a number of scenarios [1, 7–9], thus allowing to
quantitatively assess the nature of such correlations through two–neutron transfer reaction experiments.
In this paper we emphasize that, under most circumstances, these reactions consist in the successive
transfer of the pair of nucleons. This is a consequence of neglecting the residual interaction Vres which,
as a rule, is considerably smaller than the mean field potential. However, we also point out that, due
to Q–value effects, the intermediate channels could be closed in some cases, a situation in which the
successive transfer would be significantly quenched. Financial support from the Ministry of Science and
Innovation of Spain grants FPA2009–07653 and ACI2009–1056 are acknowledged by FB and GP and
by FB respectively.
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