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Abstract
We present an accurate method of treating neutron removal reactions and it’s
applications. According to the method, the nuclear and Coulomb breakup pro-
cesses are consistently treated by the method of the continuum discretized cou-
pled channels. This method is referred to as the eikonal reaction theory (ERT).
We analyze the two types of removal reactions of 31Ne and 6He with ERT.

1 Introduction
Unstable nuclei have exotic properties such as the halo structure [1–3] and the change of magicity for
nuclei in the region called “island of inversion” [4]. One of the important experimental tools for exploring
such exotic properties is the nucleon removal reaction; see for example Ref. [5]. Very recently, a halo
structure of 31Ne has been reported following the experiment on the one-neutron removal reaction σ−n

at 230 MeV/nucleon not only for a 12C target but also for a 208Pb target [6]. This is the heaviest halo
nucleus at the present stage conrmed experimentally, which also resides within the region of “island of
inversion”.

The nucleon removal reaction is composed of the exclusive elastic breakup component and the
inclusive nucleon-stripping component. For analyses of such exclusive and inclusive reactions, Glauber
model [7] is often used. This model, however, becomes breakdown for Coulomb breakup reactions
because of the adiabatic approximation. Meanwhile, the method of continuum discretized coupled chan-
nels (CDCC) [8, 9] is highly reliable for describing exclusive reactions but not applicable to inclusive
reactions. Both method have different demerits.

In this paper, we introduce an accurate method of treating the one-neutron removal reaction at
intermediate incident energies induced by both nuclear and Coulomb interactions. In the method, the
nuclear and Coulomb breakup processes are accurately treated using CDCCwithout making the adiabatic
approximation to the latter, so that the calculated cross section is reliable even in the presence of the
Coulomb interaction. Thus, this method called the eikonal reaction theory (ERT) [10] is an essential
extension of the Glauber model and CDCC. ERT is applied to the one-neutron removal from 31Ne and
the two-neutron removal from 6He for both light (12C) and heavy (208Pb) targets and we show that ERT
is useful for describing neutron removal reactions.

2 Eikonal reaction theory (ERT)
We consider as the scattering of a two-body projectile (P) composed of a core nucleus (c) and a valence
neutron (n). Including a target (A), we take the three-body (c+n+A) system shown as Fig. 1

The starting point is the three-body Schrödinger equation,
[
−
�
2

2μ
∇2

R + hP + U (Nucl)
c (rc) + U (Coul)

c (rc) + U (Nucl)
n (rn)− E

]
Ψ(R, r) = 0 , (1)

where μ is the reduced mass between P and A. The three-dimensional vector R = (b, Z) stands for the
coordinate between P and A, whereas rx (x = n or c) is the coordinate between x and A and r means
the coordinate between c and n. The operator hP is the internal Hamiltonian of the projectile. U

(Nucl)
n is

the nuclear part of the optical potential between n and A, and U (Nucl)
c and U (Coul)

c are, respectively, the
nuclear and Coulomb parts of the optical potential between c and A.
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Fig. 1: The three-body model for a two-body projectile

First we make a product assumption for the total wave function so that it is devided into the plane
wave part Ô and the remainder ψ,

Ψ = Ôψ(R, r) , (2)

Ô ≡
1

√
�v̂

eiK̂·Z , K̂ ≡

√
2μ(E − hP)

�
, v̂ ≡

�K̂

μ
. (3)

we apply the eikonal approximation to the product form (2), namely, ∇2

R
ψ is neglected in the kinetic

energy term. It leads to the following equation,

i
dψ

dZ
= Ô†UÔψ. (4)

The scattering matrix as a formal solution to Eq.(4) is

S = exp
[
− iP

∫
∞

−∞

dZÔ†

(
U (Nucl)
c + U (Coul)

c + U (Nucl)
n

)
Ô
]
. (5)

Here, P is the “time” ordering (Z ordering) operator which describes the multistep scattering processes
accurately.

In the Glauber model, the adiabatic approximation is made, in which hP is replaced with the
ground-state energy of the projectile, and hence Ô†UÔ and P in Eq. 5 are reduced to U/(�v0) and 1,
respectively, where v0 is the velocity of P in the ground state relative to A. At intermediate energies, this
treatment is known to be valid for short-range nuclear interactions, but not for the long-range Coulomb
interactions. Therefore, we make the adiabatic approximation in the evaluation of only Ô†U

(Nucl)
n Ô, i.e.,

we use
Ô†U (Nucl)

n Ô → U (Nucl)
n /(�v0) . (6)

U
(Nucl)
n /(�v0) is just a number so that this term is commutable with the operators Ô and P . As a result,

S can be separated into the core part Sc and the neutron part Sn,

S ≈ ScSn (7)

with

Sc ≡ exp

[
− iP

∫
∞

−∞

dZÔ†

(
U (Nucl)
c + U (Coul)

c

)
Ô

]
, (8)

Sn ≡ exp

[
−

i

�v0

∫
∞

−∞

dZ U (Nucl)
n

]
. (9)
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This separation of S is the essence of ERT. It should be noted that one cannot evaluate Sc directly with
Eq. (8), since it includes the operators Ô and P.

The one-neutron removal cross section is composed of stripping (σn:str) and elastic breakup (σbu)
cross sections.

σ
−n = σn:str + σbu (10)

σn:str and are written by Sc, Sn and the projectile ground-state wave function ϕ0,

σn:str =

∫
d2b

〈
ϕ0

∣∣|Sc|
2(1− |Sn|

2)
∣∣ϕ0

〉

= [σR − σbu]− [σR(−n)− σbu(−n)], (11)

where σR, σbu are the total reaction and elastic breakup cross sections, respectively,

σR =

∫
d2b

[
1−

∣∣〈ϕ0

∣∣ScSn

∣∣ϕ0

〉∣∣2] , (12)

σbu =

∫
d2b

[〈
ϕ0

∣∣|ScSn|
2
∣∣ϕ0

〉
−

∣∣〈ϕ0

∣∣ScSn

∣∣ϕ0

〉∣∣2] , (13)

and σR(−n), σbu(−n) correspond to the total reaction and elastic breakup, respectively, in which ScSn

is replaced with Sc. They are solution to the following equation,
[
−
�
2

2μ
∇2

R + hP + U (Nucl)
c (rc) + U (Coul)

c (rc)−E

]
Ψ(R, r) = 0 . (14)

Eqs.(1) and (14) can be solved with CDCC. This means that ERT makes CDCC applicable to inclusive
reactions.

3 One-neutron removal from 31Ne
We apply ERT to the one-neutron removal reactions for the 31Ne+12C scattering at 230 MeV/nucleon
and the 31Ne+208Pb scattering at 234 MeV/nucleon with a three-body (30Ne+n+A) model. The optical
potentials for the n-target and 30Ne-target subsystems are obtained by folding the effective nucleon-
nucleon interaction [11] with one-body nuclear densities. The densities of P and A are constructed by
the same method as in Ref. [12]. We assume the ground state of 31Ne to be either the 30Ne(0+)⊗ 1p3/2
or the 30Ne(0+) ⊗ 0f7/2, with the one-neutron separation energy Sn = 0.33 MeV [13]. As for the
breakup states, we include s-, p-, d-, f-, and g-waves up to the relative momentum between 30Ne and n
of 0.8 fm−1. For more detailed numerical inputs, see Ref. [10].

Table 1 shows the elastic-breakup cross section σbu, the one-neutron stripping cross section σn:str,
the one-neutron removal cross section σ

−n, and the spectroscopic factor S = σexp
−n /σ

th
−n for 12C and

208Pb targets. S calculated with the 1p3/2 ground-state neutron conguration little depends on the target
and less than unity, but that with the 0f7/2 conguration does not satisfy these conditions. Therefore, we
can infer that the major component of the ground state of 31Ne is 30Ne(0+)⊗ 1p3/2 with S ∼ 0.69. We
adopt this conguration in the following.

Since the potential between 30Ne and n is not well known, we change each of the potential pa-
rameters by 30% and see how this ambiguity of the potential affects the resulting value of S . We obtain
S = 0.693 ± 0.133 ± 0.061 for a 12C target and S = 0.682 ± 0.133 ± 0.062 for a 208Pb target; the sec-
ond and third numbers following the mean value stand for the theoretical and experimental uncertainties,
respectively. Thus, S includes a sizable theoretical uncertainty. This situation completely changes if we
look at the asymptotic normalization coefcient CANC, i.e., CANC = 0.320 ± 0.010 ± 0.028 fm−1/2

for a 12C target and CANC = 0.318 ± 0.008 ± 0.029 fm−1/2 for a 208Pb target. Thus, CANC has a
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Table 1: Integrated cross sections and the spectroscopic factor for the 31Ne-12C scattering at 230 MeV/nucleon
and the 31Ne-208Pb scattering at 234 MeV/nucleon. The cross sections are presented in unit of mb and the data are
taken from Ref. 6.

12C target 208Pb target
p3/2 f7/2 Exp. p3/2 f7/2 Exp.

σEB 23.3 3.3 799.5 73.0 (540)
σn:str 90 29 244 53
σ
−n 114 32 79 1044 126 712
S 0.693 2.47 0.682 5.65

much smaller theoretical uncertainty than S . This means that the one-nucleon removal reaction is quite
peripheral.

The experimental value of Sn has a large error, Sn = 0.29 ± 1.64 MeV [13], so we also see
the Sn dependence of CANC and S When Sn = 0.1 MeV, CANC = 0.128 ± 0.003 ± 0.011 fm−1/2

and S = 0.530 ± 0.084 ± 0.047 for a 12C target, and CANC = 0.105 ± 0.004 ± 0.010 fm−1/2 and
S = 0.358 ± 0.057 ± 0.033 for a 208Pb target. These values are plotted in Fig. 2. CANC and S are
sensitive to the value of Sn. We can see from the Sn dependence of S for a 208Pb target that S < 1 when
Sn < 0.6 MeV. It is thus necessary to determine Sn experimentally in the future to evaluate CANC and
S properly. However, we can say at least that CANC has a smaller theoretical error and weaker target
dependence than S for any value of Sn.
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Fig. 2:

4 Two-neutron removal from 6He
ERT could be easily extended to three-body projectile. Combining this four-body ERT with four-body
CDCC [14, 15], we can calculate two-neutron removal cross sections. ERT is applied to two-neutron
removal reactions of 6He on 12C and 208Pb targets at 240 MeV/nucleon. In this case, the projectile is
treated as a three-body (α+ n+ n) system and hence four-body CDCC is used.

We use the microscopic folding potentials obtained by folding the Melbourne nucleon-nucleon

36

64 K. Minomo, T. Matsumoto, K.Ogata, M. Yahiro 



g-matrix interaction [16] with the densities obtained by the spherical Hartree-Fock calculation with the
Gogny D1S interaction. [17, 18] The present framework has no adjustable parameters. the three-body
calculation of 6He and the model space of the reaction calculation is the same as in Ref. [15], with which
good convergence is achieved.

Table 2: Integrated cross sections for two-neutron removal reaction of 6He on 12C and 208Pb targets at
240 MeV/nucleon. The cross sections are presented in unit of mb and the experimental data are taken from
Ref. [19].

12C target 208Pb target
Calc. Exp. Calc. Exp.

σn:str 153.4 127 ± 14 353.6 320 ± 90
σ2n:str 29.0 33 ± 23 148.9 180 ± 100
σ
−2n 198.5 190 ± 18 1016.6 1150 ± 90

Table 2 shows the one- and two-neutron stripping cross sections, σn:str and σ2n:str, respectively,
and the two-neutron removal cross section σ

−2n. The present framework well reproduces the exper-
imental data [19] with no adjustable parameters. Thus, we can clearly see the reliability of ERT for
two-neutron removal reactions on both light and heavy targets.

5 Summary
We have presented an accurate method, which called the eikonal reaction theory (ERT), of treating the
neutron removal reaction at intermediate energies. According to the method, the nuclear and Coulomb
breakup processes are accurately and consistently treated by the framework of CDCC. ERT is an exten-
tion of the Glauber model and CDCC.

CANC and S of the last neutron in 31Ne are evaluated from the measured one-neutron removal
reaction. For the 1p3/2 orbit, S and CANC have weak target dependence and S < 1. On the other hand,
for the 1f7/2 orbit, S and CANC have strong target dependence and S > 1. These results indicate that
the last neutron mainly occupy the 1p3/2 orbit. CANC has a smaller theoretical error and weaker target-
dependence than S . Thus, CANC is determined more accurately than S . This means that the one-neutron
removal reaction is quite peripheral. We could understand the one-neutron removal from 31Ne within the
naive shell model.

The application of ERT to two-neutron removal reactions of 6He is also shown. The present
framework well reproduces the experimental data with no adjustable parameters. It was clearly shown
that ERT is useful for describing neutron-removal reactions.
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