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Abstract
This article presents the theoretical foundation of the continuum discretized
coupled-channels method (CDCC). The validity of the Glauber model is also
shown by extending the multiple scattering theory for nucleon-nucleus scat-
tering to nucleus-nucleus scattering. The multiple scattering theory is applied
to the scattering of unstable nuclei. This presentation is based on the recent
review article on CDCC (arXiv:1203.5392[nucl-th]).

1 Introduction
Nuclear reaction is one of fundamental reactions in Nature and a good tool of understanding nucleon-
nucleon (NN), nucleon-nucleus (NA) and nucleus-nucleus (AA) interactions and eventually structures
of nuclei. One of the most important current subjects in nuclear physics is understanding of unstable
nuclei. Unstable nuclei have exotic properties such as the halo structure [1–3] and the loss of magicity in
the “island of inversion” [4–9]. The term “island of inversion” was introduced by Warburton [4] to the
region of unstable nuclei from 30Ne to 34Mg. In the island of inversion, the rst-excited states have low
excitation energies and large B(E2) values [5–9]. This indicates that the N = 20 magic number is not
valid. anymore. These novel quantum properties have inspired a lot of works.

Important experimental tools of analyzing properties of unstable nuclei are the reaction cross sec-
tion σR or the interaction cross section σI and the nucleon-removal cross section σ−n [1–3, 10]. The
experimental exploration of halo nuclei is moving from lighter nuclei such as He and C isotopes to
relatively heavier nuclei such as Ne isotopes. Very lately σI was measured by Takechi et al. [11] for
28−32Ne located near or in the island of inversion. Furthermore, a halo structure of 31Ne was reported by
Nakamura et al. [12] with the experiment on σ−n.

Understanding of unstable nuclei can be made by high-accuracy measurements and accurate the-
oretical analyses. The scattering of unstable nuclei have two features. The projectile is fragile and hence
the projectile breakup is important. Measurements of the elastic scattering are not easy because of weak
intensity of the secondary beam, and consequently, there is no reliable phenomenological optical poten-
tial. Therefore it is important to construct the microscopic reaction theory. This is a goal of the nuclear
reaction theory.

A pioneering work on the microscopic description of NA scattering was done by Watson [13].
Kerman, McManus and Thaler (KMT) reformulated the multiple scattering theory as a series expansion
in terms of an underlying NN t matrix [14]. The KMT theory was extended to AA scattering [15].
Another important microscopic model is the Glauber model [16]. This model is useful particularly for
inclusive reactions. The theoretical foundation of the model can be obtained by the theory of Ref. 15. We
show the details in Sec. 3.1. The Glauber model is based on the eikonal and the adiabatic approximation.
The adiabatic approximation makes the breakup cross section diverge when the Coulomb interaction
is included. Hence the Glauber model was mainly applied to lighter targets in which the Coulomb
interaction is negligible. A way of making Coulomb corrections to the model has been proposed [17,18].

The continuum discretized coupled-channels method (CDCC) [19–21] is a fully quantum-mechanical
method of treating the projectile breakup process in exclusive reactions such as elastic and inelastic scat-
tering, elastic-breakup reactions and transferred reactions. The theoretical foundation of CDCC is shown
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by clarifying the relation between the Faddeev method and CDCC [22–24]. We will show the detail in
Sec. 2. Recent development and applications of CDCC are shown in Ref. [21].

The microscopic optical potential can be constructed by the g-matrix folding model [25–33]. For
NA scattering, the folding model has succeeded in describing the elastic scattering systematically [32].
In general, the microscopic optical potential constructed is non-local, but it can be localized with the
Brieva-Rook method [27]. The validity of this localization is shown in Ref. 34. For AA scattering at
intermediate and high incident energies, the folding model is also successful in describing the scattering,
since the projectile breakup is weak. This is discussed in Sec. 3. One can use the microscopic optical
potential as an input of CDCC calculations.

2 Theoretical foundation
Following Refs. 22–24, We consider the projectile (P) that is composed of two particles b and c. In
this case, the scattering of P on a target (A) can be described by the A+b+c three-body system. The
three-body scattering is governed by the three-body Schrödinger equation

[H − E]Ψ = 0 (1)

with the Hamiltonian

H = Kr +KR + v(r) + Ub(rb) + Uc(rc), (2)

where Kr and KR are the kinetic energy operators associated with the relative coordinate r between b
and c and the relative coordinate R between P and A, respectively, and v(r) is the interaction between b
and c, while Ub (Uc) is an optical potential between b (c) on A.

In CDCC, the total wave function Ψ is expanded in terms of the complete set of eigenfunctions of
Hamiltonian h = Kr + v(r) [19, 20]. The eigenfunctions consist of bound and continuum states. The
continuum states are characterized by orbital angular momentum � and linear momentum k of the b+c
subsystem. They are truncated as

k ≤ kmax, � ≤ �max. (3)

After making the truncations, we further discretize the k contiuum. Hence the modelspace P ′ is described
as

P ′ =
N∑

i=0

|φi��φi|, (4)

where the φi represent the bound and discretized-continuum states of h and N is the number of the φi.
The total wave function Ψ is hence approximated into

Ψ ≈ ΨCDCC ≡ P ′Ψ =

N∑

i=0

φi(r)χi(R), (5)

where the coefcient χi(R) describes a motion of P in its state φi. The approximate total wave function
ΨCDCC is obtained by solving the three-body Schrödinger equation (1) in the modelspace P ′:

P ′[H − E]P ′ΨCDCC = 0. (6)

The S-matrix elements calculated with CDCC depend on the size of the modelspace P ′. This artifact
should be removed by conrming that the calculated S-matrix elements converge as the modelspace is
enlarged. Actually the convergence was rst shown in Refs. 19,20,35. The next question to be addressed
is whether the converged S-matrix elements are exact.
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CDCC is based on three approximations, the �-truncation, the k-truncation and the discretization
of k-continuum. The �-truncation is most essential among these approximations, as shown below. Now
we introduce the projection operator P that only selects � up to �max. Obviously, P � tends to P in the
limit of large kmax and small width of momentum bin. The component PΨ has no asymptotic amplitudes
in the rearrangement channels. For example, let us consider a simple case of �max = 0. In this case,
PUP is the average of U = Ub + Uc over the angle of vector r. Hence the potential PUP becomes a
function of r and R. Thus PUP is a three-body potential that vanishes at large R and/or large r, so that
it does not generate any rearrangement channel.

The insertion of three-body distorting potentials does not change the mathematical properties of
the Faddeev equations [36]. Now we consider PUP as such a distorting potential in order to obtain the
distorted Faddeev equations,

(E −Kr −KR − v −PUP)ψA = v(ψb + ψc), (7)
(E −Kr −KR − Ub)ψb = (Ub −PUbP)ψA + Ubψc, (8)
(E −Kr −KR − Uc)ψc = (Uc − PUcP)ψA + Ucψb, (9)

where ψA, ψb and ψc satisfy the relation Ψ = ψA + ψb + ψc. If Eqs. (7)-(9) are added, the original
three-body Schrödinger equqtion (1) is recovered. In an iterative approach to Eqs. (7)-(9), the zeroth
order solution for ψA is obtained by setting the right-hand side of (7) to zero. The zeroth order solution
is nothing but ΨCDCC. When ΨCDCC is inserted in Eqs. (8)-(9), the equations do not generate any dis-
connected diagram, since ΨCDCC has no rearrangement channel in the asymptotic region. Furthermore,
the subtractions, Ub − PUbP and Uc − PUcP, sizably weaken couplings of ΨCDCC with ψb and ψc.
Thus ΨCDCC is a good solution to the three-body Schrödinger equation (1), when �max is large enough.
Very lately, the CDCC solution was compared with the Faddeev solution through numerical calculations.
The two solutions agree with each other [24].

3 Microscopic reaction theory for AA scattering
The most fundamental equation to describe AA scattering is the many-body Schrödinger equation with
the realistic NN interaction vij :

(K + hP + hT +
∑

i∈P,j∈T

vij − E)Ψ̂(+) = 0 , (10)

where K is the kinetic-energy operator for the relative motion between P and T and hP (hA) is the
internal Hamiltonian of P (T). The scattering of P from T can be described with a series of multiple
scattering in terms of vij . In the series, one can rst take a summation of ladder diagrams between the
same NN pair. The summation can be described by an effective NN interaction τij in nuclear medium.
Taking a resummation of the series in terms of τij , one can get the many-body Schrödinger equation with
τij [15]:

(K + hP + hT +
∑

i∈P,j∈T

τij − E)Ψ̂(+) = 0 . (11)

Here the number of vij between P and T is assumed to be much larger than 1 and the antisymmetrization
between incident nucleons in P and target nucleons in T can be approximated by using τij that is properly
symmetrical with respect to the exchange of the colliding nucleons. The rst assumption is good for AA
scattering, and the second one is known to be accurate at intermediate and high incident energies [37,38].
This theory of Ref. 15 is an extension of the KMT theory [14] for NA scattering to AA scattering.

Since τij describes NN scattering in nuclear medium, the Brueckner g-matrix is commonly used
as τij in many applications; see for example Refs. 25–33. The g-matrix interaction does not include any
effect induced by nite nucleus, e.g. effects of target collective excitations, because the interaction is
evaluated in innite nuclear matter.
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3.1 Validity of the Glauber model
We show the validity of the Glauber model by using the many-body Schrödinger equation (11) with the
effective NN interaction, following Ref. 15. The Glauber model is based on the eikonal approximation
for NN scattering and the eikonal and adiabatic approximations for AA scattering. The condition for the
eikonal approximation to be good for NN collision in both free space and AA scattering is that

|v(r)/e| � 1, ka � 1 , (12)

where e (k) is a kinetic energy (wave number) of NN collision, r is the relative coordinate between
two nucleons and a is a range of the realistic NN interaction v. This condition is not well satised for
the realistic NN potential that has a strong short-ranged repulsive core; for example, v ∼ 2000 MeV at
r = 0 for AV18 [39]. In fact, the eikonal approximation is not good for NN scattering at intermediate
energies, as shown in the left panel of Fig. 1. To avoid this problem, a slowly-varying function such as
the Gaussian form has been used as a prole function in the Glauber model [40].

The usage of slowly-varying prole function and hence of slowing-varying NN interaction can be
justied by using the many-body Schrödinger equation (11). Applying the adiabtic and eikonal approxi-
mations to Eq. (11), one can obtain the S-matrix of AA scattering as

S = exp
[
−

i

�vrel

∑

ij

∫
∞

−∞

dzijτij

]
, (13)

where vrel stands for a velocity of P relative to A and zij is the z-component of the relative coordinate rij
between two nucleons. In general, τij has much milder r dependence than the bare NN potential vij [15].
In the case of large incident energies, for instance, τij is reduced to the t-matrix of NN scattering that is
a product of vij and the wave operator of NN scattering. When vij has a strong repulsive core at small r,
the wave operator is largely suppressed there. This leads to the fact that the t matrix is a slowly-varying
function of r [15]. The g matrix [26] proposed by Jeukenne, Lejeune and Mahaux (JLM) keeps this
property. The g matrix is thus more suitable than vij as an input of the Glauber model. In fact, as shown
in the right panel of Fig. 1, the eikonal approximation is quite good for NN scattering at intermediate
energies, say 150 MeV, when the JLM g matrix is used. The usage of the g-matrix interaction has another
merit in the sense that the effective interaction includes nuclear medium effects.
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Fig. 1: (Color online) The on-shell NN scattering amplitude fNN(q) at the laboratory energy ENN = 150 MeV
calculated with the bare NN potential AV18 in the left panel and with the JLM g matrix [26] in the right panel.
The solid (dashed) and dotted (dash-dotted) lines show, respectively, the real and imaginary parts of fNN(q) of the
exact (eikonal) calculation.
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3.2 Application of the g-matrix folding model to AA scattering
Following Refs. 41–43, we consider two types of effective NN interactions in the folding model: the
Love-Franey t-matrix interaction (tLF) [44], and the Melbourne interaction (gMB) [32] constructed from
the Bonn-B realistic NN interaction [45]. For stable nuclei, we take the phenomenological proton-
density [46] deduced from the electron scattering by unfolding the nite-size effect of the proton charge.
The neutron density is assumed to have the same geometry as the corresponding proton one, since in the
present case the proton RMS radius deviates from the neutron one only by less than 1% in the Hartree-
Fock (HF) calculation. For Ne isotopes, the densities are constructed by antisymmetrized molecular
dynamics (AMD) [47] with the Gogny D1S interaction [48, 49]

Figure 2 shows the results of the g- and t-matrix folding models for the angular distribution of
12C+12C elastic scattering at 135MeV/nucleon in the left panel and 74.25MeV in the right panel. In the
left panel, the g-matrix folding model (solid line) well reproduces the data [50] with no free parameter,
whereas the t-matrix folding model (dashed line) does not. Also for the low incident energy in the right
panel, the g-matrix folding model (solid line) yields better agreement with the data [51] than the t-matrix
folding model (dashed line). For scattering angles larger than 50 degree, the solid line does not reproduce
the data perfectly. The deviation may come from effects of collective projectile and target excitations
that are not included in the g-matrix. The g-matrix folding model is thus quite reliable particularly for
intermediate incident energies.
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Fig. 2: (Color online) Angular distributions of 12C+12C elastic cross sections at 135MeV/nucleon in the left panel
and 74.25 MeV in the right panel. The solid (dashed) line stands for the results of DFM calculations with gMB

(tLF). The data is taken from Ref. [50] in the left panel and from Ref. [51] in the right panel.

The left panel of Fig. 3 shows the reaction cross sections for the scattering of 12C from 12C, 20Ne,
23Na, and 27Al targets. The dotted and solid lines represent results of the g-folding calculations before
and after the normalization with F = 0.978, respectively. Before the normalization procedure, the dotted
line slightly overestimates the mean values of data for A = 20–27. After the normalization procedure,
the solid line agrees with the mean values of data for all the targets. The normalization procedure is thus
reliable. The dashed line corresponds to the results of the t-folding calculations with no normalization.
The medium effect reduces the theoretical reaction cross sections by about 15% for all the targets.

The right panel of Fig. 3 represents σR for 20−32Ne + 12C systems at 240 MeV/nucleon. The g-
matrix folding model with the AMD density (solid line) reproduces the data [11], whereas the spherical
Hatree-Fock (HF) calculation with the Gogny D1S interaction (dotted line) underestimates the data. It
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Fig. 3: (Color online) Reaction cross sections for the scattering of 12C on stable nuclei from A = 12 to 27 in the
left panel and for the scattering of Ne isotopes from a 12C target at 240 MeV/nucleon in the right panel. In the left
panel, the data at 250.8 MeV/nucleon for 12C and 27Al are taken from Ref. [52]. The data at 240 MeV/nucleon
for 20Ne and 23Na are deduced from measured σI at around 1 GeV/nucleon [53, 54] with the Glauber model [11].
The solid (dotted) line stands for the results of the g-matrix folding model after (before) the normalization with
F = 0.978, whereas the dashed line corresponds to results of the t-matrix folding model. In the right panel, the
solid (dotted) line represents the results of AMD (spherical HF) calculations. The dashed line with a closed square
is the result of the AMD calculation with the tail and breakup corrections. The closed square represents the result
of the AMD+RGM calculation with breakup correction. The experimental data for A = 28 − 32 are taken from
Ref. 11.

should be noted that the nuclei with A > 30 are unbound in the spherical calculations, where A is the
mass number of P. The enhancement from the dotted line to the solid line stems from the deformation of
P. The g-matrix folding model with the AMD density thus yields results consistent with the data except
31Ne. The underestimation of this model for 31Ne comes from the inaccuracy of the AMD density in its
tail region.

The tail correction to the AMD density can be made as below. The ground state of 31Ne is de-
scribed by the 30Ne+n cluster model with excitations of 30Ne. The cluster-model calculation can be done
with the resonating group method (RGM) in which the ground and excited states of 30Ne are constructed
with AMD. This AMD+RGM calculation is quite time consuming, but it is done for 31Ne. The tail
correction to σR is 35 mb. The reaction cross section with the tail correction (a square symbol) well re-
produces the experimental data [11] with no adjustable parameter. Consequently, 31Ne is a halo nucleus
with large deformation.

4 Summary
We have shown recent developments of CDCC and the microscopic reaction theory as an underlying
theory of CDCC. This talk is based on the recent review article of Ref. 21.

First we have shown the theoretical foundation of CDCC by comparing the Faddeev method and
CDCC. The primary approximation in CDCC is the �-truncation P . The �-truncation changes the two-
body potentials, Ub and Uc, to three-body ones. The theoretical foundation of the �-truncation is inves-
tigated with the distorted Faddeev equations where the three-body potentials PUbP and PUcP are in-
serted. The CDCC solution is the zeroth-order solution to the distorted Faddeev equations. The rst-order
solution is strongly weakened by the suppression of coupling potentials, Ub − PUbP and Uc − PUcP .
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The CDCC solution is thus a good solution to the three-body Schrödinger equation, when �max is large
enough. The theoretical statement based on the distorted Faddeev equations is numerically conrmed to
be true by a direct comparison between the CDCC and Faddeev solutions [24].

As an underlying theory of CDCC, we have constructed a microscopic reaction theory for AA
scattering, using the multiple scattering theory. This is an extension of the KMT theory for nucleon-
nucleus scattering to nucleus-nucleus scattering. The input of the theory is the g-matrix NN interaction
instead of the realistic one. The g-matrix has much milder r-dependence, so that the Glauber model
becomes reliable when the model starts from the microscopic reaction theory of Ref. 15. The Glauber
model is applicable for the scattering of lighter projectiles from lighter targets at intermediate and high
incident energies, since Coulomb breakup is weak there.

Using the g-matrix folding model, one can construct the microscopic optical potential with pro-
jectile and target densities calculated by fully microscopic structure theories such as AMD and HF. This
fully microscopic framework has been applied to the scattering of stable nuclei and unstable neutron-
rich Ne-isotopes at intermediate incident energies with success of reproducing the data. In “the Island
of inversion” region, the nuclei are strongly deformed, and 31Ne is a halo nucleus with strong defor-
mation. The reliable microscopic optical potential can be used as an input of CDCC calculations. This
microscopic version of CDCC is quite useful to analyze the scattering of unstable nuclei.
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