CERA BIBLOTHE

1 9 NOV. 1984

Contributed paper, 4th International Conference on Clustering Aspects of Nuclear Structure and Nuclear Reactions, Chester, July 23-27 TRI-PP-84-57 Jul 1984

PION-OXYGEN SCATTERING IN THE FOUR-α-PARTICLE MODEL

Li Qing-run

TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3

Many theoretical studies have been devoted to pion-nucleus scattering in the past decade. Most of these studies used first-order π -nucleus optical potentials defined in the multiple scattering theory of KMT. Others also included second-order effects, which unfortunately could only be achieved either phenomenologically or approximately. On the other hand, for nuclei such as $^{12}\mathrm{C}$ and $^{16}\mathrm{O}$ which can be regarded as being made up of α -clusters, one could regard the α -particles as the scatterers and utilize the π - α amplitude (directly from fitting data) as basic input to construct a theoretical π -nucleus optical potential. In this way, various higher-order effects (in particular true π -absorptions) would be "automatically" included to a certain extent.

In this model, the first-order π -nucleus optical potential is given by

$$\langle \vec{k}' | U_{opt} | \vec{k} \rangle = -(N - 1) \frac{1}{4\pi^2 \mu} f_{\pi\alpha}(q) \eta_{\alpha}(q)$$
 (1)

where $f_{\pi\alpha}$ is the $\pi\text{-}\alpha$ amplitude, and η_α the form factor representing the $\alpha\text{-particle}$ distribution in the nucleus.

Here, we present some preliminary results for $\pi^{-16}0$ scattering. $f_{\pi\alpha}(q)$ is taken from reference (1), and $\eta_{\alpha}(q)$ from a model of α -particle structure of the nucleus. (2) Differential and total cross sections have been calculated from low energy to the (3,3) resonance region. Some of these results are shown in Fig. 1 and 2. In view of the fact that this is a parameter-free calculation, the results are rather satisfactory. (As is well known, first-order optical potentials using π -N amplitude as input fail badly in the low energy region.)

Fig. 1

CERN LIBRARIES, GENEVA

CM-P00067312

Fig. 2

References

- 1. F. Binon et al., Nucl. Phys. A298 (1978) 499.
- 2. Li Qing-run et al., Physica Energiae Fortis et Physica Nuclearis 5 (1981) 531.