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Abstract

We present the first wide-range measurement of the charged-particle pseudorapidity density distri-

bution, for different centralities (the 0–5%, 5–10%, 10–20%, and 20–30% most central events) in

Pb–Pb collisions at
√

sNN = 2.76TeV at the LHC. The measurement is performed using the full cov-

erage of the ALICE detectors, −5.0 < η < 5.5, and employing a special analysis technique based on

collisions arising from LHC ‘satellite’ bunches. We present the pseudorapidity density as a function

of the number of participating nucleons as well as an extrapolation to the total number of produced

charged particles (Nch = 17165± 772 for the 0–5% most central collisions). From the measured

dNch/dη distribution we derive the rapidity density distribution, dNch/dy, under simple assumptions.

The rapidity density distribution is found to be significantly wider than the predictions of the Landau

model, which reproduce data well at RHIC energies. We assess the validity of longitudinal scaling

by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle

production are discussed based on a comparison with various theoretical models.
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1 Introduction

The field of ultra-relativistic heavy-ion collisions entered a new era with the production of Pb–Pb colli-

sions at a center-of-mass energy per nucleon pair
√

sNN = 2.76TeV at the CERN LHC. There exists much

evidence that, under the extreme conditions of unprecedented temperature and energy density created in

these collisions, matter is in a deconfined state known as the quark–gluon plasma [1–4].

The charged-particle pseudorapidity density generated in these collisions depends on the particle produc-

tion mechanisms as well as on the initial energy density. Studying the dependence of the pseudorapidity

density on collision centrality will improve our understanding of the role of hard scattering and soft

processes contributing to the production of charged particles (e.g. parton saturation [5]). Moreover,

extending the measurement to a wide pseudorapidity range enables investigating the physics of the frag-

mentation region by comparing the extrapolation of this data to lower energy data from RHIC [6, 7] to

test whether longitudinal scaling of the pseudorapidity density persists up to LHC energies.

In this Letter we present the first LHC measurement over a wide pseudorapidity range of the centrality

dependence of the charged-particle pseudorapidity density, dNch/dη , utilizing the ALICE detector. The

employed method relies on using so-called ‘satellite’ bunch collisions and is based on measurements

from three different ALICE sub-detectors. These measurements extend considerably the former results

obtained at the LHC [8–10] and can be compared to the wealth of results on the charged-particle pseudo-

rapidity density from lower energy Au–Au collisions at RHIC [6, 11, 12] as well as model calculations.

2 Experimental setup

A detailed description of the ALICE detector can be found in [13]. In the following, we will briefly

describe the detectors used in this analysis, namely the Silicon Pixel Detector (SPD), the Forward Mul-

tiplicity Detector (FMD), the VZERO, and the Zero Degree Calorimeter (ZDC) (see Fig. 1).

The SPD is the innermost element of the ALICE inner tracking system [13]. It consists of two cylindrical

layers of hybrid silicon pixel assemblies positioned at radial distances of 3.9 and 7.6cm from the beam

line, with a total of 9.8× 106 pixels of size 50×425 µm2, read out by 1200 electronic chips. The SPD

coverage for particles originating from the nominal interaction point at the center of the detector is |η |< 2

and |η |< 1.4 for the inner and outer layers, respectively.

The VZERO detector [14] consists of two arrays of 32 scintillator tiles (4 rings of increasing radii each

with 8 azimuthal sectors) placed at distances of 3.3m (VZERO-A) and −0.9m (VZERO-C) from the

nominal interaction point along the beam axis, covering the full azimuth within 2.8 < η < 5.1 and

−3.7 < η < −1.7, respectively. Both the amplitude and the time of the signal in each scintillator are

recorded.

The ZDC measures the energy of spectator (non-interacting) nucleons in two identical sets of detectors,

located at ±114m from the interaction point along the beam axis [13]. Each set consists of two quartz

fiber sampling calorimeters: a neutron calorimeter positioned between the two LHC beam pipes down-

stream of the first LHC dipole which separates the two charged-particle beams and a proton calorimeter

positioned externally to the beam pipe containing bunches moving away from the interaction point. The

ZDC energy resolution at the Pb beam energy is estimated to be 20% and 25% for the neutron and proton

calorimeters, respectively. The ZDC system is completed by two Zero-degree Electro-Magnetic (ZEM)

calorimeters placed at +7.5m from the interaction point along the beam direction [13]. They cover the

pseudorapidity range between 4.8 and 5.7 and thus measure the energy of particles emitted at very small

angles with respect to the beam axis.

The FMD [15] is composed of three sub-detectors: FMD1, FMD2, and FMD3. FMD2 and FMD3 consist

of an inner and an outer ring of silicon strip sensors, while FMD1 consists of only an inner ring. The
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inner and outer rings have internal radii of 4.2cm and 15.4cm and external radii of 17.2cm and 28.4cm,

respectively, with full azimuthal coverage. Each ring is sub-divided into 512 or 256 radial strips and 20

or 40 azimuthal sectors for inner and outer rings, respectively. For collisions at the nominal interaction

point the pseudorapidity coverage is −3.4 < η <−1.7 (FMD3) and 1.7 < η < 5.0 (FMD2 and FMD1).

Each sub-ring has 10240 channels resulting in a total of 51200 channels.

300.0262.5225187.5150.0112.575.037.5−112.5 z=0 337.5 375.0 cm−150.0 −75.0−187.5 −37.5

FMD1
FMD2FMD3

SPD

VZERO−C

VZERO−A

Fig. 1: Schematic drawing (not to scale) of the cross-section of the sub-detectors used in this analysis and the

midpoints of the locations of the nominal and ‘satellite’ interaction points. The long-dashed line designates a

region of dense material designed to absorb all particles except muons. The short-dashed line indicates the region

of the ALICE inner tracking system, which has dense material for its services on the surfaces near FMD2 and

FMD3. The area between FMD2, FMD1 and VZERO-A contains only the beryllium beam pipe. The dark gray

shaded areas denote the paths particles would follow from z = 0cm and z = 225cm to FMD2 and VZERO-A such

that it is evident which material they would traverse.

3 Data sample and analysis approach

The analysis presented in this Letter is based on Pb–Pb collision data at
√

sNN = 2.76TeV taken by

ALICE in 2010.

Results in the region of |η | < 2 are obtained from a tracklet analysis using the two layers of the SPD.

The analysis method and the used data sample are identical to the ones described in [16], but extending

the pseudorapidity range of the SPD detector by using collisions occurring within ±13cm (rather than

±10cm) from the nominal interaction point along the beam axis.

The measurement of multiplicity in the region |η | > 2 is carried out using the FMD and VZERO. The

main challenge in the analysis of these data is the correction for secondary particles produced by primary

particles interacting with the detector material. While the low material density in the ALICE central

barrel limits the number of secondary particles, for |η | > 2 dense material – such as services, cooling

tubes, and read-out cables – is present. This material causes a very large production of secondary parti-

cles, in some cases up to twice the number of primary particles as obtained from Monte Carlo studies.

Furthermore, the geometry and segmentation of the two detectors do not allow for the rejection of sec-

ondary particles through tracklet reconstruction and therefore the analysis depends strongly on Monte

Carlo driven corrections. In order to reduce systematic effects arising from these large correction factors,

a special analysis technique was developed. It relies on the so-called ‘debunching’ effect which occurs

during the injection and acceleration of the beams inside the LHC ring [17]. Due to the way the beams

are injected and transferred to the LHC, a small fraction of the beam can be captured in unwanted RF

buckets which creates so-called ‘satellite’ bunches spaced by 2.5ns. Thus crossings of the ‘satellite’

bunches of one beam with the main bunches of the opposite beam produce ‘satellite’ interactions with

vertices spaced by 37.5cm in the longitudinal direction (see Fig. 1). These interactions provide the op-

portunity to avoid the large amount of material traversed by particles coming from the nominal vertex and

to extend the pseudorapidity range of the FMD and VZERO. Interactions with vertices from −187.5cm

to 375cm are used in this analysis. Furthermore, FMD3 and VZERO-C are surrounded by dense mate-
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rial and, therefore, only the FMD1, FMD2, and VZERO-A were used. For ‘satellite’ collisions in the

range of 75,102.5, . . . ,300cm from the nominal interaction point along the beam axis, the only material

between the VZERO-A, FMD1, FMD2 and the interaction point is the beryllium beam pipe, resulting in

a reduction of the number of secondary particles by more than a factor of two in Monte Carlo simulations

and consequently much smaller corrections. For vertices with z > 300cm and z < 75cm other detector

material has an increasing influence on the measurement such that for vertices with z < 37.5cm only

FMD1 and the inner ring of VZERO-A are used. An additional advantage of this analysis method is

the possibility for a data-driven calibration of the detector response using ‘satellite’ collisions for which

the pseudorapidity coverage of the VZERO overlaps with the nominal SPD acceptance, as it will be

explained in the following.

Due to the fact that the ‘satellite’ collision vertices fall outside the normal range around the nominal

interaction point, the standard ALICE trigger and event selection [8] is inapplicable. Therefore a special

trigger imposing a lower cut of 100 fired chips on both layers of the SPD was used. The trigger was

verified to be fully efficient for the centrality range covered by the present analysis. This was done by

inspecting the distribution of the number of fired SPD chips as a function of the event centrality. The

triggered events are then further selected based on the ZDC timing information, so that

(∆T −n×2.5ns)2

(σ∆T)2
+

(ΣT −n×2.5ns)2

(σΣT)2
< 1 ,

where ∆T and ΣT are the difference and sum of the arrival times (relative to the crossing time of the main

bunches) of the signals in the two ZDC calorimeters, respectively, and σ∆T = 1.32ns and σΣT = 2.45ns

are the corresponding resolutions. n is the index of the ‘satellite’ interaction point, such that n= 0 denotes

an interaction at the nominal interaction point. More details on the event selection can be found in [18]. It

is worth noting that the crossing angle between the beams was zero during the Pb–Pb data taking in 2010

which naturally enriched the data sample with ‘satellite’ collisions. The rate of the ‘satellite’ collisions

is about three orders of magnitude lower than the rate of the nominal collisions and therefore, in order to

accumulate a sufficient amount of events, the analysis was performed with all ‘satellite’ collisions from

the entire 2010 data sample. The acquired statistics is distributed unevenly among the different ‘satellite’

vertices and varies from one thousand to twelve thousand events per vertex.

Similarly to the trigger and event selection, the standard centrality selection based on VZERO [18] can

not be used in the analysis of the ‘satellite’ collisions. Given the fact that the ZDC and ZEM are posi-

tioned very far away from the nominal interaction point, they are best suited for the characterization of

‘satellite’ collisions. The event sample is split into four centrality classes (0–5%, 5–10%, 10–20%, and

20–30%) based on the energy deposited by spectator nucleons in the ZDC and by particles emitted at

small angles with respect to the beam axis in the ZEM. The number of spectator nucleons and, therefore,

their deposited energy decreases for more central events while the inverse is true for particles emitted

at small angles with respect to the beam axis. One can therefore define centrality cuts based on this

anti-correlation. In order to match this estimator to the standard ALICE centrality selection, the corre-

lation between the ZDC versus ZEM and VZERO signal for events near the nominal interaction point

is determined [18]. This method is only reliable in the centrality range 0–30% where the trigger is also

fully efficient; this defines the centrality range for the presented measurement. To reduce the residual

bias arising from the position of the interaction point, the ZEM signal is scaled as a function of ‘satellite’

vertex. The scaling factors are obtained by a linear fit to the ZDC versus ZEM anti-correlation. They are

found to be between 0.96 and 1.04 for vertices from −187.5cm to 225cm and about 0.86 for the farthest

vertex at 375cm.

The FMD and VZERO are used to extract the multiplicity independently in the same η acceptance. The

FMD records the energy loss of particles that traverse each silicon strip. The first step in the analysis
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is to apply a minimum cut on the measured energy to neglect strips considered to have only electronics

noise. Due to the incident angle of the particles impinging on the detector, the energy loss signal of

one particle may be spread out over more than one strip. The next step in the analysis is therefore to

cluster individual strip signals corresponding to the energy of a single particle. This is accomplished

by adding the strip signals which are below a clustering threshold to neighboring strips which have a

larger signal if one exists. The finite resolution of the FMD also allows for more than one particle to

traverse a single strip. The number of charged particles per strip is then determined using a statistical

approach where the mean number of particles per strip, µ , over a region of 256 strips (64 strips radially

× 4 strips azimuthally) is estimated assuming a Poisson distribution, such that µ =− ln(NE/NS), where

NE is the number of strips with no hits and NS is the total number of strips (256 here) in the defined

region. To get the average number of particles per hit strip, a correction of c = µ
1−e−µ is applied to each

hit strip in the region. Next, the data are corrected for the acceptance at a given interaction point, and the

inclusive charged-particle count is converted to the number of primary charged particles by means of an

interaction-point and centrality-dependent response map. These response maps are based on GEANT3

[19] Monte Carlo simulations using the HIJING event generator [20] and relate the number of generated

primary charged particles in a given (η ,ϕ) bin (bins are of size 0.05 in η and π/10 in ϕ) to the total

number of charged particles reduced by the detector efficiency in the same bin. The response maps are

highly sensitive to the accuracy of the experimental description in the simulation, and are therefore the

largest source of the systematic error on the results from the FMD.

In order to calculate the charged-particle density in the VZERO detector, the Monte Carlo simulation

described above is used to relate the observed signal to the number of primary charged particles within

the acceptance of a given VZERO ring. The relation is given by A(z, i) = α(z, i)Nch(η(z, i)), where i is

the ring index and z is the longitudinal position of the interaction point. A is the VZERO signal amplitude,

Nch is the number of primary charged particles in the VZERO ring’s acceptance from the given interaction

point, and α is the conversion factor between A and Nch determined from the Monte Carlo simulation.

In order to minimize the dependence on the simulation and perform a data-driven analysis, the VZERO

response is calibrated using reference ‘satellite’ vertices, zr, between 225cm and 375cm for which the

pseudorapidity coverage of the VZERO rings lies inside |η | < 2, i.e. overlapping the range of the SPD

at the nominal interaction point. In this way the charged-particle pseudorapidity density in a given ring

of the VZERO detector and for a given interaction point, in the range of −187.5cm ≤ z ≤ 375cm, is

obtained as:

dNVZERO
ch

dη
(η(z, i)) =

dNSPD
ch

dη
(η(zr, i))

α(zr, i)

α(z, i)

A(z, i)

A(zr, i)
,

where dNSPD
ch /dη is the charged-particle pseudorapidity density measured by the SPD, zr is the longi-

tudinal position of the reference vertex and η is the pseudorapidity corresponding to the chosen vertex

and VZERO ring. The factors α represent the full detector response including secondary particles, light

yield per particle, and electronics response of the VZERO, and are checked to be constant for the selected

range of ‘satellite’ vertices.

Finally, a small correction (up to 1%) is applied to the VZERO data points arising from a residual bias

in the method determined from Monte Carlo simulations by comparing the final reconstructed dNch/dη

distribution after combining the results from all vertices to the Monte Carlo input dNch/dη distribution.

4 Systematic errors

Table 1 summarizes the various contributions to the systematic errors for each of the three detectors

used, as well as the common contribution arising from the uncertainty in the centrality determination.

The latter is assessed by comparing the SPD results obtained with the standard approach based on the
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Table 1: List of the considered systematic errors.

Detector Source Error

Common Centrality 1–2%

Background subtraction 0.1–2%

SPD Particle composition 1%

Weak decays 1%

Extrapolation to zero momentum 2%

FMD & Material budget 4%

VZERO ZEM scaling 1–4%

Particle composition, spectra, weak decays 2%

FMD Variation of cuts 3%

Analysis method 2%

VZERO Variation between rings 3%

Calibration by SPD 3–4%

total VZERO amplitude and the ZDC versus ZEM anti-correlation. The details of Table 1 are explained

in the following paragraphs.

A related source of systematic error which affects ‘satellite’ vertices and hence only the FMD and

VZERO analyses is the uncertainty of the ZEM scaling factors. This was evaluated by varying the

ZEM scaling factors between the values obtained via a linear fit to the ZDC versus ZEM anti-correlation

and the values which give the appropriate number of events in each centrality bin (i.e. the 0–5% bin

should have the same number of events as the 5–10% bin and half the number of events of the 10–20%

and 20–30% bins) and studying the effect on the final values. The influence of the particle composi-

tion, the particle spectra and the relative fraction of weak decays of Λ and K0
s are studied by modifying

these quantities within the Monte Carlo simulation in order to match the measured particle spectra and

yields [21, 22]. The uncertainty due to the description of the material budget in the region concerned

by the analysis was estimated by varying the contribution of secondary particles from interactions in the

detector material by 10%.

For the FMD, two detector-specific contributions to the systematic error are considered. First, the noise

cut and clustering threshold, determining which strips have no or partial signals from particles, are varied

by ±10%. This was found from simulations to be the range in which the probability to identify two

particles as one and a single particle as multiple particles is minimal. The effect of these variations

on the final result is a component of the systematic error. Secondly, an alternative method is used to

determine the FMD multiplicity. The method using Poisson statistics is compared to a method using the

distributions of deposited energy in the FMD. The difference between the results obtained by the two

methods (2%) is an additional component of the systematic error.

The systematic error in the VZERO measurement stems mainly from the uncertainty of the SPD results

used to calibrate the VZERO response. The systematic error related to the SPD analysis is described

in detail in [16] and is the basis of the uncertainty on the VZERO calibration. A further contribution

to the systematic error is assessed by taking into account the variation between the results from various

VZERO rings at different ‘satellite’ vertices that cover the same or close pseudorapidity ranges.

5 Results

Fig. 2 and Fig. 3 show the resultant charged-particle pseudorapidity density from each of the three de-

tectors individually and combined, respectively. The combined distribution is computed as the average

value of dNch/dη between the various detectors weighted by the systematic errors that are not common

to the detectors (the statistical errors are negligible in comparison to the systematic errors). The error ob-
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Fig. 2: dNch/dη per centrality bin from each of the three detectors used. The error bars correspond to the total

statistical and systematic error.
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Fig. 3: Combined dNch/dη result per centrality bin. The error bars (gray boxes) show the total statistical and

systematic error of the combined result. The open squares indicate the previously published ALICE result near

mid-rapidity [16]. Published results from other LHC experiments [9, 10] which have the same centrality as the

ALICE measurement are also shown.
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tained from this weighting is then summed in quadrature with the common systematic errors. Finally, the

distribution is symmetrized around η = 0 in the range of |η |< 5 by computing the average of dNch/dη

at positive and negative η values weighted by their systematic errors. This positive–negative asymmetry

varies between 1% and 8%. The resultant distribution is in agreement with those measured by ATLAS

[10] and CMS [9]. The lines on Fig. 3 represent fits to the following function:

A1e
− η2

σ2
1 −A2e

− η2

σ2
2 ,

that is the difference of two Gaussians centered at η = 0 and having amplitudes A1, A2 and widths σ1,

σ2. For the 0–5% bin, A1 = 2102± 105, A2 = 485± 99, σ1 = 3.7± 0.1, and σ2 = 1.2± 0.2. The

values of A1/A2, σ1, and σ2 are the same for each measured centrality bin within errors. This function

describes the data well within the measured region and gives the best fit among multiple functions used

to extrapolate the distribution to ±ybeam (ybeam = 7.99 at
√

sNN = 2.76TeV) in order to obtain the total

charged-particle yield. The results of the extrapolation are summarized in Table 2 and Fig. 4. The

quoted errors include the variation of the fit parameters due to the measurement uncertainties as well as

the errors arising from the extrapolation beyond the pseudorapidity range covered by the experimental

data. The latter is estimated using four different fit functions: the Gaussian function mentioned earlier,

a trapezoidal function from [6], a function composed of a hyperbolic cosine and exponential also from

[6], as well as a Bjorken inspired function composed of a central plateau with Gaussian tails. The total

number of produced charged particles as a function of the number of participating nucleons shows a

similar behavior as at lower energies when scaled to have the same average number of charged particles

per participant (see Fig. 4).

Table 2: The number of participants
〈

Npart

〉

estimated from the Glauber model [18] and the total charged-particle

yield in the measured region (−5.0 < η < 5.5) and extrapolated to ±ybeam for different centrality fractions.

Centrality [%]
〈

Npart

〉

Nch,−5.0<η<5.5 Nch,|η |≤ybeam

0−5 382.8±3.1 14963±666 17165±772

5−10 329.7±4.6 12272±561 14099±655

10−20 260.5±4.4 9205±457 10581±535

20−30 186.4±3.9 6324±330 7278±387

In Fig. 5 we present the charged-particle pseudorapidity density per participating nucleon pair,
〈

Npart

〉

/2,

as a function of
〈

Npart

〉

for different pseudorapidity ranges. There appears to be no strong evolution in

the shape of the pseudorapidity density distribution as a function of event centrality.

We have compared our measurement to three theoretical models which predict the pseudorapidity density

– a Color Glass Condensate (CGC) based model [23, 24], the UrQMD model [25], and the AMPT model

[26] as tuned in [27]. As seen in Fig. 6, in its limited pseudorapidity range (|η | < 2) the CGC based

model has a similar shape to the measured result. The UrQMD model gives a reasonable description

of the region |η | > 4 and the shape at mid-rapidity, but is unable to describe the overall level of the

pseudorapidity density as well as most of the shape. The AMPT model does reproduce the level at

mid-rapidity as it was tuned for, but fails to reproduce the overall shape.

It is well established that up to RHIC energies the particle production in the fragmentation region is

invariant with the beam energy [28]. This phenomenon is usually referred to as longitudinal scaling and

is observed by plotting the particle yields with respect to the variable η − ybeam [29]. As it can be seen

from Fig. 7, our measurement is consistent with the validity of longitudinal scaling within the errors

arising mainly from the extrapolation of the charged-particle pseudorapidity density from the measured

region to the rapidity region of the projectile.

The number of produced charged particles per participant pair was observed to have a linear dependence
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on ln2 sNN from AGS to RHIC energies based on a trapezoidal approximation for the dNch/dη distribution

with dNch/dη at mid-rapidity increasing proportional to lnsNN [6]. Fig. 8 shows this trend together with

the present ALICE measurement. The trend does not persist to LHC energies and underpredicts the total

number of produced charged particles at
√

sNN = 2.76TeV. To test if the trapezoidal approximation for

the dNch/dη distribution is still valid using a power law scaling of the mid-rapidity dNch/dη[8], a new fit

was performed to the RHIC and ALICE data, but was found to overpredict the total number of produced

charged particles at
√

sNN = 2.76TeV. Therefore, the trapezoidal approximation does not hold to LHC

energies. Instead, a fit with a mid-rapidity dNch/dη value that scales as a power law as in [8] and extends

over an η range scaling with lnsNN gives a better general description.
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Fig. 8: Total Nch per participant pair versus ln2 sNN. Also shown (dotted line) is the fit to the AGS [30, 31], SPS

[32, 33], and RHIC [6, 11, 12] data from [6] using the trapezoidal approximation for dNch/dη and assuming that

the mid-rapidity dNch/dη scales as lnsNN. The dashed line is a fit to the RHIC and ALICE data derived using the

trapezoidal approximation, but assuming the mid-rapidity dNch/dη scales as s0.15
NN as in [8]. The full drawn line is

a fit to the RHIC and ALICE data derived assuming that dNch/dη is dominated by a flat mid-rapidity region with

a width that grows as lnsNN.

Fig. 9 shows the dNch/dy distribution versus y estimated by performing a Jacobian transformation from

η to y utilizing the measured particle ratios and pT distributions in ALICE for π±, K±, p, and p̄ at mid-

rapidity [21]. The systematic error on the estimate includes a linear softening of the pT spectra with |η |
where the 〈pT〉 at η = 3 is 0.8 of the 〈pT〉 at η = 0 corresponding to approximately twice that seen for

pions at RHIC [34]. The systematic error also includes variations in the particle yields of ±50% beyond

η = 2.5 and a linear reduction in this variance to 0 as η → 0. While the data, within systematic errors,

are consistent with a flat rapidity plateau of about ±1.5 units around y = 0, they are also well described

over the full acceptance by a wide Gaussian distribution with σ = 3.86. This width, however, is larger

than expected from Landau hydrodynamics [35, 36]. In fact, the deviation is much larger than at lower

energies (see inset in Fig. 9), suggesting a significant change in dynamics at LHC energies. Similar

observations of deviations from Landau hydrodynamics have been seen in other Pb–Pb measurements at√
sNN = 2.76TeV [37].

6 Conclusions

The charged-particle pseudorapidity density distribution has been measured in Pb–Pb collisions at
√

sNN =
2.76TeV. Results were obtained using a special sample of triggered ‘satellite’ collisions which allowed
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Fig. 9: dNch/dy distribution for the 5% most central Pb–Pb collisions. A Gaussian distribution has been fit to

the data (σ = 3.86). A Landau-Carruthers Gaussian [35] and a Landau-Wong function [36] are also shown. The

full drawn line shows a fit to the sum of two Gaussian distributions of equal widths with the means at η =±2.17

and σ = 2.6 as its area reproduces the estimated total number of charged particles. The inset shows the energy

dependence of the ratio of σ from a Gaussian fit to the expected Landau-Carruthers σ taken from [34] and extended

to
√

sNN = 2.76TeV.

for reliable multiplicity measurements in the 0–30% centrality range. The measurement was performed

in a wide pseudorapidity interval of −5.0 < η < 5.5 allowing for the first estimate of the total number

of charged particles produced at the LHC. The available theoretical predictions do not describe the data

satisfactorily although the CGC based model does well within its limited pseudorapidity range. We do

not observe a significant change in the shape of the distributions as a function of the event centrality.

Our results are compatible with the preservation of longitudinal scaling up to
√

sNN = 2.76TeV. The

scaling of total number of charged particles per participant pair with ln2 sNN does not persist to LHC

energies. The dNch/dy distribution of particles has a much larger width than that expected from Landau

hydrodynamics, showing a significant difference from lower energies suggesting a change in dynamics

at LHC energies.
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M. Botje78 , E. Botta25 , E. Braidot71 , P. Braun-Munzinger92 , M. Bregant108 , T. Breitner56 , T.A. Broker57 ,

T.A. Browning90 , M. Broz37 , R. Brun34 , E. Bruna25 ,100 , G.E. Bruno32 , D. Budnikov94 , H. Buesching57 ,

S. Bufalino25 ,100 , P. Buncic34 , O. Busch88 , Z. Buthelezi85 , D. Caffarri29 ,101 , X. Cai8 , H. Caines130 ,

E. Calvo Villar98 , P. Camerini23 , V. Canoa Roman12 , G. Cara Romeo102 , W. Carena34 , F. Carena34 ,

N. Carlin Filho115 , F. Carminati34 , A. Casanova Dı́az69 , J. Castillo Castellanos15 , J.F. Castillo Hernandez92 ,

E.A.R. Casula24 , V. Catanescu75 , C. Cavicchioli34 , C. Ceballos Sanchez10 , J. Cepila38 , P. Cerello100 ,

B. Chang43 ,132 , S. Chapeland34 , J.L. Charvet15 , S. Chattopadhyay96 , S. Chattopadhyay124 , M. Cherney82 ,

C. Cheshkov34 ,117 , B. Cheynis117 , V. Chibante Barroso34 , D.D. Chinellato118 , P. Chochula34 , M. Chojnacki77 ,

S. Choudhury124 , P. Christakoglou78 , C.H. Christensen77 , P. Christiansen33 , T. Chujo122 , S.U. Chung91 ,

C. Cicalo103 , L. Cifarelli28 ,13 , F. Cindolo102 , J. Cleymans85 , F. Colamaria32 , D. Colella32 , A. Collu24 ,

G. Conesa Balbastre68 , Z. Conesa del Valle34 ,47 , M.E. Connors130 , G. Contin23 , J.G. Contreras12 ,

T.M. Cormier128 , Y. Corrales Morales25 , P. Cortese31 , I. Cortés Maldonado3 , M.R. Cosentino71 , F. Costa34 ,

M.E. Cotallo11 , E. Crescio12 , P. Crochet67 , E. Cruz Alaniz61 , R. Cruz Albino12 , E. Cuautle60 , L. Cunqueiro69 ,

A. Dainese29 ,101 , R. Dang8 , A. Danu55 , D. Das96 , K. Das96 , S. Das5 , I. Das47 , A. Dash116 , S. Dash45 ,

S. De124 , G.O.V. de Barros115 , A. De Caro30 ,13 , G. de Cataldo105 , J. de Cuveland40 , A. De Falco24 ,

D. De Gruttola30 ,13 , H. Delagrange108 , A. Deloff74 , N. De Marco100 , E. Dénes129 , S. De Pasquale30 ,
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