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I. INTRODUCTION

Until recently the cross sections for fusion of two heavy ione have been analyzed in terms of a simple
model, where one starts with a local, one-dimensional real potential barrier formed by the nuclear and
Coulomb interactions and assumes that the absorption into the fusion channel takes place at the region inside
the barrier after the system is transmitted through. As a further approximation one replaces this barrier
by a parabola with the same height, location and curvature at the top, and varies these three parameters
to fit the cross sections. The systematics of fusion cross-sections have been studied in this way in Ref. 1.
However, a number of recent experiments have shown that the fusion cross-sections for intermediate-mass
systems below the Coulomb barrier are much larger than those expected from such a simple picture(z_s).
The inadequacy of this model for intermediate and heavy mass systems has been explicitly demonstrated by
inverting the experimental data to obtain directly the effective one-dimensional barrier.{®)

The analysis of Ref. (9) and other theoretical work(10—28) where the enhancement has been attributed to
the coupling of the relative motion to other degrees of freedom motivated this study of the multidimensional
dynamics of the barrier transmission process. Quantum tunnelling in a multidimensional dissipative system
is relevant not only to fusion and deep-inelastic reactions between heavy joms, but also to a number of
other physical phenomena. For example, dissipative quantum tunnelling is an important mechanism for a
super-conducting quantum interference device (SQUID) at low temperatures.(24)

The natural language to study multidimensional barrier penetration is the coupled channels formalism®),
In the next section we present the path integral approach to the coupled channels problem and intro-
duce the two-time influence functional. Path integral approach is especially useful for a semi-classical
analysis of our problem, which is appropriate for sufficiently massive heavy-ions. A WKB-like approxima-
tion in a similar spirit has been introduced ecarlier.(?8) In Section IIl, we explicitly calculate the two-
time infiuence functionals for three particular systems : a harmonic oseillator linearly or quadratically coupled
to the translational motion, and a spin system with (25+4-1) levels linearly coupled to the translational motion.

Soction IV includes an analysis of the transmission probability in those cases when these three internal
systems has a degenerate spectrum. We show that for all the systems considered the transmission probability
is given as an integral with appropriate weights over probabilities for transmission across frozen one-
dimensional barriers as shown in Ref.15 for the particular case of a linear coupling to a harmonic oscillator.
In Section V we study the conditions for the transmission probability to show resonant behavior.

In Section V1 we investigate the transmission probability for these particular systems in the adiabatic
lmit. We show that the total transmission probability is given as a product of the probability for transmission
across » one-dimensional effective adiabatic barrier and a dissipation factor which depends on the coupling
Hamiltonian. In Section VII we consider a model where the translational motion is linearly coupled to a
damped harmonic oscillator; study the correlation between friction coefficient and the dissipation factor, and
compare our results with previous studies. Finally Section VI includes a summary and a discussion of our
results.

II. PATH INTEGRAL APPROACH TO THE COUPLED CHANNELS PROBLEM: TWO-
TIME INFLUENCE FUNCTIONAL
The Hamiitonian of the system we want to study is

[

where R is a translational degree of freedom and Ho(g) is the Hamiltonian of the internal system coupled
to this degree of freedom. Although our motivation is to study the effects of coupling to internal degrees of



freedom on the transmission through a potential barrier in heavy-ion collisions, for the purpose of discussion
in this and nexi sections B will be taken as any translational degree of freedom and V{R) to be any potential
which decreases sufficiently rapidly for large |R|. Eventually, in order o investigate the subbarrier fusion of
two heavy ions we will specify R as the separation of their centers of mass and V{R) as the burrier formed
by the nuclear and Counlomb forces. Nevertheless, the formalism developed here will apply in most cases.

We assume that the eigenvalues and eigenstates of the internal Hamiltonian Hy(g) are known and
Hin{g, R) vanishes except when £y <E<R;. Hence for R >R; and R <Ry, the internal system Hy(g) has
well-defined initial and final states with energies ¢; and €7, characterized by the two sets of guantum pumbers
{n:} and {n;}, respectively. In the cases where we calculate only an inclusive probability and sum over all
final states, we can relax the condition above and let Hin,(gq, R) be non-zero for R<Ry |

We want to calculate first the amplitude for transition from an initial state characterized by R; and n;
to the final state characterized by Ry and ny at a given energy. Starting from the expression which reiates
Green’s function and the T-operator(??)

G*(E) = G (E) + GF (B)T(E)GY (E), (2.2)
where G (E) and G+(E) are the unperturbed nnd total Green's functions respectively, one can identily the
S-matrix elements as (28)

PPAY T4
Snyni{E) =~ lim (wi) ex [ﬁ PR -—P-R.-]
nf;l‘la( ) RIE‘:':;} ”2 p ﬁ( f f 1 ) {23}
X (By ng|GF(E)R:, ny),
where
P: = P{R)=12u(E — ¢; — V{R)E. (2.4)
The (-matrix elements ean ba written as
o5 +.‘E.I:
{Ry,np |G (B)R; mi) = /G dTe ¥ K(Ryng,T; Rini,0), {2.5)
where
+ oo
KRy, ny, T R0y, 0) = f daidgs(Ry, ng|Ry, q5) (2.6)
B
X {Rf} q9r ia{Tx Q)ER;, q&}{Ri, Qt'_%Ris ﬂl‘)*
The middle term in the integra! {2.8) can be expressed as the path integral
1Sm(9‘,R;T)
Ry, 51007, O)1Rev0) = [ DIRYDIa(ole , 22)

where the integral is over all paths which satisfy the boundary conditions gp = ¢(T"), ¢; == ¢{0), Ry = R(T)
and Ky = R{0). In Eq. (2.7} the total action is a sum of three parts:

T
Sl BiT) = [ deLR) + Lo(d) + Linela, ) 8)
= §(R,T) + Solg, T) + Sim{a, B; T),



where

1
Li(R) == EﬂRQ — V(R). (2.9)
In order to calculate the path integrals in Eq. {2.7) we first pick a particular path R(t), do sll integrals
over all paths g(t) keeping R(t) fixed, and repest this procedure for all paths R(2):

48.(R,T) [So(a. T)+81ac (g B TH
el oiroa = [ oimied™ ™" [ piteped (2.19)

The second path integral in Eq. {2.10) is then the propagator for the internal system to propagate from the
initial position g = ¢; at time ¢t = 0 to the final position g = g7 at time t = T under the influence of
an external time-dependent interaction Hini{g, R) which vanishes outside the period 0<t<T. Inserting Eq.
(2.10) into Eq. (2.8) we get

L8,(R,T)
I w"!-"i[R(t);Trolr (2.11}

K(R.f’ nt, T; Rl'rni':o) = f D[R(t)]e
" where we denoted the transition amplitude for the internal system as

We, . [R(E) T, 0] = {n A U(B{); T, 0)Ind), (2.12)

where U satisfies the differential equation
aU ,
il T [Ho + Hinv(g, RV, (2.13)

subject to the boundary condition Ut=10)=1.
A quantity of interest in heavy-ion physics is the inclusive transmission probability, P(E), i.e. the total
probability that the internal system emerges in any final state. We have

P(E)= 2 ]thm(E)F; (2.14)

np==0

substituting Bqgs. (2.3), (2.5) and (2.11) into (2.14) we get

) N3 igT Vi . —LET
P(E)= lim (&?) f dTef f dfe #
Bt M % b (2.15)

leg[R.T]—S.(h.i')]

X f DIR(EPIRE)e pu(RE, T; R(1), T),

where we defined the two — time tn fluence Junctional, ppm, 88

or (B, T3 R, T) = 30 Wiy (RO T,0 Wi [RE); T, 0L (2.16)
ny

Tn writing Eqs. (2.15) and (2.18), we assumed that energy dissipated to the internal system is small as
compared to the total energy, and took Py outside the summation over final states. Note that one can repeal
the same steps as above when Hini(q, R)#£0 for R<Ry . In such cases the sum over all final states ny should
be replaced by an integral over all final coordinates qy.
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Influence functionals were originally introduced by Feynman(®*" to provide a convenient deseription
of systems interacting with their environment. However, Feynman is interested in calculating the transition
probability during a given iime interval, rather than the transition probability for a given energy, IG(E)]?.
Hence in his definition there is only one time variable and both B and R are the functions of the same
variable. Nuclear physice applications of the influence functionals defined in this way have been extensively
investigated(®®:3!), Since the expression defined by Eq. (2.10) is & generalization to the case when there are
two independent time variables of Feynman’s original expression, we call it the two-time influence functional,
Of course, the two-time influence functional calculated for any internal system can be reduced to the ordinary
influence functional by setting 7 = T. Consequently, the two-time influence functionals we calculate in the
nex! section can also be used as ordinary influence functionals in other contexts.

We note that Eq. {2.15) is an ezact expression for the inclusive transmission probability. As long a8 no
semi-classieal (i.e. stationary phase or saddle point} approximations are invoked, all time and path integrals
are exact, hence both T and T are real. When such approximations are done for the {ime integrals, both T
and 7' will remain real for classically allowed regions, but they will become pure imaginary for clazsically
forbidden regions. For the latier cases the real time influence functional in Eq. {2.15) would be replaced by the
tmaginary-time influence functional’”. We defer the discussion of the imaginary-time influence functionals to
a {forthcoming publication. However, if we specify V{R) to be a potential barrier and can somehow calculate
Eq. (2.15) exactly, without invoking auny such approximations, we should keep both T and 7" real {see Section
v).

If the interaction ferm Hiq{g, R) is zero at ail times, the infinence functional is identially 1, hence the
internal and translational degrees of freedom decouple. If we further take V(R) as a potential barrier, then
Eq. {2.15) gives the transmission probability of a single particle:

iE (r-7
P(E) = lim (P Ly ) f dTdTef / DIRWDIRD)
Ri—o0

Ry——oo (217)
iist(RlTi"’“si(&ﬂ?ﬂ

b 4 el .

Especislly when the potential barrier has the same topological structure as a quadratic function, Eq. {2. 17)

can be calculated®® in a uniform approximation with proper trestment of the multiple reBections under

the barrier to obtain the usual WKB expression for penetrability:

rs -1
P(E, V(R) = [1 +exp(2 f \ [%%(V(r) - E})} . {2.18)

Eq. {2.18) is volid uniformly from below to the above of the barrier.

. EXACT CALCULATION OF THE TWO-TIME INFLUENCE FUNCTIONAL FOR
PARTICULAR SYSTEMS:

Using Eq. (2.12) and the completeness of final states, the two-time influence functional, Eq. {2.16) can
be rewritten as

M B, TR0, T) = (0" (B T, 000 (RE); T, 0)jna), 3.
where the operator I/ satisfies the equation

ol

at IHO + ﬁmt (Q; ( ))Ifj! (32’3)



with the initial condition
U(R(2);0,0) = 1. (3.20)

We wish to catalogue all those systems for which the two-time influence functionals can be calculated exactly.

Exact solutions of Eq. (3.1) can be obtained when Ho + Hiy can be expressed a a linear combination of
the generators of a given group. For such cases U defined by Eq. (3.2) will be an element of this group®?).
Consequently for these systems the two-time influence functional, given by Eq. (3.1) is a particular diagonal
matrix element of the group in the appropriate representation. Furthermore, one can add various Casimir
operators of the group to Ho + Hin, and still calculate Eq. (3.1) exactly.

In this section, we calculate Eq. (3.1) for three simplest cases, where we take the interaction term to
be separable, i.e. Hin.{q, R) = f(R)g(q). These systems are an harmonic oscillator, linearly or quadratically
coupled to a translational coordinate and a system with finite number of equidistant energy levels. Of course
using groups other than those studied in this section, it is possible to formulate Hamiltonians which could
model more complicated phenomena, but here we restrict ourselves to the simplest cases to illustrate our
method.

a) Harmonie oscillator linearly coupled to the translational motion 3

In this case the internal system is a harmonic oscillator

2 g2

BLAUNE o (3.3)

ﬁa(?)=—§“’;aqg g MWo

and the interaction term is taken to be
Hint(QsR) = f(R]Q: (3'4)

where f(R) is a real function of R. Introducing the creation and anaihilation operators a and a' for the
harmonic oscillator we can write the above Hamiltonian as

Ho + Bin = (ata+ 3) pun + a0 (R)(a + o), (35)

where ag is the amplitude of the zero point motion of the harmonic oscillator and is given by
a0 =y s (3.6)

The Hamiltonian (3.5) is now written as a linear combination of the generators of the Weyl group 3%): ata, a,
at and J. The resulting two-time influence functional, assuming that the oscillator is initially in the ground
state, is

T t
pu (R, Ti R, T) = &7~ Dexp _i;-§- of dtof da (RS (R(s))e™ ="

+

Sy

at [ do RN FERe ) (37)
0

T

T
—gtwo(T—T) f dtf(R(t))e ! f ds f{R(s))e— ™"
0 0



For T = .’f', this is the influence functional originally calculated by Feynman(®®),
b) Harmonle oscillator quadratically coupled to the translational motion :
We again take the internal system to be a harmonic oscillator given by Eq. (3.3) and the interaction
term as .
Eint(Q1 R) = h(R)qzs (3'8)
where h(R)J is another, arbitrary real function of B which vanishes as |R|—00. In terms of the creation and
annihilation operators we then have

N 1
Ho+ Hyy = (aa + 5) bwo + olh(R){a'*a + aa + 2a%a + 1}. (3.9)

Iniroducing the three generators of the non-compact group SU(1,1) asl33)

K, = %a’ra'f, {3.104)
K= %aa, (3.108)
Ky = %(a*a + %), {3.10¢)
Eq. (3.9) takes the form
ﬂo + fnfim =2 hwo Ky + 20§h(R)[K+ + K. 4+ 2K,). (3.11)
The solution of Eq. (3.2) is given as
U = exp(—ig Ko)exp(s K. Jexp{Kolog(l — f¢I?)jexp(—¢* K_), (3.12)
where
¢(R(£); 1) = 2(R(t); t)e (R, (3.13)
and z and ¢ satisfy the following equations :
dz h(R(¢)) 2
i = 2wpz + o, (2 + 1)%, (8.14)
and d, 2h(R(t h{R(t
b — 2wy + (®)) , A ())(z+z'), (3.15)

E - mig miy
respectively with the initial conditions 2(t = 0) = 0 and ¢{t = 0) = 0. Inserting Eq. (3.12) into Eq. (3.1),
and assuming again that the oscillator is initially in the ground state, we obtain the two-time influence

functional as $UR)—b(R)] o0 ot
el (1~ [=(R)])¢ (1 — |=(R)[*)3

[1 - 2*(R)2(R))4
where $(R)[¢(R)] and #(R)[2(R)] are solutions of Egs. (3.15) and (3.14) respectively when t = T[T,

The quantum tunneling problem for the Hamiltonian (3.9), where the function A(R) is taken to be a
Gaussian, has beer previously discussed as a model for nuclear fisgion(®4),

pm(RE), T; R(1), T) = , (3.16)



¢) Linear coupling to a system with finite number of equidistant energy levelss
We consider a simple system with equidistant (25 + 1)-energy levels:

Ha "—=wnJ,, (3.17)
coupled to a translational degree of freedom as
Hiny, = 20(R)J,, (3.18)

where J, and J, are the SU(2) generators in the (27 + 1)-dimensional representation and A(R) is a real
function of 2. One can think of this system, for example, as a two-level Lipkin-Meshov-Glick system{3%) with
no self-interactions, where transitions between two levels are caused only by the coupling to the external
degree of freedom. Of course Eqgs. (3.17) and (3.18) ean be used to model any system with equidistant energy
levels whatever the underlying dynamics might be. The solution of Eq. (3.2) is

U= exp(~%’2J,)exp(z%)exp[—%]og(l + |r|2)]exp(-—r.—;:), (3.19)
where
r(R(t); ) = y(R(t); t)e e (FURY), (8.20)
and y and @ satisfy the equations
% — oy + BRON - ) (3.21)
and do .
= =wo— ARON +v), (8.22)

respectively with the initial conditions y(t = 0) == 0 and (¢ = 0) = 0. Again assuming that the system
described by Hy is initially in the ground state, we get the two-time influence funcitional as

e—tile(R—etRI{] 4 " (R)y(R)|Z

MG BEDD = BRI + Ry

, (3.23)

where o{R)[w(R)] and y(R){y(R)] are solutions of Egs. (3.22) and (3.21) respectively when ¢t = T(7).

The reader would observe the similarities beiween Eq. (3.16) and Eq. (3.23). This is because the relevant
group representations can be obtained by a proper analylic continuation of SU(1,1) to SU(2)(%%) and the
appropriate representations of SU(1,1) for transitions from the ground state of the oscillator are the discrete
series(3?) with the quantum number k = 1.

A two level version of the model defined by Eqs. (3.17) and {3.18) has been discussed previously by one
of us®"} to investigate barrier-top resonances, a topic which we will discuss in Section V.

IV. DEGENERATE SPECTRUM RESULTS

Our aim is to calculate Eq. {2.18) with the expressions we derived in section III for the two-time influence
functional. We might choose to calculate it by invoking saddle point or uniform approximations, or exactly,
maybe numerically. The former is more convenient whenever we have an explicit expression for the influence
functional, such as Eq. (3.7). On the contrary, some influence functionals we derived are expressed in terms
of solutions of given Riccati-type differential equations, which, in general, cannot be solved analytically.
For numerical investigatons, this should not pose any problem. However, when we want to do analytical



approximations for the integrals in Eq. (2.15), we also need analytical, but approximate solutions of these
differentia! equations.

There is yet a limit in which we can obtain exact expressions for the penetrability. This is the limit where
the internal system has a degenerate energy spectrum. To achieve this limit, for the harmonic oscillator we
let wo—0 and the mass parameter of the oscillator, m— oo, keeping af~1/muwy fixed. For the system with
s finite number of energy levels we simply let wo—0. We will now study these cases separately:

a) Harmonic oscillator linearly coupled to a translational motion

For the limit discussed above, Eq. (3.7} takes the form

T T 2
- ~ 2 -
et 750, 7) = exod =28 [ ey~ [ aopiio| § (4.1)
K3 b
Woe can linearize the exponent using the formula
“+ oo
f dze=(02"+be) \/Ee%. (4.2)
a
The result reads,
.. 1 Vi 1 a3 —"‘}‘[f: dtf(R(f))—f: def(R(s))
oum(B(s), T, R(t), T) = f doe 3(&) ¢ : (4.3)
&g 2x —o0
Finally inserting Eq. (4.3) into Eq. (3.15) we get the inclusive transmission probability as
+co
P(E)= 1 f dee 3! i (&;’—)
ooV 2r ,;f‘_:’fgo w
(4.4)

o0 i it v
X f arel f DIR()]ef Jo ik viRi=arim)
0

Note that the expression in the curly brackets in Eq, {4.4) is the exact expression for the transmission
probability of a single particle of mass u across the potential barrier V(R) + af(R), as given in Eq. (2.17).
Consequently, we can write Eq. (4.4) in the form(!%)

+o0
P(E) = L. / dze™ ¥ Py(E, V(R) + 20 [(R)). (4.5)
2r "
Eq. (4.5) is an average with the probability distribution of an oscillator ground-state representing zero-point
fluctuations(1?),
b) Harmoniec oscillator quadratically coupled to a translational motion :
In the limit wo—0, m— o0 with muwy = fixed, the differential equations (3.14) and (3.15) can be solved
analytically, yielding
-3

2i0d

T T
om{R(s), T, R(8), T) = {14 ° i nf h(R(t))dt — of hR(s))ds]} . (4.8)



Again using Eq. (4.2), we can write Eq. (4.8) a8

21.0:0:.:

pM(ﬁ(a),T;R(t],T)-———\;—;—. f dze™* exp -

f h(R(t))dt — f MR(s)ds]}.  (a7)

Inserting Eq. (4.7) into Eq. (2.15) and following the saine sieps as above we get for the inclusive transmission
probability

PE) = f dze=F Py(E, V(R) + t2a2h(R)). (4.8)
2

This is again the zero point motion formula of Ref. 10.
¢) Harmonic osclllator both linearly and quadratically coupled to a translational motion :
We can zlso easily study the system

Boaz 1
-g(l + -ﬁint E“_a—g' + m’“’ 92 + f(R)g + h(R)qzs (4.9)

in the limit wp-—0, m—o0, with mwy = fixed. The corresponding solution of Eq. {3.2) is given as

ﬁ=exp{-—%ﬂfn ao f(R(2))dt — —Nf 2h(R(t))dt} (4.10)

with

M =ca+a,
N=K,+K_.+2K,.

Inserting Eq. (4.10) into Eq. (3.1) we obtain the two-time influence functional as

-4

203

pra(Rle), B ), ) = |14 28 [ BR(E))dt f w(R(a)d

T T
2iad "
X exp ————[/ J(R(t)dt — f f(R(a))da] 1+ Iie ;[h(R(t)dt—ofh(R(s))ds
(4.11)
Using Eq. (4.2), we can write Eq. (4.11) as
# = 1 ¥ ’ 2z2ad| [T T
ou(B(8), T; R(), T} = = dze™* exp{—- : 0[ j; R{(R(2))dt — fa h(R(a))da]}
(4.12)

—iv2apz T T -



Finally substituting Eq. (4.12) into Eq. (2.16) and following the same steps as in subsection IV .a, one obtains
the inclusive transmission probability as

. +co 3 .
P(E)= —‘/;—_w [_ . d:ce—‘-‘Po(E,V(RHma J(R) + 2203 h(R)). (4.13)

Note that Eq. (4.13) reduces to Eqga. (4.5) and (4.8) in the limits f(R)—0 and h(R)-—0 respectively, as it
should.

We can also study a system where internal system is a harmonic oscillator and H;, (g, R) = Vin(q, R)

i8 an arbitrary function of ¢ and R. Expanding Vin:(g, R) in a Taylor series around ¢ = 0

Vine 1 82Viny a2
Vlnt(q; R) mt(q =0, R) + BITL_UQ' -+ a1 aq2 q...oq -+ .. (414)
and following similar steps leading to Eq. {4.13} we obtain
1 +o0 .
P(E) = —— f dze” T Po(E, V(R) + Vins(aoz, R)). (4.15)
Vi2n Yoo

A model where Vi, is taken to be a surface-surface interaction between heavy ions, has been studied by
Esbensen, Wu and Bertsch(1®),

d) Linear coupling to a system with finite number of equidistant levels:

In the limit wp—0, the differential equations (3.21) and {3.22) can be solved analytically yielding

~ [ . T i‘ -~
pM(R(s),T;R(t),T)=c052’[/; ﬂ(R(t))dt~f0 ﬁ(ff(s))ds]

; (4.18)
~ v Z k'((zj)'k)l {_‘ 7 f BB )dt“/; ﬂ(é(ﬂ))d*‘”
Consequently, substitution of Eq. (4.18) into Eq. (2.15) gives
PB) = 5 Yo s g5 FoE V(R)+ 205~ K) B(R) (t.17)

(4.17) is a direct generalization of the two level system{37). In Appendix A, we derive Eq.(4.17) by a direct
diagonalization method of the Hamiltonian.

Eqs. (4.5), (4.8), (4.13) and (4.17) are exact results for the inclusive transmission probability as long
as Po{E, Vere(R)) is calculated exactly. One may also choose to calculate Py in the uniform approximation,
using Eq. (2.18).

Our results show that in the degenerate spectrum limit, the potential barrier is renormalized by an
amount determined by the coupling form factor and auxiliary variables {the continuous variable z in Eq.
(4.15) and the discrete variable £ in Eq. {4.17). In order to gel the final result for the inclusive transmission
probability, we have to multlply the transmission probability from the effective, renormalized potential with
a weight function, e~ 4 or ( ’) representing the probability of having a particular renormalization, i.e. &
particular value of the auxiliary variable. We have also shown that in this particular limit it is appropriate
to average over probabilities rather than amplitudes, hence Esbensen’s zero-point motion prescription{!®)
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becomes exact. Eq. (4.5) was originally obtained by Jacobs and Smilansky(!®). Our results, Egs. (4.8), (4.13),
(4.15) and (4.17), confirm and generalize their conclusions. We also note that in this limit, there is no energy
dissipation, since the internal spectrum is degencrate,

In Figures 1-3, we show how the inclusive transmission probability changes as a function of the strength
of the coupling form factor for linear and quadratic coupling to a harmonic oscillator with a degenerate
spectrum. We have taken both the potential barrier and coupling form factor to be of the Eckart type, so the
results shown are exact. The barrier plotted in Fig. 1 is given by V(R) = Vo /Cosh*R with Vg = 10MeV
and b = 1fm™1. The coupling form factors in Figs. 2 and 3 are given by f(R) = Jo/Cosh?bR and h(R) =
ho/Cosh®bR respectively with the coupling strengths shown. We observe that, in the harmonic oscillator
case for a linear coupling, irrespective of the sign of the coupling strength, the penetrability decreases above
the barrier as compared to the decoupled case, but increases below the barrier. This confirms the previous
results(1912) For a quadratic coupling, however, the penetrability decreases for positive coupling strength,
but increases for negative coupling strength at ell energies. The opposite limit wp—voo gives similar results!?)
(See Section VI). We therefore expect that the situation will be similar for finite wo. Consequently, one has to
be careful in studying models of the kind as in Eq. (4.14) where the sign of %3# might make a considerable
difference.

In Fig.4 we plot the transmission probabilily when the internal system is the spin system with a
degenerate spectrum defined by Eqs. (3.17) and (3.18). The coupling form factor is taken to be f(R) =
Po/Cosh*bR with ffo = 5MeV. Transmission probability shows a trend similar to the case of linear
coupling to a harmonic oscillator. Furthermore, the decrease above the barrier and the increase below the
barrier are more pronounced as the number of levels increases.

For general values of wp, one needs either numerical analysis, or further approximations such as the
perturbative solutions of the Riccati equations with respect to wo. These topics will be treated in forthcoming
articles.

I.et us assume that the cross-section for the fusion of two heavy-ions at a center-of-mass energy K is

given by a sum over all partial waves :

o= o (4.18)

with
= 1‘1"’12—(2; 1)PO(E, V(R) (4.19
o = 2}1E + ) ' . )

where PU(E) is the transmission probability for the I-th partial wave. For the case of an internal oscillator
degree of freedom with a degenerate spectrum coupled to the center-of-mass motion, using Eq.(4.15), Eq.(4.18)
can be rewritten as

B x T i vl
oy = m\/-z-(ﬂ—f- 1)/:00 dze~ 5 Py (E,Vii(R, 2)), {(1.20)
where .
V(R 2) =V (R) + E—%gk%l) + Vins (@02, R). (4.21)

Let us further assume that the series expansion Eq.(4.14) can be truncated after the first order term in q.
Since linear coupling decreases transmission for energies above the barrier, but increases it for energies below
the barrier, if E is larger than the s-wave barrier height, oy given in £q.(4.20) will be depleted for lower
partial waves, but enhanced for higher partial waves, as shown in the lower portion of Fig. 5. If E is below
the s-wave barrier height, oy will be enhanced for all values of {, as shown in the upper portion of Fig. 5.
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One might be able to atudy this effect of the linear coupling on the angular momentum distribution of the
fusion cross section by examining the gamma-ray multiplicities in the decay of the compound nucleus®?).
V. RESONANCES IN THE INCLUSIVE TRANSMISSION PROBABILITY

The coupling functions #{R) in Eq. (3.18) and f(R) and h(R) in Eq. (4.9) can be general as far as
they asymptotically varish. If these functions have bound-state solutions separately, then the transmission
probability and consequently fusion cross-section would show resonant behaviour. As a particular model we
will consider the degenerate spin system studied in the previous section where we take

B(R) = \5(R — Rp), (5.1)

where Rp is the barrier top position for the potential V(R).

For the degenerate spectrum case we have to calculate transmission probabilities for the potential
V(R) + 2(5.— k)M6(R — Rp) as shown in Eq. (4.17). Assuming that the potential V(R) is parabolic, the
transmission amplitude can be calculated by the method of comparison function(®8) to be

1
= .
T+ of(£, &) ¢2)
where £ is the bare transmission amplitude through the potential barrier V(R) and is given by
$mm 1 es'a.rgl"(%+|'€]‘ (5‘3)

V14 e2ré

¢ in the above equations is the action integral between two turning points of the potential barrier, i.e.

R Ry -
£ = %fﬂ \/%(E - V(R))dR. (5.4)

The quantities v and f are given by

._3 _}
v=2G-# k() (5.5)
where
ey
1= _p , (5.6)
and T +if)
— Hirily
J(E,€)=¢ M (8.7

Whenever A5 — k) is negative, the transmission probability will show a resonance peak at the energies where

the condition
1= —pRef(£, &) {(5.8)

is satisfied. We call this a barrier-top resonance. A plot of the real and imaginary parts of f(£, &) is given in
Fig. 6. Note that £ decreases as E increases. Hence the figure indicates that the width of the resonance gets
larger as the resonance energy increases. Since there is one-bound state in the one-dimensional delta function
potential well, there will be one barrier-top resonance for each negative value of A(7 — k). However, some of
these values might not satisfy the condition giver in Eq. (5.8), especially at higher energies. Therefore, since
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0<k <27, in the {ransmission probability we expect at most [g’%l] resonance peaks for a given value of A,

{ | being the Gauss symbol. In fig. 7 we plot the penstration probability for several different values of j.
V1. TRANSMISSION PROBABILITY IN THE ADIABATIC LIMIT

In this section, we study the transmission probability in the limit where the energy quantum of the
internal motion, we, is very large. This is the adiabatic case, i.e. the internal system remains in the initial
state. Hence the two-time influence functional will be well approximated by

pm(BE), T R(8), T) m Wo, i [REY; T, 0) W, m, [RAE); T, 0], (8.1)

Note that W, n, is the unique matrix element of the Green’s function which appears in studying microscopic
foundation of the optical potential by means of the path integral method(3®). Therefore, Fq.(6.1) means
to approximate the adiabatic influence functional by the influence functional for elastic scattering. In the
following, we successively deal with those three cases which have been considered in Sects. III and IV.
a) Linear coupling to a harmonie osclllator ¢

The corresponding effective Hamiltonian for the internal motion is given by Eq.(3.5), where R is a given
time-dependent c-number path R(t). The Green’s function I is then given by

DR 1,0 = ¢ F e D(1(un; ), (6.2)
where ) "
a(a0) = 5 [t [ o rre) s (Reeinantes —ta), (0.3
D(z) = or'—7"2, (6.4)
and . .
How )= =222 [ e pesnnan, (65)

The operator D(z) is the displacement operator, which generates the coherent state |z}, defined by{4%),
alt)e = 2l2)e. (6.6)

Assuming that the oscillator degree of freedom is initially in the ground state, i.e. n; = 0, Eqs.(6.2)
through (6.5) yield

i T
Woo = 8zp|i—ﬁ- /; W(R(t);t)dt], (6.7)
where \ X
W(R(t); 1) = %ﬁwo - if‘-’f F(R(E) fo J(R(ty))etwolt=tdgy, (6.8)

On the other hand Egs.(2.15),(8.1) and {6.7) lead to

= 2
) igT 18, {R,T)
P(E)= lim (’_JL’;!) f dTe¥ f DIR(t))ef ) (.9)
Rf‘—-:’—?ooo p 0
where
Surr(R, T) == Sy(R, T) + 65:(R, T), (6.10)
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with r
5S8R, T) == — /(; W{R(t); t)dt. (6.11)

Integrating the time integral in Eq.(6.8) by parts repeatedly we can write the influence potential as

WIRG) ) = § huo — 13- 7(R(0) 3 Au()

ru-U (3.12)
a ""Wﬂt
+ paf(R(H)e Z:OA“(O),
h
where Alt) = ( i )“ " f(R(t)) (6.13)
nit) = wo din ‘ '

Eqs.(6.12) and (6.13) give the influence potential exactly for all possible coupling form factors. Assuming
J(R;) = J(R(t == 0)) = 0 2s we did before, we can drop the last term in Eq.(6.12). Furthermore, since in the
adiabatic limit w is large enough, we can truncate the series in Eq.(8.12} after the second term and obtain
the adiabatic influence functional as

1 2 df dR
WURE, 0 = 5 buo — FL IR - 258 @S2 4 o L (6.14)
Hence the additional term in the action, §§ of Eq.(8.11), due to adiabatic coupling is given by
b5 -3 ﬁw0T+ 2ﬁ gAfQ ﬂ f dt[f{R)]?, (8.15)
where
Aff = AR(T)) ~ FA(R(0) = I*(Ry) - FP(R)) = f*(Ry). (6.18)

Finally inserting Eqs.(8.15) and (6.18) into Eqs.(6.9) and (6.10), we get the following expression for the
transmission probability :

]
. 7 4= Fuolr —(“ fum)
P(E)= lim (iéi)f oo
Jiee \ M

- (6.17)
/ oieloxp [ a i - ViR + S o)
1]

Since white doing the time and path integrals we keep Ry fixed, we can take the term including Ry in the
above expression outside all the integrals. The result reads

P(E) ._e[ ( womr))
(6.18)

where f(R;) is the limiting value of f(R) as R~ --00. In those cases where f (R} does rot have an asymptotic
value , By should be chosen on the basis of appropriate physical considerations. Most of the time it is sufficient

. 2

, L(E~% fwe)T f d‘[“'#R‘—'V(R}'f—Lf (R)
lim (f!—’;i) fd 45 fD[R(t / ,
1]

Ri~+oco
Ry——oco #
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to take Ry to be the point where the tunneling process is completed. In any case, f(Ry) in the expression
above should be computed at the same point as the one used to calculate the path integral, for example, by
the uniform approximation as in Ref. 32, Note that the expression in curly brackets in Eq.(8.18) is the exact
expression for the transmission probability of a single particle of mass p and energy E — 1 fwp across the
one-dimensional adiabatic potential barrier '

P
o
Vada{R) = V(R) — =L 1%(R). {6.19)

fwo
Eq.(8.18) is valid at all energies, both below and above the barrier. If it cannot be calculated exactly, one
can employ the uniform approximation as given in Eq.{2.18). The final result for the adiabatic {ransmission

probability for the linear coupling to an oscillator degree of freedom reads as
P(E) 2 P,,d(E).PD, (6.20)

where

1 af .
Paa(E) = Po(E —- Eﬁwo,V(R) - ——,mof (R)), (8.21)
and

Pp = exp[—(;:]—o (R;))z]. (6.22)

For energies well below the barrier Eqgs.(6.20), (6.21), and (6.22) agree with the result obtained in Ref, 28
based on an extended WKB approximation, and in Ref. 17 by studying the imaginary time propagator. In
contrast to Refs. 17 and 28, however, the results given here are valid at ail energies from below to the above
of the barrier. Furthermore, we have explicitly used the fact that the coupling form factor is of finite range.
In heavy-ion collisions, f2(Ry) is considerably larger than f%(R;) for a realistic coupling Hamiltonian(#?),
which justifies our assumption. The factor Pp corresponds to the dissipation factor in Ref. 17. In fact, as
mentioned above, Pp < 1 for heavy-ion collisions. However, the dissipation effect is much smaller than the
potential renormalization effect in the adiabatic limit(17),
b) Quadratic coupling to a harmonic osclllator :

In this case, the Green’s function for the internal motion is given by Eq. (3.12). Again assuming that
the oscillator remains in the ground state, the matrix element Woo of Eq.(2.12) is given by

{ .

WoolIe(07,0] = exp| 56 + ip)|. (6.23)

where
p = log(1 - {2[). (6.24)
The quantity (¢ +1p) can be retated to the frequency of the harmonic oscillator and the coupling form factor
by using Eqs.(3.14} and (3.15). The result reads,
I

The matrix element Wyo thus takes the standart form expressed as in Eq. (6.7), where the influence potential
is given by

T
¢ +ip = 2w T + /0 h(R())[2(R(E); £) + 1)dt. (6.25)

WIR():0) = 5 huo + o3h(R()I2(R(E); ) + 1) (6.26)
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Since we are considering the adiabatic limit, we determine the functional z(R(t}); t) by solving Eq.(3.14) up
to the second order with respect to the strength of the coupling form factor divided by wo. Substituting this
result into Eq.(8.26) one obtains the influence potential as

W(R(1);t) = %ﬁwo +adh(R)(1 - ﬁ h(R) + (,,200)2 ;;2(12)} (6.27)
sad dh dR 1 '
._u: WR)m & O(W—S)-

Substituting Eq.(8.27) into Egs. (6.9), (6.10), and (6.11} and following the same steps as in the previous
subsection, one obtains the adiabatic transmission probability for a quadratic coupling to an oscillator degree
of freedom as

P(E) m2 Ppy(E).Pp, (6.28)
where ]
P(E) = Fy(E - 3 f wo, Vaa(R)), (8.29)
2
Pp= exp[—-;—(ﬁ—aj—gh(Rf)) ] (6.30)
wnd _ 2 of 20‘3 2
Vad(R) = V(R) + aoh(R){l -~ Ew—oh(R) + (Fwo)? h (R)], (6.31)

where h(Ry) is the limiting value of A(R) a8 Ry~ — 0.

The adiabatic potential given by Eq.(8.31) agrees with that obtained in Ref. 17, where one uses the
imaginary time propagator. The present work is superior to Ref. 17 in two respects. The dissipation factor has
been explicitly obtained. Also, the present result is true for all energies, since one can calculate Eq.(6,20) in a
uniform approximation. Note that, as we have already pointed out in Sect. IV, the potential renormalization
depends crucially on the sign of the coupling form factor in the adiabatic limit as well as in the degenerate
limit.

c) Linear coupling to a spin system 1

In this case we want to calculate

Woo = (5, —5107, -3). (6.32)
Using Eq.(3.19) we obtain
Woo R(t); T, 0] = ¥le+ix), (6.33)
where
x = log(1+ [r[?). (8.34)

The quantity (p + €x) can be related to the level spacing and the coupling form factor by using Egs.( 3.21)
and (3.22). The result reads,

T
o+ix=[ k- 28(ROWR(); Dlds (6.35)

The matrix element Wpo thus takes the standart form in this problem as well, where the influence potential

is given by
W(R(2);8) = —5 fwo + 25 f B(R(E)y(R(2); 1). (6.36)
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Similarly to the previous subsection, we determine the functional y(R(t);t) by solving Eq.(3.21) up to the
lowest order with respect to the strength of the coupling form factor. This gives us

y(R(t);t) = —i _/0 dty (Rt )~ on (=), (6.37)

Integrating Eq.(6.37) by parts twice and keeping terms up to second order in -L ' we obtain the influence

wot
potential as

. . 1 i df dR
W =~ b + 23 RN - L pR0) - g 20 % (6.58)
Finally the adiabatic transmission probability for the linear coupling to a spin system becomes
P{E) rs P,4(E).Pp, (6.39)
where
Ppa(E} = Py(E + j fwo, Vaa(R)), (6.40)
2
Pp == exp{—2j(w) ] (B.41)
Wo
and Y
Va(®) = v(R) - L pm), (8.42)

where B(R;) is the limiting value of A(R) as Ry— — 00. Note that the potential renormalization gets larger
and the dissipative factor gets smaller as the number of levels increases.
VII. CORRELATION TO A FRICTION COEFFICIENT

Caldeira and Leggett(‘“} have considered a quantum system which can tunnel out of a metastable
state and whose interaction with the environment is adequately described in the classically accessible region
by a phenomenological friction coefficient 5. They have assumed that the environment is represented as
an aggregation of harmonic oscillators and that the coupling Hamiltonian is linear with respect to the
coordinates of both the quantum system and the harmonic oscillators. They have thus argued that the
tunneling probability is multiplied by a dissipation factor, which is related to n such that

Pp = ¢~ ANARY/E, (7.1)

where AR is the distance under the barrier and A is a numerical factor which is generally of order of unity.
In order to see if the present approach leads to a similar result in the situations appropriate to heavy-
ion collisions, we consider a model, where the translational motion directly couples to a collective harmonic
oscillator which further couples with many other non-collective harmonic oscillators ( see Appendix B ). This
model will mimie the nuclear response when a giant resonance state is excited in heavy-ion collisions!4?),
Furthermore, the average trajectory of the translational motion in the classically accessible region obeys a

Markovian equation of the type assumed in Ref. 40, i.e.
it = — &Y _ ph 4 plind)p), (7.2)

dRr

if the coupling between the collective and the non-collective harmonic oscillators is strong enough { see Eq.
(B.25) ). In Eq. (7.2), FUn4)(R) is the conservative force induced by the coupling. In a similar way to the
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previous section, we consider the adiabatic limit, where the dissipation effect can be easily separated from
the effect of the potential renormalization. Accordingly we employ the approximation given by Eq. (8.1).
The resulting transmission probability is given as slight generalization of the formulae in Section V.a ( the
derivation is sketched in Appendix B ). One obtains

oo ' P)
PE) o, (BE0)| [ ared ™" [ opmpd ™" ’ , 1.9
§+—wo 0
where
SGHR,T) = 5uR, T) + 65" (R, T), (7.4)
ssi(r,1)= [ " %J(R(tl)[f(R(t))uE%ﬁ -2 %Eﬂ%ﬂ
+=‘2;§f(R(t))[f(R(t))J% f( If :—é%%ﬁ%ﬁ] . (1.5)

In these equations I' is the width of the strength distribution of the collective ¥ibrational state ( see Egs.
(B.11) and (B.12) ). We have ignored the terms proportional to e~{(5+iwe)t ( see Eq. (B.21) ). Such terms
will be negligible if I' is sufficiently large in the classically allowed region, or if wy is sufficiently large in
the classically forbidden region. Also, we have left out the terms involving the second and higher order
derivatives of f(R) and R(t) with respect to R and ¢, respectively. Note that those terms include second and
higher order inverse powers of w§ + (§')? which can be neglected in the adiabatic case.

Following the same steps as those leading to Eqs. (6.20),(8.21) and (6.22), we obtain the transmission
probability

P(E) s Poy(E).Pp, (7.6)

where .

Paa(B) = PolEi = 3 5 B35, Vaa(R)), (.7)

:

with . o 4 4L

VaalB) = V(B) = LU s, (7.8)
and a2 . wd — (5)2

Po= el (g ) arg; +(E)212]’ 7

where the quantity A /2 is given by Eq,(6.18). The result given by Egs. (7.8) through (7.9) coincides with the
result given by Eqs.(6.20) through (6.22) if T' & wy. Likewise Egs.(6.20),(6.21) and (8.22), Eqgs. (7.8) through
(7.9) are valid for all energies from above to the below the barrier snd for coupling form factors of finite
range. Note that the adiabatic potential is complex this time.

The terms which are proportional to I' in Eq. (7.5) would yield a dissipation factor that looks like
Eq.(7.1), because I' is proportional to  { see Eq. (B.29) ). Note that the second term in the curly brackets
in Eq. (7.5) contributes only a phase, proportional to Af2, to the path integral. The third term gives the
imaginary (absorptive) part of the complex potential. However, for energies well below the barrier maximurm,
the effect of the absorptive part is negligable, as can easily be seen by calculating Eq. (2.17} within saddle
point approximation using the imaginary time prescription. Hence for this energy region, coupling to internal
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degrees of freedom does not introduce a dissipation factor of the form asserted in Ref. 41. Instead, the
"dissipation effect” is given by Eq.(7.9), which is a generalization of the result in Ref.17 for a general, but
finite range, form factor. Note, however, that the terms proportional to I' in Eq.(7.5) reduce the transmission
probability in the classically accessible region. Clearly, the magnitude of this effect is related to the strength
of the friction coefficient 5. Furthermore, we note that the strength distribution of the internal oscillators
used in our model is markedly different from that of Ref. 41 ( ef. Egs. (B.11) and (B.13) ).

VIII. SUMMARY AND CONCLUSIONS

We have applied the path integral method to elucidate the effects of internal degrees of freedom on
the transmission probability of a translational degree of freedom acrose a potential barrier. In this paper,
we have dealt only with the inclusive transmission probability, where the effects of coupling to the internal
degrees of freedom are taken into account through the two-time influence functional. Three eases have been
explicitly considered : translational motion linearly or quadratically coupled to a harmonic oscillator, or
linearly coupled to an equally spaced spin system. The two-time influence functional has been determined
for these cases, although for the latter two cases one still needs to solve a Riceati-type differential equation
to express the answer directly in terms of the coupling form factor.

The result becomes extremely simple in the case of degenerate spectrum, i.e. when the level spacing is
zero. Clearly, in this case there is no dissipation effect, and the internal degrees of freedom only renormalize
the potential barrier. When the internal degree of freedom is a harmonic oscillator, then the inclusive
transmission probability is given by the so-called zero point motion formulal!®). On physical grounds this is
expected, because for zero oscillator quanta it takes infinite time for the amplitude of the oscillator to change.
Therefore, one should first calculate the transmission probability for an effective barrier corresponding to a
given amplitude of the harmonic oscillator, and then calculate the final inclusive transmission probability by
averaging with a weight proportional to the probability of the oscillator to be in the ground state. When the
internal degree of freedom is a spin system with (25 + 1) levels, the inclusive transmission probability is given
as an appropriate average of the probabilities of transmission through {27 + 1) one-dimensional barriers.

The exact results mentioned above reveal several interesting aspects of the effects of the internal degrees
of freedom on the transmission probability. The eflects of the linear coupling to an oscillator do not change by
inverting the sign of the coupling form factor, whereas the eflects of the quadratic coupling crucially depends
on the sign of the coupling form factor. For the linear coupling the transmission probability is enhanced
at sub-barrier energies, but is hindered at above-barrier energies. Contrarily, for quadratic coupling the
transmission probability is enhanced throughout all energy region by s negative form factor, but is always
hindered by a positive form factor. As a result a linear coupling enhances the high angular momentum
component of the fusion cross-section. This explains the recent discovery in Ref.43 that the coupled channel
caleulations, which include the effecis of surface vibrations, have larger high angular momentum component
in the fusion cross section than those with a "bare” potential. In the case of a linear coupling to a spin
system, half of the (27 + 1) effective potentials are higher (or thicker) than the bare potential, and the other
half are lower {or thinner). This is a natural extension of the situation encountered in the degenerate two
level model38),

In order to study the effects of a well localized coupling form factor, we have studied a parabolic
potential barrier coupled to a spin system with a delta function form factor at the top of the barrier. The
gub-barrier transmission probability was strongly enhanced by the coupling. Moreover, this mode] led to
at most (27 + 1)/2 resonance peaks in the excitation function, This behavior has been interpreted in terms
of the barrier-top resonances(®®) based on semiclassical theory. The fact that the experimentally measured
heavy-ion fusion excitation functions do not show such a resonant behavior indicates that the coupling form
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factors are rather non-loealized.

We also investigated the effects of the adiabatic coupling, i.e. when the energy quantum of the internal
system is very large. In this case we have approximated the influence functional by the influence functional for
elastic scattering. This led to an expression of the transmission probability in terms of a single time integral.
We have shown that the transmission probability can be written as a product of two factors for all energies:
1. A dissipation factor which depends on the agymptotic value of the form factor, 2. Another factor, which
is the probability for transmission across a one-dimensional effective barrier (adiabatic potential barrier).
When the internal system is a harmonic oscillator, the adiabatic potential barrier agrees with those obtained
in Refs. 17 and 26 by using different methods, although our expressions are valid above and near the top
of the barrier as well, unlike previous results, Furthermore, the dissipation factor for the quadratic coupling
to a harmonic oscillator is not derived in these references. We have also studied the adiabatic coupling to
a spin system. We found that both the potential renormalization and the dissipation factor depends on the
number of levels.

In the last section, we studied the transmission probability in a model, where the translational motion is
linearly coupled to a damped harmonic oscillator. In particular, we considered the case when the frequency
and the width of the oscillator are very large. Unlike the argument in Ref. 41, we obtained a "dissipation
factor”, which has only a weak connection to the frietion coefficient in the classically allowed region, We
should, however, note that our way of introducing the friction coefficient and the strength distribution is very
different from that in Ref 41. Also, our coupling Hamiltonian is of finite range as contrast to that of infinite
range in Ref. 41. Further investigations are definitely needed to understand how the correlation between the
hindrance factor of the tunneling probability and the friction coefficient depends on the properties of the
internal system and the coupling form factor.

Finally we want to remark that the potential renormalization in the adiabatic limit, given by Eq. (6.19),
is minus the counter Hamiltonian introduced in Ref. 4 Lo avoid double counting, i.c. to cancel out, those
potential renormalization effects which are already included in the "bare” potential, when the bare potential
is phenomenologically determined. For heavy-ion reactions such a phenomenological potential is the real part
of the optical potential, which is determined by fitting the data for elactic scattering!??}, The present study
indicates thal introduction of a counter Hamiltonian is adequate regarding the role of high-lying vibrational
states. However, for low-lying vibrational states this is not the case. Potential renormalization due to such
states should still be considered even if one takes the real part of the phenomenological optical polential as
the "bare” potential. In this respect, we note that the potential renormalization due to coupling to low-lying
vibrational states more strongly enhances the sub-barrier fusion cross section than that due to coupling
to high-lying vibrational states!?3), The problem of double counting is hence of practical importance in
heavy-jon collisions, and will be discussed in a seperate publication.

AFPENDIX A: Diagonalization method to obtain the influence functional for a degenerate
spin system

We consider the internal system which has been treated in Sect. Ille, in the limit of degenerate spectrum.
In this limit, the Green’s function is determined by

Pb 01, 0) = 2800, 10), (A1)

with the boundary condition
Ulto, ta) = 1. (A.2)
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Operating the unitary operator e=t7 ¥, ¢ being —¥, on Eq. (A1), we obtain
if %[e"” V’fi] = 28(t)] [T 0 0] (A.3)

Therefore, the matrix element of the transformed Green’s function in the {27 + 1) representation can be
easily obtained as

. [ 2p(t)mdy Y

{5, mle= 02, o) g, —) = e ¥ (3, mle 2900 (o, 10)|7,~3) A
_.Lf: 2m (1, )dt 3 (4.4)
e4l ’ (j:m‘e_ ’9’3.1_3-)

where we have used eq. (A.2). The second factor in the right hand side of eq. (A.4) is nothing but d‘:',‘__ #(0),which
is well known. We thus obtain

N Y
) _idy07 NP 1 —2im | pt)des] ¥
(.7; m‘le U(t: tﬂ)‘.’r .7) (J + m) (\/ﬁ) € o . (A5)
We now express the two-time influence functional as
ou(R®, TR, T) = 3 (mle ¥ O(RE; T, 01 - ) (mle™ TP ORE; T,00 - 5). (49)

Eq. (A.5) then leads to

& 2 1'-—|'m. T __‘i"--
pm(R(t), T; R(t), T) =Z(J, +Jm)(§)%‘"’ sim{ [ BRI/ K~ [ BIR(D)dY] K]

(A7)

T T
= cos®’ [ fo B(R(t)dt — fo B(R(s))ds

This is the formula eq. {5.18), which we have derived before in Section 1V.d.
APPENDIX B : Influence functional for the case of a linear coupling to a damped harmonie
oscillator

In this appendix we explain the model which we used in Section VII and derive the corresponding
influence functional.
a) Model Hamilionian

We take the Hamiltonian for the internal system to be

Ho = puwoadao + %) + f: frowi(bib; + %) + fmi(agb.- + agh}), (B.1)
Y] |
and
Hine = oo f(R)(a} + a0), (B.2)

where (a};, ao} and (b:f, b;} are the (creation, annihilation ) operators of the collective and the t-th non-collective
harmonic oscillators, respectively. The unperturbed Hamiltonian Hy can be diagonalized by introducing the
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normal modes &},a,-) a8,

m-1
=3 rcw.-(a 5 + ) (B.3)
Fum1
3; = Xjra0 + Zx:'.mb.', (B.4)
i
where
ar -1
Xj1 = [1 + )_j e J , (B.5)
c—l - w'
£
Xj 41 = "'_""“XJII (BB)
Wy —
and -
oo = k2SS 1
Wi —wp =K E Pyt (B.7)

By inverting Eq.(B.4), the interaction Hamiltonian is given as

m+1
Hmt. =y Z: x;lf(R I dy ] (BS)

J=1
We thus transformed the original problem to another one where the relative motion is linearly coupled to
many independent oscillators with a coupling strength which is related to the strength distribution of the
original collective vibrational state.
In the following, we consider a particular case, where the original non-collective vibrational states are
distributed with equal energy spacing from —o0 to +00, i.c. we assume(42)

wi =tA(1 = 0,+1,+2,..). (B.9)
By futher assuming -
A »1, (B.10)
we obtain the following expression for the strength distribution of the collective harmonie oacillator state(12)
2
le 1 r
J(@5) = —— ~s o~ ) (B.11)
AP0~ w) + (B
where -
KK
I = A {B.12)

Compare Eq.(B.11) with the strength distribution sssumed in Ref.(41), which reads
J(w) = nuw. (B.13)

b} The Green's function for the interna! motion and the Influence functional
Eqgs. (B.3) and (B.8) lead to

O(R():,0) = [T U, (Rit);1,0) = &~ 2y #1@Ior D0 2,9 1T 1y, (B.14)
J J
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where

g pt 4y
&, = Xh % [0 dty A dtz f(R(t))) f(R(k2))sinds(ts — t2) = x71 D(@;), (B.15}
D) = emp[r,-&* - I;a,], (B.16)
and . .
L= ~—x:'1‘7? .[o F(R(t:))e™ M dty = xju1(@538). (B.17)

Tt is then straightforward to calculate the matrix element Wy,p,. It takes the standart form Eq. (6.7), where
the infiuence potential is given by an obvious extension of Eq. {6.8) as

1 ~ .ap ’ I -
WR(t) = 5 285 -7 D xhI(R(D) [ remtepe -, (B.18)
5 5
Introducing the distribution function we now replace the sum over 5 by an integral over &;. This leads to
L +m 4 . ]
Exﬁ_le-—le(t—tg) P f dﬁj.’(tﬁj)ﬁ_'u’j(‘—h) . e—t(uuﬂ'l%](f»—h,. (B}g)
J- —_—0
The influence potential thus becomes
2 t ,
W(R(t);t) = %me —f-‘f;f(R(t)) f dty f(R(t))e™ Bt gmiusti=ta), (B.20)
- 0
J

In the adiabatic limit wp i8 taken to be very large. In deriving the strength distribution above we have also
assumed that T is large, f Eq. (B.10). Hence for both classically allowed and classically forbidden regions
(real and imaginary time), due to the exponentials in Eq. (B.20), the dominant contribution to the £; integral
will come from those values of ¢; which are very close to ¢. Therefore expanding f{£(t,)) around f (R(t)) we

obtain

aj wo + 15 -
W(R(t);t) = % zru‘b,- - 70I(Rm)[ﬂR(t))wgo:(gz)?(l _ e-(,+.m}¢)

df dRwf — (5)? + dwol (L df dR wo+i% (x4
ot °[w3(i)(%)212° (1= etren) o S e o  wa

where O is the aggregation of the terms involving second or higher order derivatives of f(R) and R(t) with
respect to R and t, respectively. If we ignore Op and the terms proportional to e—(¥+iwelt then Eq, (B.21)
leads to Kq. (7.5). Note that an expansion with respect to the inverse powers of wf + (L)%, as done in Eq.
(6.12), gives the same answer,
c) Induced force in the classically accessible region

In order to relate I' to the friction coefficient #, fet us remark that the force acting on the translational
motion due to the coupling to the internal degrees of freedom is given by(44)

7(t) = -Tf[{g‘%Hmt(@,R(t))}ﬂﬁnt(t)]s (B.22)
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where pi. (2) is the density operator for the internal degrees of freedom. Therefore
t /] . .
76) = ~017" et O e B, () O (85 0)) (B.23)

Inserting Eq. (B.14), we obtain

m+1

9=} 3. x 27 [ de (Rt inie - 1), (B.24)

F==l

where f' (R) means the first order derivative with respect to R(t).
We now proceed in the same way as in the previous subsection, and obtain

F(t) = 7™ty — n{)R() + ..., (B.25)
where
. 9 4
Fond(g) = Kaﬁ TR (R) fo dtye~ T tginwg(t — 1), (B.26)
and 9 ¢
7(t) = -’-;agf’(R)f’(R) j; dt; o~ 5=t — ¢, Jainwg(t — ¢,). (B.27)
Especially when I't 3 1, .
Frd(t) m ﬁaﬁf’(ﬂ(t))f(R(t))m, (B.28)
and r
w .
) = o} PO RO s (B.29)

The truncation of the induced force by friction term as is shown in Eq.(B.26) will also be justified if I is
sufficiently large.

Finally we wish to remark that the average value of the coordinate of the collective harmonic oscillator
satisfies the equation of motion for a forced harmonic oscillator. Namely, if we define

(@) = Tr(Qnelt)), (B.30)

with
Q = aolaf + ao), (B.31)

then
TS KT {Wo +(3) }(Q): = -2 o8 1, (B.32)

The quantity T therefore represents the damping width of the collective harmonic oscillator due to the
coupling to the surrounding non-collective harmonic oscillators,
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FIGURE CAPTIONS

Figure 1. The potential barrier V(R}, used in the examples shown in Figs. 1 through § and Fig.7.

Figure 2. The effect on the inclusive transmission probability of the linear coupling of the potential in
Fig. 1 to a harmonic oscillator with a degenerate spectrum, The coupling form factors ap f(R) with different
strengths and signs are plotted in the upper panel. Lower pane! shows the corresponding changes in the
inclusive transmission probability.

Figure 3. The effect on the inclusive transmission probability of the quadratic coupling of the potential
in Fig. 1 to a harmonic oscillator with a degenerate spectrum. Coupling form factors ah(R) with different
strengths and signs are plotted in the upper panel. Lower panel shows the corresponding changes in the
transmission probability.

Figure 4. The effect on the inclusive transmission probability of the linear coupling of the potential in
Fig. 1 to a spin system with a degenerate spectrum for different values of the number of levels,2J + 1. The
coupling form factor is taken to be # §(R) = Bo/Cosh®bR, with fg = 5MeV and b = 1fm=%,

Figure 5. The effect of the linear coupling on the angular momentum distribution in the fusion process.
To calculate partial fusion cross-section the potential barrier in Fig. 1 is used with the form factor f(R)
given in Section IV, Partial fusion cross-section oy is plotted versus partial wave number ! for the case of
no coupling {solid line), afo = 1MeV (dashed line), and afo = 2MeV {dash-dotted line). Upper panel
corresponds to E = 9.5MeV (below the barier), and the lower panel pertains to £ = 10.5MeV (above the
barrier).

Figure 6, Real and imaginary parts of the function f(,£), defined in Eq.(5.7). Note that Ref(£,£)
and Imf(&,£) are symmetric around £ = 0. Thick solid line is the real part and the thin solid line is the
imaginary part of f.

Figure 7. Barrier-top resonances in the inclusive transmission probability for the case of linear coupling
to a degenerate spin system with a delta function form factor A(R — Rp), X = 4MeV, for different values
of the number of levels, 2J + 1. The dashed line is the bare transmission probability.
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