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ABSTRACT

We show that a new class of ultraviolet finite
N = 2 supersymmetric Yang-Mills theories exists in
which some hypermultiplets belong to irreducible,
pseudoreal representations of the gauge group G.
Some of these theories contain fermions which are
strictly massless before the spontaneous breaking
of G. A classification of these theories and of
those which admit at least three generations of

quarks and leptons is given.
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It is known that N = 2 supersymmetric Yang-Mills theories1 can bhe
made ultraviolet finite provided the one-loop beta function vanishes2
1t has been shown that ultravioclet finiteness even persists if soft
breaking terms of a particular form are introduceda. This opens up the
possibility of constructing realistic models for unification of
electroweak and strong interactions based on a softly broken global
N = 2 supersymmetry‘. A classification of ultraviolet finite N = 2
Yang-Mills theories has already been givens under the assumption
that the matter spin 1/2-spin 0 hypermultiplets belong to pair-

. . 1-5
conjugate representations R + R of the gauge group 6 .

Under this circumstance, the condition of ultraviolet finiteness

. . . 2
15 simply given by

CQ(G):'Z”(: T{RE)/ (1)

where CZ(G) is the quadratic Casimir of the adjoint representation of

the gauge groupe G, and

dim R
T{R) = CQ(R)' df::G ; (21

T(R}, multiplied by the rank of the group, is known as the second-
order Dynkin index. It can be obtained from a realization of the

A . . , .
generators T for the representation R with proper normalization

through

T(R) $ 4% = TR (T*T").



The sum in Eq. (1) goes over all hypermultiplet species, and n, is the
multiplicity of each hypermultiplet.

However, in deriving Eq. (1), it has not been taken into account
that hypermultiplets of N = 2 supersymmetry can belong to irreducible
representations of G, provided the representation 1s pseudoreal.

The reason why this can occur is that for pseudoreal represen-
tations of G, the hypermultiplet is PCT self-conjugate, and the
doubling of states usually due to PCT-conjugation is not neededs.
Consider, in fact, massless one-particle states given as follows:
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in which the Clifford vacuum has +1/2 helicity, and is defined by

a
Q,:—Q = 0,

and a 1s a gauge group index. The four states given by Eq. (4) and

their antiparticles correspond in general to fields
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in which ¥ and ¥ are Weyl spinors of opposite handedness and A? are
two scalar fields. However, if the representation of the gauge group 6
1s pseudoreal, the four states in Eq. (4) are PCT self-conjugate and
we can impose the conditions7
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where cab is the skew-symmetric metric of the pseudoreal represen-
tation of 6.

Therefore for pseudoreal representations Rp. the hypermultiplet
contains only & . dim Rp degrees of freedom instead of 8 . dim R for
non-pseudoreal R of G.

Self-conjugate irreducible hypermultiplets appear in N = 8
supergravity if this theory is analysed in terms of N = 2 represen-
tationss. The fields of N = B8 supergravity transform in this case
under SU(6) x SU(2). The 70 scalar fields belong to (15 + Ig. 1)

[

+ (20, 2), corresponding to 15 complex scalar fields belonging to
15 N = 2 vector multiplets, and 20 complex scalar fields belonging
to a self-conjugate N = 2 irreducible hypermultiplet where Eq. {6)

reads

[a,a525) % i/ [a, a5 2]
(Ai ) = £JE[62/‘I-Q£]AJ /' (7

e[a a ] is the invariant tensor of SU(6), and the threefold
L
antisymmetric tensor 20 of SU(6) is pseudoreal.
If we come back to the finiteness condition, it is clear that if

a group G admits pseudoreal representations R then Eg. (1) has to

p.!
i

be modified according to

<, (G}.-=EL:'niT(Rz)i-—z’*f-E;'nﬁ_T(/%_), N

Qur task is to give a complete list of solutions to Eq. (8) with some

non-zero I"Ip



It is obvious that cases where all nP are even are particular
i
solutions of €q. {1)}. New theories will be obtained when some np

will be odd.

Pefore discussing the solutions of Eq. (8} with non-zero n o we
have first to recall the precise definition of a pseudoreal repr:sen—
tation.

A representation of the Lie algebra of a group G is called

pseudoreal (or symplectic) if the generators TA for this represen-

tation satisfy the property
A X
CT C=T (9)

witﬁ ¢ real, skew-symmetric, and verifying C2 = -1. The simplest
example is the 2 of su{2) for which the generators are the Pauli
matrices and C = ioz. All pseudoreal representations are even-
dimensional. The simple (compact) Lie groups which possess pseudoreal
representations ares-1lJ sulan+2), Sp(2n), SO{n) with n = 3, 4, 5
modulo 8, ET7. In order to satisfy Eq. (8), we have first to enumerate

all pseudoreal representations R_ of these groups for which

P

T(Ry) € 2C,(6).

The result is given in Table 1. The invariant T(RP) has heen cal-

culated using the standard normalization for the generators of the

lowest dimensional representation: for SU(N), T(N) 1/2; for SO(N},
T(§) = 2; and for Spl{2N]}, T(gﬁ) = 1. It is then simple to calculate

T{R) for all other representations using either



T(Rdx R2)= dim ?4T(R2) + (14—)2)
T(R, +Ry) = T(R)+T(R)

(11)

or the eigenvalues of a specific generator of the Cartan subalgebra.
. . . 16-11
Tables of T{R) already exist in the literature .
The pseudoreal representations of SU{4n+2), satisfying Eg. (10),
are only the (2n+1})-fold antisymmetric tensors of SU{2) [«50(3) «
Spl(2)] (2) and of SU(E) (20). For orthogonal groups, only spinorial

representations can be pseudoreal. The invariant T{R) for the

fundamental spinor is

-2
Zn for fO(ZM—#i),

Zn-3 {ér’ 5,0(2”) (12)

Then, since SO0{3) - SU{2), SO(4) ~ SU{2) x SU(2), and SO(5} ~ Sp(4)
will be considered below, only S0{11), S0(12} and $0{13) have pseudo-
real spinors with T(RP) £ ZCZ(G).

The pseudoreal 2N representations of Sp{2N} obviously always
satify Eq. (10). The other solutions are only the threefold anti-
symmetric traceless tensor of Spl(6) (13') and of Sp(B) (48) and
the 15 of Spi{4) «~ S0(5). This latter representation is an

S0{S5)~spinor obtained from

~

Z{XE =~’£_‘+//6. (13)



For exceptional groups, only the lowest dimensional represen-
tation 56 of E7 fulfils condition {10).

We must now construct all finite theories, solving Eq. (8), with
some pseudoreal matter multiplets. Table 2 shows all such solutions.
In order to cancel the one-loop beta function, some of these theories
contain, in addition to the pseudoreal part, hypermultiplets with
fermions belonging to R + R of 6 (R can be real or complex). This
1s the case for all SU(6) models, except for the one containing 4(20).
Since SU{6) contains SU(5), one can look for the embedding of quark

and lepton generations 3 + 10, with the mirror fermions 5 + 10.

o

The SU{6) models containing at least three generations are

3(g20) + 3(6+8)

:3(/,1945-:—;/,?-&5)-&6{,{///
2(20) + M5+ F) + 2(6+£)

= 3(go+ 5+ B+5 ) +uld),
20 + 2 (A5 +A5) 4-(54—;)

=30 +5+ D+5)+2(L)

{14)

There is no place for additional Higgs multiplets.
The pseudoreal spinors of orthogonal groups which appear in Table

2 decompose under the S0(10) subgroup according to
So(42) : 32 = 16+ 16
priem e -~ /

50{42): 32-, 2\_2[: 16 + ’,—{,Z-, (15)
50(4.?): é{l -"-2(/’1\;(4-{5/_



Each 16 + 16 contains one generation of quarks and leptons and the
mirror states. Thus, finite theories based on S0(N) groups can accom-
modate up to five generations, or four generations if additional Higgs
multiplets are reguired.

Models based on symplectic groups cannot be used for realistic
models except if very peculiar embeddings of SU{3) x SU(2} x V(1)
into a very large group are accepted.

The only exceptional model, with gauge group E7, contains six
generations of quarks and leptons, with the mirror states. In fact all

embeddings of SU(5) into ET are equivalent and give

56 = 4w0+40 + 3(5+5) +€(4) (16)

P
The pseudoreal representations have an interesting property:
their quadratic invariant is antisymmetric. This means that a
supersymmetric mass term is only allowed for two different matter
multiplets. If a theory contains an odd number of some pseudoreal

representation R_, then automatically one multiplet RP will remain

P
massless as long as the gauge group remains unbroken. Since soft terms
breaking supersymmetry while preserving finiteness are not able to
give masses to fermions in a matter multiplet, finite theories with
pseudoreal representations can give rise to massless fermions. Some
interesting cases.can be found in Table 2. Consider, for instance,
S0{13) with matter multiplets transforming according to 64 +

?(1§+12). The Ei will remain massless, giving rise to two massless

generations of quarks and leptons with mirror fermions, as is clear

from the embedding of S0(10} into SO(13) [Eq. {15})]).



The same result will hold for S0{12) with matter multiplets
P
3(32) + 32" + 2(22+2)],

the two massless generations being embedded in ag + gg'. It is

however impossible to find more than two massless generations (with
mirror fermions) without enforcing the absence of an allowed mass
term. Another interesting case is Sp(4) with matter multiplets 16.
This finite model has no mass scale at all. The presence of pseudoreal
matter multiplets appears then as a generalization to finite N = 2
Yang-Mills theories of the so-called "survival hypothesis® of unified
theories.

It is worth mentioning that pseudoreal representations RP possess

a symmetric coupling to the adjoint representation

(R_E X P?)SYM. = Ac({j'ofwf t eee (17)

which allows to construct the N = 2 coupling to the gauge N = 2
multiplet. Also we notice that hypermultiplets belonging to pseudoreal
representations of G remain irreducible when restricted to N = 1
supersymmetry. In fact, being PCT self-conjugate, they have the same
number of degrees of freedom as a N = 1 Wess-Zumino multiplet.

To summarize, in the present paper we have shown that an
additional class of finite N = 2 Yang-Mills theories exists in which
some hypermultiplets belong to PCT self-conjugate, irreducible

representations of the gauge group. These representations allow



naturally massless matter fields in N = 2 supersymmetry. We have given
a complete classification of all finite N = 2 theories of this sort,
including those which contain particle states with the guantum numbers
of three generations of quarks and leptons. Finally, it should be
stressed that our analysis is purely group-theoretical, and the
construction of any realistic N = 2 SUSY GUT model is still an open
problem, even after the inclusion of soft-breaking terms which

preserve finiteness.
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TABLE 1

All pseudoreal representations with T(Rp) 4 Zcz(G)

6 C_(6G) R TIR )
2 p p
suf2) 2 2 1/2
Su{e) 6 ?,9, w[ijk] 3
S0{11) 18 32: spinor 8

§0{(12) 20 32:
} spinors 8

3z’ |

S0(13) 22 64: spinor 16
Spizn) 2{n+1) 2n: fundamental 1
Spl4) 6 16: {1,1) 12
Sp(6) 8 14': (0,0,1) 5
Sp{8) 10 48:1(0,0,1,9) 14
ET 18 §§ [

1
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Finite N =

JABLE 2

2 theories with pseudoreal matter multiplets

G Pseudoreal part Real Part
sutz2) | 8 (2)
su(s) | ntz0) +3(4-n)(B+6)  n= 1, 2, 3, &
2(20) +(15+15) + 2(6+6)
20 *2(15+15) + (6+8)
20 “(15+15) + 5(8+8)
20 (21 + 210+ (648)
so(12) | n("32") +2(5-n}{12+12)  n =1, 2, 3,
"32" means: 32 or 32° b 3
S0(11) | n(32) +18-2n)(13+11)  n =1, 2, 3,
$0(13) | 2(64) +3{13+13)
Ehd +T033+13)
SP{2N) | 4(N+1)2N
Fus s
Sp{2N) [ 8(2N) #0021, + (23,
spl4) | 18
414) +2(5+5)
Sp(6) 1"+ 308) +{146+14)
n(14") + (16-3n)(6) n=1,2, 3
Sp(8) k8 + 5(8)
E7 6(56)
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