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ABSTRACT

We evaluate the off-diagonal two~point
correlation function responsible for the
gluonium~mescon mixing, including the
leading non-perturbative lowest
dimension wvacuum condensate contri-
butions. Then, using spectral function
sum rules approach, we deduce a small
meson—gluonium mixing angle. We also
derive upper bounds for the 7' and for
the strange quark masses.
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1. — INTRODUCTION

)

QCD sum rules 4 1la Shifman—-Vainshtein-Zakharov (SVZ)1 have led to a

considerable progress in the understanding of meson masses, couplings aund

2)

their mixing. 1In fact, concerning the latter, it has been shown that the
strength of the p—w mixing can be related to the typical SU(2) isospin

violation order parameters which are the u,d "current” quark wass difference
md - mu and the quark vacuum condensate <wu~dd>. On the other hand, the
relative smallness of the w—¢ mixing has been relatedla)

the four—quark operator a3<$rl¢¢F2¢>, which is suppressed by a higher power in
s

to the dominance of

l/Q2 and by a higher order in aS compared to the former. In this note, we
would like to discuss the quarkonium—gluonium mixing along the lines adopted
previously, namely by assuming that the mixing is dominated by the lowest
dimension operators entering into the operator product expansion (OPE) of the

off-diagonal correlation function

. r
tysc
%/7 /f") = Jﬁ?z £ <’0/7—"{(’) @‘(")) /o}) (1)

where for definiteness, the currents Ji,i = q,g entering in Eq. (1) are scalar

or pseudoscalar. 5o the quark operators Jq, expressed in terms of the quark

fields, read:
.;: JJM:?/}'?I’:' o2z ,]'=.é’,m:‘//‘/’=) (2a)

while the gluonic currents are defined as

—p * —2 —
- —
5::413/’/‘: s2 Jd,, = 4 FF
where Fo©_ is the gluon field strength tensor and o= % £ apag
v uv wpo



In what follows, we present the calculation of the correlator ¢ (qz) for
large Q2 = —q >> AéCD’ and then we apply the familiar procedure of ggf. 1) to
obtain sum rules. We use these sum rules to discuss some phencmenology
concerning the n' mass, and the meson—-gluonium mixing angle. We also briefly
compare the results obtained within this formalism to those obtained from
other approaches, such as the saturation of chiral Ward identitiesB), bag

. . . 5
moedels ) and intermediate gluon exchange wechanisms ).

2. - EVALUATION OF ¢gq(q2)

The evaluation of the off-diagonal two-point function needs the
introduction of the renormalized gluonic current. 1In the minimal subtraction

)
scheme ) and to one loop in as, one has7):

(FE), = (FE) -(3)%) (% )775“-’5{%
(FF)y = (FFl */5)@5)@;1) (2 ?)I/)B

(3b)

which states that the gluonic currents mix with the quark currents also under
renormalization. In Egs. (3), the indices B and R refer to the bare and to
the renormalized operators; n = 4-¢£ is the dimension of space-~time;

Y, = 3/2 (Ni—l)/ZNC is the anomalous dimension of the quark mass. Thus, the
evaluation of ¢gq(q2) from the lowest order perturbative diagram of Fig. la
requires also the consideration of the diagram in Fig. lb, which is induced by
the second term in Eqs. (3). Such a contribution is necessary for the
cancellation of terms like (1/z) log —q2/v2 (v is the subtraction scale of the

MS—scheme) which appears in the bare two-loop diagram of Fig. la.
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a) For the ot~ channel, the contribution of the diagrau in Fig. la, for

m =m =0and m # 0, is 1%
u d s

LN

: ﬂ%:'i/jyl'j: - 25 -Z;'J/) y

2 _ n.2-1 2/ 3 ) (-2 ).
V;m)/ﬁ?h- i (B2 ) s2g% fnes) (a2 )

(4)

where we have expressed ¢g in terms of two—loop integrals tabulated in the
Appendix D of Ref. 6). The contribution of Fig. lb induced by the second

terms of Egq. (3a) is:
b.69] e n i), )t 1 4.-9°)
AN sl Sy Nend/ T ) g2 ~e TV g f
7 o

Then, after renormalization, the contribution of Fig. la is:

R
by 49 = w(®) g gt

1%?.[4
. / __?e: ‘ -//7
//7 = - 3:5 /;//_. 3 Xg) ) (6)

The leading (in l/QZ) non—-perturbative contribution is given by the lowest

dimension quark vacuum condensate depicted in Fig. Z2a:

(1%)

We use the following conventions in n-dimensioms: vy
EU\)DUEH\)Q'O' = -(H—B)(gpp!gc’_c' - gOG'gD'O); g@.ﬁgue
the effective gluon vertex is (-i)pPqCe yog LOr two incoming gluons with
momenta pM and gV¥. We have checked the algebra using the Schoonship algebraic
programme written by M. Veltman. We thank A. Douiri fer discussions on the
use of such a pregramme.

= 15 Y ¥ = 7YY

2
5
= n, The Feynman rule for
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= = Lo (%) g <Y > Mg =T
5{7/7/72) Fiy 24 /7’ %> 75 o

The next-to-leading non-perturbative contributions are due to the diagrams in
Figs. Zb and 2¢. It is easy to see that the contribution of the mixed vacuum
condensate <$opv (Ka/2)¢ Fiv>’ shown in Fig. 2b, vanishes to leading order in
the chiral symmetry breaking parameter and in as, by using, e.g., the routine
given in Ref. 8). The leading gluon condensate is given by the diagram in

Fig. 2¢. 1Its contributiom is

e = #(8)-<ris(E )2
(8)

One can see that the contribution of the four~fermion operator in Fig. 3a
vanishes because of the trace of y-matrices. The one in Fig. 3b is about
m§a§<;¢>2 and can be safely neglected. The triple gluon contribution like the
one in Fig. 3c is about m§a§g<F3> and we neglect it, as the contributions of
the dimension eight operators are not taken into account here. The results in
Eqs. (6) to (8) show that the strength of the meson-gluonium mixing is about
mzas and is expected to be small as we shall see later.

b} For the o+t channel, a similar analysis can be done. As there is not
a strong phenomenological motivation for a meticulous analysis of the
correlation function including non-perturbative terms, we shall limit
ourselves to the evaluation of the "ordinary” QCD two-loop contribution given

by the analogue of Figs. 1. The result is:



which again is expressed in terms of the two-loop integrals listed in Ref. 6)
The analogue of Fig. lb induces terms similar to that of Eq. (5)

The
renormalized contribution of Fig.

la is then:

R z
2 7 ey SRR

¥4 {9b)
. /é-;é --‘}'-?/4-3!)/.

We see that the non-leading—~log contributions differ in the ott ang ot
channels, which may indicate that the Ys—invariaance is not expected to hold in
the presence of mass termsl*

3. - UPPER BOUND ON THE 7' MASS AND THE VALUE OF m

1
By combining the calculations of Sectiom 2 with previous oneslo)’ 1), we

can get a two—loop expression for the two-point correlation ¢_(q2) of the
SU(3) singlet axial divergence

— —_
WA= 2img LY - (3%) FF

A : (10}

(1%)
For more details on the yg~invariance in massless QCD, see e.g., Ref. 9).



{as usual we take o= mg = 0). We shall work with the “moment"” sum rule

e

ﬁ/g- _ __{_/ ,‘é ﬂf@wi?f Im }{/{_}) (11)
ae 6

where the variable T is the Laplace variable defimed by applying to ¢_(q2) the

L

familiar Laplace operator

A
ya v

. (125

N

—_ (—~2) 9’

Lo 4?_,‘11/ e sy 1)'/ (94;{)"’
.QZ%Z =

The advantage of R{T) is its sensitivity to the meson mass and its lesser

sensitivity to the QCD radiative corrections in the unit operator. In the

1b),12)

non-relativistic case » the t-variable plays the role of an imaginary

time variable while the minimum of R represents the optimal upper bound on the

3)

square of the ground state mass. It was conjectured1 that this non-
relativistic result can be extended to the relativistic case provided that the
non—perturbative contributions at the minimum of R are not too important in
order to justify the validity of the approximation used for the QCD estimate

of R at the minimum.

Using for the diagonal quark-quark and gluon~gluon parts of ¢.(q?) the

results of Refs. 10) and 11) to include higher loop corrections, we obtain, to
E
two—loops, the sum rule1

Riz) - se™f71_ 2 - 2 &_’,‘%/54)40./3[4 ¢

(1%)
An attempt to explain the SU(3)F breaking contribution to the m' massg, using
QCD sum rules, is given in Ref. 14).
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where L =-log A% and ﬁs is the renormalization group invariant mass of the

6)

strange quark defined to two-loops in the MS scheme ‘. We estimate the

15)

and to the four—quark

la)

condensates contributions to the quark-quark part of ¢_(q2) , and also to

uncertainty on R as mainly due to the three-loop

the off-diagonal piece ¢gq(q2) obtained previously. Then
1%/9
/ 2
[ 222

f-a;/‘Z) + '”"" <5Z(/') 2 @)

AR = 3mi(1L) (993 - 3.44sl +

We give one example of the behaviour of R in Fig. 4a where we have used

< F2 = 0.04 Ge V‘*s)’m) gdF3s = (1.1%0.2) Gev? o F2517) and A = 150 Mev.
The curve has a minimum for T about 0.6 — 0.5 GeV 2, where the corrections due
to the non-perturbative contribution are rather small, making the information
from the minimum of R reliable. Interpreting this minimum of R as an upper
bound to the n' mass squared, we give the variation of the bound versus the
range of the values of the invariant mass ES where we expect that the
approximation used for the derivation of Eq. (13) makes sense. We can see
that the observed value of the n' mass can be obtained for the values of ES in
the range smaller than 0.37 GeV. If we combine this upper bound to the lower
bound obtained from other QCD sum rules analysislc)’ll)’ls)’ls), we obtain for

A = 150 MeV the range:



A
0.24 £ Ms & 0.3F GeéV . (15)

The above results emphasize the role of the SU(3)F breaking parameter ms in
the physical value of the n' mass. A similar conclusion has been reached in
Ref. 13) where the mg—effect on the mn'-mass relation from U(l)A current

algebra has been taken into account.

4. — MESON-GLUONIUM MIXING ANGLE

For definiteness, we discuss explicitly only the case of the 0~' mesons.
By applying the Laplace operator defined in Eq. (12) to the second derivative
of wgq(qz), which is superficially convergent, and following familiar

6)

renormalization group arguments °, one obtains the sum rule:

2 —
A AP RYIES

= - .—4—-——--- ” .fl/ ’
where Q’SA,_ = ‘9&? Py, 9‘/& S /3)dx /3%:- b

p—

s = 2‘ //—; 05 2'/174/9

ig the running quark mass expressed in terms of the renormalization group
invariant mass introduced in Ref. 19). We plot, in Fig. 5 , the relative

strengths of each term within brackets of Eq. {16) normalized to
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(as/n)2°9/4n2. The lowest order term starts to dominate the non-—

perturbative terms for T smaller than 0.5 GeV™2, We have used ms<$s¢s> =

(=)0.5 M2f2 which takes into account the effect of SU(3)F breaking parameters

to kaon PCACZO). We have taken the invariant mass as to be 0.3 GeV which is

1 1
an average of various estimates )s15), 8); we have used aS<F2> =

0.04 cev*®2218) 404 A = 0.15 Gev.

For the discussion of the mixing problem, we follow the standard
procedure and parametrize the spectral function Im ¢gq(t) using a two-

component mixing formalism:
[6> = ene (99) + =ino[99>
[Py = -winslygy # 28 /7y ,  op

where |G> and {P> denote the physically observed meson states, |[qq> and |gg>

are the pure meson and the pure gluonium states, and 9 is the mixing angle.

Then,

< 2
2 I };7/&) x in 20 Sl 3@ /1% ?;? :
JemZ) - dle-mi) ),

where the QCD continuum is the one given by the discontinuity of the lowest
order diagram in Fig. 1. We have defined the decay constants qu and fgg by

analogy with the pion decay amplitude, fTE = 93 MeV:

- Z
<o/-]7-/9g) = ﬁ”ﬁ 9;? 2 (18b)

<0/£;)~§-/jj) = ﬁ”ﬁ; 7;7 . (18¢c)
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%
Then1 :

~Zﬁﬂ4ﬁe-./:? é{ Im %g7’/%} = ,4in-?é?nﬁ;;29;; .
VAR ) 1% -2
i (67 ) L)

oy —
e ) 2 eer)

. PR 2 47@)
- 27" . < -

In confroanting Eqs. (16) and (19), we do a numerical analysis based on the
FUMILI xz—minimization programme used in Ref. 13)2*, by demanding a
coincidence of both equations for T smaller than Tmax where we hope that the
QCD expression in Eq. (16) makes sense. For the fitting procedure, we use

MG = M1 = 1.44 GeV and MP = Mﬂ' = 0.96 GeV. We also introduce the parameter:
< /47 4 Zf/
/s 2in 28 /7?7 %9 29 799 > (20)

so that the free parameters in the fitting procedure will be k and t.- For

definiteness, we fix A to be 0.15 GeV and we do a two-parameter fit for two

characteristic values of ﬁslc),IS),IS). The results of the fitting procedure

are shown in Fig. 6a. The arrow indicates the value of T where previous
gluonium sum rules [Eq. (13)] and the one in Ref. 13) present an extremum. In
our case, we cannot have any extremum as the leading theoretical contributions
add (perturbative plus fermion condensate) and increase for 1 going to zero.

However, we expect that the leading order expansion in Eq. (l6) can be a good

(1%)

The contribution of the last term in Eg. (19) has been deduced from the result
in Ref. 21).

(2%)

If one uses the finite-energy sum rule discussed in Ref. 21), one does not
obtain any useful information within the approximation within which Eq. (16)
is computed.
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. . -2
approximation of the full theoretical expression for T smaller than 0.5 GeV ,
where known terms in Eq. (16) are less than 50% of the lowest order one. In

this way, we deduce for I = 0.15 GeV:

&
¢ > (265~5) (21a)

VGE' > LF gV ,

{21b)
) 13)
where we have used the values of £ = 30 MeV , M = 1.4 GeV
13)1% g8 88
M = 1 GeV
aq

q
It may be difficult to have here a clear statement oOn the optimal estimate of

13),22)
1)

and f = V3 fn’ as given by the quark model.

the mixing angle and the correlated value of the continuum threshold.
However, one can notice from Fig. 6a that /E; is almost stable for © larger

than 0.3 Gev™2. So, we would expect the following range of values:

6 ~ (25~ 14.4)° (22a)
Iy

VE ~ (20~ 32) 6V

(22b)

for ﬁs ~ 0.2-0.3 GeV and A = 0.15 GeV. We analyze in Fig. 6b the dependence
of the result on the value of A. /E; is almost insensitive to the variations
of A whereas © is sensitive, because of the « -dependence of the QCD side of
the sum rule. For A between 0.1 and 0.2 GeV, and taking into account the

result in Eq. (22a), we would expect a range of values of ©:

g = /1.(~//J)° . (22¢)

(1#%)
One should remember that the reality of the eigenvalues of the gluonium-meson
mass matrix imposes Mj + Mp = M%g + qu and MéM% 5_M§%Maq which implies
M q > MP and Mgg < Mﬁ. (G and P are the physically observed states.)
qq — ~ :
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One should notice that despite the large uncertainty of the estimate of 8, one
might still conclude that the gluonium-meson mixing angle should be small. An
immediate consequence of the result in Eq. (22) is the fact that the gluonium

13),23) should not be far

mass obtained within pure SU(3)C Yang-Mills theory
from the observed values of the gluonium masses. Other applications concern
the predictions of the radiative and of the two photon decays of the 1(1l.44)
(if it is a gluonium !). The radiative decay of the \ normalized to

the n'-one is:

F('L.-aff) /z' ’

~ ,(29 — L 0.2

2' L7
f'/?’—; fl’) Z’l (23a)

where

This leads to
[(7 > pr) & (at5766) AV 30y

The two-photon decay of the 1 normalized to the n'-one is:

3

I r¥) 2 My
~ Mol L g 02 .
/.,/?/_D [{) 7 //«/7,) (24a)

i

Then:

/(e — yr) L (A5ros5) LV (24b)

It seems premature for the moment to compare theoretical expectations for

24)

these decays with experimental data » as there is some conflict between

various measurements. Furthermore, the spin parity analysis of the py-signal
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in ¢ radiative decays is yet to be done. Concerning the various theoretical

predictions, the value of the mixing angle in Eq. (22} is smaller than the one

4253) or the one obtained from the

3)

lowest meson saturation of the U(l)A Ward identities”’. We would also note

obtained from a bag model-like caiculations

that the phenomenology of the 0™t channel could be done in a similaxr way.
25)

However, it seems at the present time that the analysis of the decays of

the G (1.6) into two pseudoscalar mesons is of more immediate interest.
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1:

3)

a) Lowest order contribution to ¢g (qz). & denotes the gluonic
current, & denotes the quark currgnt, x 1s the quark mass

insertion.

b} Lowest order contribution to ¢gq(q2) induced by the second term in

Eqs. (3).

a) <@¢> contribution to ¢gq(q2).
b) <$G“V(la/2) ¢ Fiv> contribution.

2

c) <F“> contribution.

a),b) <@ P1¢$F2¢> contribution.

c) <F3®> contribution.

a) Variation of R(t) versus T.

b) Upper bound on the n'-mass versus the invariant mass ﬁs.

Variation of the absolute values of various terms of Eq. (16)

normalized to (&S/n)2(9/4ﬂ2); — mg—term; s <as¢s>; —— <F%s,

We have used ﬁs = 0.3 GeV, A = 0.15 GeV and aS<F2>= 0.04 Gev'.

Variation of k defined im Eq. (20) versus different values of the

parameters.
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Fig. 6b
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