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ABSTRACT

This course was given in the 1983-84 Academic Training Programme. It
is designed as an elementary introduction to both the theory and the hard-
ware for transfer lines and circular machines. The course is limited to
linear problems and treats the topics of single particle motion in the
transverse and longitudinal planes, emittance ellipses, parameterisation,
optical properties of some specific modules, stabilities in the transverse
and longitudinal planes, field and gradient errors, and scattering in thin

windows.
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COORDINATE SYSTEMS AND FREQUENTLY USED SYMBOLS

Local coordinates for lenses

z ( Vertical)

y (Lens axis)

x (Horizontal)

Local coordinates for cavities

9 ( Cavity axis
coincident with beam)

Local coordinates for the beam

y is used as general transverse
coordinate for both x and z

Local centre
of gyration

Central orbit

s ( Tangential to beam direction )

(MKS units)
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average machine radius [m]

transverse betatron amplitude function [m] in plane (y,s)

phase advance of betatron oscillation [rad]
number of betatron oscillations per revolution in plane (y,s)

particle momentum [GeV/c] (ap/p fractional momentum deviation)

transverse dispersion function [m] (local transverse co-ordinate of an
off-momentum closed orbit normalised by Ap/p - often denoted by ap in the
literature)

momentum compaction factor [m] (defined as AR/(aAp/p) but often defined as
(AR/R)/(ap/p) in the literature)

transverse emittance [nem rad]

mass of ionised particle [kg]

charge of ionised particle [A s]
particle velocity [m s-!]

force on ionised particle [N]

focal length of a lens [m]

magnetic scalar potential function [T m]
magnetic flux density [T]

magnetic field strength [Am~!]

electric field strength [Vm‘l] (the context should distinguish between emittance,

Ey, and the component Ey of E)
time [s]

cyclotron frequency [rad s-!]
revolution frequency of synchronous particle [rad s’l]
angular frequency of accelerating field [rad s-l]

phase of cavity voltage as ion traverses cavity [rad] (¢g is phase for
synchronous particle)

harmonic number (wg = hwy f_)

ratio of total energy of particle to its rest energy | The context should easily
distinguish between these

transition energy variables and yy and
B, even when the "y"

v/c where ¢ = velocity of light subscript is dropped to

shorten the formulae
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particle energy, synchronous particle energy [eV or J]

synchrotron oscillation frequency [rad s'l]

normalised variables used for transverse phase space

ds [rad]

B

also used briefly in Section 2.1 as the scalar potential function for magnetic
fields

normalised betatron phase variable in a circular machine, @(s) =

o —un

is frequently used to indicate differentiation. In normal space y' is dy/ds but
in normalised space Y' is dY/du



1. INTRODUCTION

A11 particle beams have a natural divergence and if left to propagate through free
space they would spread out indefinitely. Such a situation may be acceptable over very
short distances, but in most cases this growth in beam size must be stabilised by applying
focusing forces. In the early cyclotrons (see Fig. 1 and Appendix A), this was done
almost empirically by slightly diminishing the guiding magnetic field with orbit radius.
As these machines evolved, a complete analysis was made of the focusing action and a
simple criterion for focusing in the two transverse planes was obtained.

A

Guide field, B |
: lons produced
Radius of gyration ! at centre
/ Extraction
electrode
P T - P
/ T ~ N
\ ( S N\ <~
b igte ) /
=~ P — —
o T /
~ _,////)(/ /' | /
%
R F driving
force Dees Extracted beam

Fig. 1 Schematic cyclotron

Defining the Field Index,

_dB/B
" T dolp
then for focusing in both transverse planes
0<n<1 . (1.1)

A complete family of machines (cyclotrons, synchro-cyclotrons, synchrotrons) based on
this principle were developed. They are referred to as constant-gradient (CG) machines

and also as weak focusing machines owing to the above limitation imposed on the field in-

dex.

In 1952 Courant, Livingston and Snyder proposed a more flexible way of focusing beams
based on strong alternating field gradients. The idea had been suggested earlier by
Christofilos but it was not published. This new principle is directly analogous to a
well-known result in geometrical optics. The combined focal length, F, of a pair of len-
ses of focal lengths f, and f, separated by a distance, d, is given by

_d
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—
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If the lenses have equal and opposite focal lengths, f; = -f,, this reduces to the simple
form F = f2/d which is always positive. In fact, F remains positive over quite a large
range of values when f; and f, have unequal values, but are still of opposite sign. It
will be shown later, that quadrupole lenses focus charged particle beams in one plane
while defocusing in the orthogonal plane. Thus a pair of opposed quadrupole lenses would
have the optical equivalent of Fig. 2 and would be focusing in both planes.

Horizontal plane

Vertical plane

Fig. 2 Optical equivalent of a pair of opposed gquadrupoles

Within certain limits a long series of alternating lenses will focus. Intuitively
one sees that although the beam may be defocused by one lens, it arrives at the following
lens further from the axis and hence is focused more strongly. Structures based on this
principle are referred to as alternating gradient (AG) structures and because the field

index is no longer restricted and can be conveniently made much greater than 1 to focus
more strongly so as to reduce beam sizes, these structures are also referred to as strong

focusing structures.

In these lectures, I shall confine myself to discussing mainly AG, strong-focusing
structures, which are now used for all large accelerators and transfer lines, but in fact
many of the characteristics of weak focusing structures will naturally appear in the
theory as it is developed. As the lectures are designed as an introduction I will include
descriptions of hardware, physical explanations and analogies where they appear useful.

2. MAGNETIC LENSES

AG structures in their basic form are built up from individual dipole and quadrupole
lenses, which determine the structures' geometry and focusing, respectively. These two
basic lenses determine what is known as the linear optics of the structure. In this chap-
ter, higher order lenses will also be described as a simple and logical extension to the
series, but in the subsequent chapters only linear optics problems will be dealt with as
the non-linear behaviour of AG structures falls well beyond these lectures.
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2.1 Multipole potentials for transverse field lenses

The ideal fields for an AG structure are purely transverse and can be expressed in
the current-free aperture of the lens using a scalar potential function, @, in the form of
a polynomial expanded about the Tlens' axis,

g =0 + ) - [am cos (me) + b sin (mo) ], (2.1)

where an and by are constant amplitude factors. m = integer.

The polar co-ordinate form above is general and can be used to express any transverse
field. It is useful in lens design work and in lens measurement using rotating coils.
The sine terms will be designated "right multipoles" and the cosine terms "skew multi-
poles". It will be shown later that the beam in an AG structure has two independent

orthogonal, normal modes of oscillation and it will turn out that the choice of right
lenses will make these modes horizontal and vertical. This in turn makes it more con-
venient to use Cartesian co-ordinates (see Fig. 3) for optics calculations.

z {Vertical)
Lens axis Lens axis

8 ¢ .

\ r
T 8 =0 B

X

(Horizontal )

(a) Polar 'b) Cartesian

Fig. 3 Local co-ordinate systems for lenses

A quick way of transforming Eq. (2.1) into Cartesian co-ordinates is to use complex
notation, defining skew lenses as real and right lenses as imaginary. Remembering that
[cos(me) + j sin (me)] = (cos @ + j sin )™ (De Moivre's Formula) we get:

=@y +) a Re (r cos 8 + jr sin 6)™ + b Im(r cos & + jr sin @
p " " (2.2)

=2
I

)m

=0+ a Re(x+jz)"+bIn(x+jz)",
1



The field components are obtained by differentiation, e.q. By = -d3@/3x, as given in

Table 1.
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Table 1

Potentials and Field Components in Multipole Lenses

Multipole Right lenses Skew lenses
_ . N _ . \N
@n = anm(x+Jz) @n = anRe(x+Jz)
Dipolet, n =1 #) = bz By = arx
BX =0, BZ = -b) Bx = -ay, Bz =0
Quadrupole, n = 2 | @, = 2boxz @y = a2(x2-22)
BX = -ZDQZ Bx = -262)(
BZ = -2b2X BZ = 2622
Sextupole, n = 3 @5 = by(3x%z-2°) P5 = a3(x3-3xz?)
Bx = -pb3xz 8x = 3a3(22-x2)
B, = 3b3(2%-x?) B, = 6a3xz
Octupole, n = 4 By = 4bq(x3z-xz3) By = aq(x“+z“—622x2)
BX = -12buxzz + 4qu3 BX = -4a.+><'3 + 12a422x
BZ = -4qu3 + 12ngz2 BZ = -4an3 + 12aqx22
etc etc etc

* The horizontal field dipole naturally falls into the skew category,

but it is never referred to as a skew lens.

It is clear from Eq. (2.1) that right* and skew lenses are physically identical but
are mutually rotated by n/2n. The ideal pole profiles for exciting the various multipoles
are simply equi-potential surfaces, but since in practice the pole has to be truncated,
both transversely and axially it may be necessary to modify the shape to obtain the

required field quality.

* In the later sections the word 'right' will be omitted in line with normal practice.
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Fig. 4 Practical lenses



2.2 Practical lenses

The schematic cross-sections of practical magnets of the dipole and quadrupole types
are shown in Fig. 4 with the approximate expressions for the ampere turns needed to excite

them.

The detailed design of such magnets is very complicated. The specified field quality
usually requires the designer to compensate for the truncation of the pole in the trans-
verse and axial directions and to take care of non-uniform saturation effects. To do
this, the pole profile can be specially shaped both in the transverse and axial direc-
tions. Alternatively, or more usually to complement the profile correction, shims are
added along the length of the pole or at the ends during the magnetic measurements.

Structures built up of pure dipoles and pure quadrupole lenses are called separated
function structures. However, it is relatively easy to combine many multipoles in the
same magnet and structures with magnets combining the dipole and quadrupole fields
in a single unit are called combined function magnets. Typically these magnets are of the

"C" design as shown in Fig. 4.

2.3 Hard edge approximation

In order to simplify the optics calculations, it is necessary to replace the real-
world magnet by an idealised version, referred to as the hard edge model (see Fig. 5). 1In

this model the integral of the field or multipole of interest through the magnet is
replaced by the central value times an effective length.

Field or multipole component

i Hard edge model
True field shape B

\
\\ / \ T Central value
Lanns —t- —

Lens y

e Sfeel length

Effective magnetic length , ¢

/de = Brax - less

Fig. 5 Hard edge model
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Clearly such a model neglects many things, but with some additional effort the true
shape of the end field can be more closely approximated by having adjacent blocks of field
of diminishing strength and several computer codes will allow the superposition of hard
edge models, when more than one multipole must be considered as in combined function mag-
nets, providing the same effective length is used. The longitudinal components in the end
fields, however, are completely lost in this model. These components do enter into edge
focusing and the hard edge model has to be modified slightly to include them (see section
3.5.2). They also excite non-linear coupling resonances but this is beyond the scope of
the present lectures, but fortunately their effect is rarely of any importance.

In conventional magnets, the effective field lengths exceed the iron length but in
superconducting magnets it is the contrary. Table 2 gives approximations for the effec-
tive field lengths and central fields in conventional lenses whose gaps or inscribed aper-
tures are far less than the iron yoke length.

Table 2

Approximations for the effective field lengths and central fields of lenses in which the
gaps or inscribed apertures are much less than the iron yoke length and the iron is

unsaturated
Multipole Effective magnetic length Central field
poNpI
Dipole xeff = liron + 1.3 h {0.7 h} | By =
h/2
ZpoNpI
Quadrupole leff = xiron + a {0.6 a} Go = 2
6poNpI
~ v~
Sextupole Reff = liron + 0.5 a G0 = 3

Notation

h = the dipole gap height [m]

a = radius of inscribed circle for multipole lenses [m]
i on = Yoke length [m]

Values in { } for the dipole and quadrupole indicate the
reduced effective length when the iron is saturated
NpI are the required ampere turns per pole [A]



3. EQUATIONS OF MOTION

The purpose of an AG structure is to transmit a large number of particles over Tong
distances and often through large angles, while keeping all of their trajectories grouped
together, i.e. focused. This description of the action of the structure already suggests,
that it would be reasonable to analyse the problem in two stages. Firstly one searches
for an orbit, which satisfies the needs, and then one expresses similar orbits in the co-
ordinate system of the first ideal orbit, in the hope of finding a set of orbits which
behave as required.

3.1 Central orbit

Rather naively, the central orbit can be defined as the ideal trajectory through the
transfer Tine or accelerator for particles of the design momentum.

In a separated function structure, this trajectory coincides with the axes of the
quadrupoles. Since quadrupoles (as well as all higher order multipoles) have zero field
on their axes, the geometry of the central orbit is then solely determined by the di-
poles. Turning the problem round, one first positions the dipoles when designing a struc-
ture. This appears simple at first sight, but it will become clear later that the
detailed positioning of the dipoles is important for particles whose momentum is slightly
different to that of the central orbit.

In combined function structures, there is no clear reference such as the quadrupole
axes in the previous case, and the central orbit is a more arbitrary choice and merits
better the name ideal orbit.

In many practical cases, the central orbit may be somewhat difficult to determine.
For example, transfer lines are often required to pass through the fringe fields of other
structures and in colliders the beams are often influenced by the analysing magnets of the
experiments. One solution is to create a field map and to track through that map. This
is dealt with in Appendix B. Once this has been done the field can be expanded in a mul-
tipole series about the orbit, again by using the field plot. Knowing the distribution of
the dipole and quadrupole fields, the designer is then in a position to continue and to
calculate the linear optics of the whole structure.

3.2 Betatron oscillations

We start by considering a small volume of space through which the central orbit
passes (see Fig. 6). The central orbit can be thought of as comprising segments of uni-
form cyclotron motion as described in Appendix A, even if these segments have to be made
vanishingly small as in a combined function magnet or of infinite radius of curvature as
in field-free regions. The only restrictions that we shall impose at this stage are that
the field is everywhere perpendicular to the local segment of the central orbit and that
Bx = 0 in the plane of the central orbit.



P1 central orbit particle
P2 another particle

Particles have same energy
and therefore the same speed, v

B T~
0 ' Central orbit </\\

Centre of gyration
of central orbit

Fig. 6 Betatron oscillations

We now include one other particle, which has the same energy and speed but is on a
nearby orbit. This particle will also have an associated radius of curvature and instan-
taneous centre of gyration, but we are more interested in expressing its motion with
reference to the central orbit. For this we will use a new local system of co-ordinates
(x,2,s), which has its origin on the central orbit. The x-axis is the prolongation of the
radius of curvature of the central orbit and the z-axis is perpendicular to the plane of

the local segment of the central orbit.

Considering each particle in turn, we can interpret its local segment of orbit as a
cyclotron motion and we can equate the radial acceleration, evaluated using polar co-
ordinates centred on the centre of gyration of the central orbit, to the magnetic deflec-
tion force. The general expression for radial acceleration is given by
_ rd?%p 6,2
e - ®

dt dt
For the central orbit d2p/dt? is zero, but for the general orbit it must be included,
since this orbit has a different centre of gyration. The second term p(d6/dt)? is more
familiar as v2/p.

2 2
Central orbit: m 4% (=0) - ™_ < eBgv (3.1)
T dt? o

General orbit:

2 2
x-component: m 9 (x+p) - M- eB v (3.2)

dt (x+p) 2

d2z
z-component: m—— = -eB v (3.3)
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We will now add one further restriction that x € p. This is otherwise known as
imposing paraxial conditions. In fact it is easily satisfied, since transverse beam

dimensions are typically measured in millimetres, whereas bending radii are usually tens
of metres. Using this and the fact that p is constant, Eq. (3.2) can be reduced to

2 2
md7X O M) C Xy - eBy . (3.4)
dt? P p z

As was described in Chapter 2, a 2-dimensional field can be expanded about an axis in
terms of multipole fields. By doing this about the s-axis, we can relate By and B, to
By on the central orbit. However, we have specified that By = 0 when z = 0, which
excludes all skew multipoles and to keep the problem linear we limit the expansion to
first order (quadrupole).

bBZ n
BZ=Bo+X____ =BQ(1-._X)
OX 0 o]
(3.5)
0B
B.=z_X =z E&ﬂl
X 0z ¢ o)

Remembering that, @By/dz = 3B;/dx, since curl B = 0 and the definition of n from Eq.
(1.1).

By substituting Egq. (3.5) into (3.4) and (3.3) and using the expressions for the
cyclotron motion from Appendix A Eq. (A5) we = IBoe/m| and Eq. (A6) Bge/m = -v/p, we
find the simple equations

2 2
9_;*'(0(2:(1 n)x =0'_;‘+V_2 (1-n)x = 0
dt dt p
(3.6)
2 2 2
4z, 20, = 82 +‘!7 nz = 0
dt dt? o

Equations (3.6) (formulation with wc) are the Kerst-Serber equations for betatron
oscillations, which were first derived and applied for weak focusing machines. By inspec-
tion one can see that the solutions are stable oscillations if

n <1 in the x-s plane
n > 0 in the z-s plane.

Thus if we wish to satisfy both planes simultaneously:

0<n<1l . (3.7)
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Hence we have derived the weak focusing criterion for constant gradient machines men-
tioned in the introduction.

We should note at this stage that by excluding skew multipoles and right multipoles
above quadrupole, the motions in the two planes are completeley decoupled and linear.

When considering strong focusing structures, where |n§ can be greater than unity, it
is convenient to transform Eqs. (3.6) into a form familiar to AG specialists. Firstly the
independent variable is changed from time, t, to distance along the central orbit, s, by
simply applying ds = vdt and a new variable K(s) is defined such that

dB

(1%2) = (}§_+ 1 772y 45 plane
P P Bp dx
K(s) = (3.8)
dB
no. -41_.__5 z-s plane
02 Bp dx
Equations (3.6) now simply become
2
Eﬁg.+ K(s)y =0 , (3.9)
ds

where y is introduced as the general transverse variable, replacing both x and z.

It is clearly natural to assume the z-axis to be vertical, as circular machines are
usually built in the horizontal plane, but nothing prevents us turning Fig. 6 through 90°
and considering elements with vertical bending, in which case K; would have the form

1 1 9,
(‘Ef - ).
0 Bp dx

This would in fact be essential for many transfer lines.

Although in the combined function field of Fig. 6 the x and z variants of K(s) look
different, it turns out in practice that n is of the order of several hundred, thus (1-n)
= -n and the two planes are virtually symmetric.

If the field is a pure quadrupole, there will be no bending and pg » = yielding
1 de

K o= -k =+_> _Z%
X Bop dx

(note that Bgp = 3.3356 p from Eq. (A8) and is constant even if we choose to send pg » =
and By » 0).
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If the field is a pure dipole field, then

dB dB
_Z-_X=0
dx dz
and
1
K =—, K, =0.
X p2 z

Thus there is some weak focusing due to a pure dipole field in the plane of bending.
This is illustrated in Fig. 7 and is the basis of focusing in a 180° spectrometer.

180° spectrometer

—

s magnet
© B,
p
P P 2
/ / ®©8B,
f T )(> A 1 x»
E, E,

lon source

Fig. 7 Dipole zero-gradient focusing

We specified in Fig. 6 that By = 0 in the x-s plane. In fact, we could relax this
condition and accept a tilted dipole field as shown in Fig. 8, in which case K(s) has the
form 1/p2 in both planes with the appropriate p-values. It could also take the form
(l-n)/pz, but such lenses do not exist. It would not, for example be any good tilting a
combined function dipole and quadrupole since this would introduce a skew gradient and
couple the two planes.

Finally, if there is no field at all, i.e. a drift space, then

Table 3 summarises the various forms K(s) can assume.
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Central T
orbit T
Centre of
gyration
Fig. 8 Tilted dipole
Table 3
Forms for K(s)

Magnet Kx KZ
Combined function with 11 % 1 98,
vertical dipole field pi Byp dx Bop dx
Combined function with 1 de 1 1 dB
horizontal dipole field ° Y

orizontal dip e Bgp dx 02 By dx
dB dB
Quadrupole _l_ _z ___£_ i
Bgp dx Bgp dx
Vertical dipole field l/pi 0
Horizontal dipole field 0 1/p§
Tilted dipole field 1/p2 1/¢%
Drift space 0 0
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The solution of Eq. (3.9) depends on the form of K(s), which in an AG structure is a
step-1ike function, but of course, it is in principle easy to make a step-like solution by
solving each region of constant K(s) independently and then combining the solutions. It
is convenient to use a matrix form and eliminate the constants of integration using the
initial conditions at the entry to the step.

Thus we find

1 .
K> 0 y cos ¢ ~—_sin ¢ y
Focusing = /K (3.10)
v/, -/K sin ¢ cos ¢ y'/u
cosh ¢ 1 sinh ¢ y
K <0 Y —_
Defocusing = V=K (3.11)
y'/, /-K sinh ¢ cosh ¢ Y'/1

K=0 y 1 2\/y
Defocusing ( ) = ( )( ) (3.12)
y'/2 0 1/\y'/y

where % is the length of element = (s,-s;), y' is the longitudinal derivative dy/ds and
o = /|K| 2.

From Table 3 and Egs. (3.10) to (3.12), we can see that quadrupoles focus in one
plane, while defocusing in the other. Usage specifies that if a quadrupole focuses in the

horizontal plane, it is called a focusing quadrupole (see Fig. 9).

Focusing-F type Defocusing-D type

Fig. 9 Fields and forces inside a quadrupole
(Drawn for positively charged particles leaving the paper)
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If we represent the matrix of the ith element in a structure by Mj, then the
solution for transmission through the whole structure would be

M= M MM e My (3.13)

The trajectory through the elements of the structure would be a continuous set of
hyperbolic, sinusoidal and linear segments and it is clear that a series of elements could
be chosen with alternating K-values separated by drift spaces such that the motion would
be quasi-oscillatory and remain well-focused about the central orbit. Although this
motion would not be smooth and periodic as in the weak focusing case, it is still referred

to as a betatron oscillation.

The rather disjointed appearance of the real-space motion would be due to the loss of
continuity in the second derivative of the amplitude at boundaries between elements, where
the function K(s) changes discontinuously, and to the arbitrary layout of the elements,
which in the general case could not give K(s) a periodic form. Of course, the use of the
matrix formalism does not exclude dividing a region of constant K into separate sections,
so that the trajectory can be determined at as many points as is required. Whether this
motion can be made stable in a circular structure is a problem left until Chapter 4. The
use of matrices is particularly well-suited to such piecewise structures, but it can of
course also be applied to constant gradient machines such as the cyclotron.

3.3 Thin lens approximation

The matrix equatons (3.10) and (3.11) for transmission through focusing and defocus-
ing elements can be considerably simplified if the argument ¢ = 2/K is much less than
unity. The lens can then be replaced by an infinitely thin lens of strength K& placed at
the centre of the original lens

y 1 0\ /vy
= (3.14)
v/ \sike] 1/ \y'/y
where
dB
|Ke| = R S N (3.15)
lFi Bop dx

The new variable, F, is recognisable as the focal length (see Fig. 10). The minus
sign denotes focusing and the positive sign defocusing.

The simplifications of replacing sin ¢ and sinh ¢ by ¢ and cos ¢ and cosh ¢ by unity
are well known and the accuracy is evident. It is less evident why & has to be replaced
by zero in the top right position of the matrix. In fact we require £ = 0 so that the
determinant of the matrix remains unity. All matrices must satisfy this requirement
unless there is some special mechanism such as energy loss by radiation. The unit
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Thin Tens (strength Kg, length zero) put at centre of the true lens
of Tength 2.

Fig. 10 Focal length of a thin lens

determinant is an expression of Liouville's Theorem on the conservation of phase space
volume. In the case of multi-dimensional matrices, there is a stronger requirement called
the symplectic\ condition, which in the one-dimensional case becomes equivalent to
Liouville's Theorem and the unit determinant.

The true length of the lens reappears of course in the drift spaces on either side.
This approximation is good if the length of the original lens is much smaller than its
focal length.

In separated-function, strong-focusing structures the l/p2 focusing term in the
dipoles 1is usually neglected on the grounds of it being small, although in accelerators
most of the circumference is filled by dipole field.

Having made these approximations, transfer lines and circular machines are described
by two simple matrices,

10 1 2
_1 ... Fq. (3.14) and ... Eg. (3.12)
= 1

r 01

In fact as machines progress towards TeV energies, these approximations improve and
in this small way at least these big machines are simpler. The LEP lattice cell, for
example, is more than adequately represented in this way with an accuracy better than 1%
in the results.

3.4 Motion with a momentum deviation

So far we have derived equations for the motions of ions with small angle and posi-
tion deviations from the central orbit, but beams are never mono-energetic, so we must
also find equations for the motion of ions with a small momentum deviation.

We proceed as before by considering Fig. 6 and re-writing Eqs. (3.2) and (3.3) with
an increase, dm, in the ion's mass and an increase, dv, in the ion's velocity. These

increments are of course constant for any given particle.
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- (m+dm)(v+dv)2

(m + dm) el (x + p) Txvo) = eBZ(v+dv) (3.16)
X+*p
(m + dm) Ef;. = —eBx(v+dv) . (3.17)
dt

We start by making the same assumption as before that x < p and in addition, that dm
«m and dv € v. By expanding and re-arranging the terms, we can obtain exactly the same
equations as before with some new terms on the right-hand side.

2 2 2
d_’2‘+V_2(1-n)x=-i(1-ﬂx)(-v£‘ﬂ+dv-M)+Eﬂ<1-i) f W)7 X
dt? o o P m m p p p o
2 2 2

4z v = vz (dm_dv, dvdmy

dt? p2 p m v mv

Neglecting all second order terms in the small quantities, dv, dm, x, and z and changing
the independent variable from t to s, gives

2
dx, (don) o 1dny dvy o 1dp (3.18)
ds? o oom v pp
2
Fzyn ;-0 , (3.19)
dsZ 2

using dr . (9T.+ 21),

p m v

where p is the momentum of the ion.

The z-s plane is then unchanged to the first order and is neglected here, while the
x-s plane is modified by a constant term on the right-hand side. In fact, we are neglect-
ing the source of chromaticity problems, but as this is an introductory course we have the
right to do so.

The coefficient [(1-n)/p2] can be 1/p2 for a pure dipole or n/p2 for a pure quadru-
pole, so we use K(s) as the general coefficient and we remember its various forms tabu-
lated in Table 3. Thus we finally have the equation below, which is complementary to the
betatron motion Eq. (3.9),

— Ky == (3.20)

where 'y' indicates the plane in which bending occurs whether it is x, z or both.
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The solution to Eq. (3.20) is of the form

y = Acos (/Ks) + B sin (/Ks)+=2P

O |

°
R |

As before, we create the complete solution by assembling piecewise the solution for
each region of constant K(s). Using the entry conditions to each section the constants

are found to be

If we treat Ap/p as a variable the result can be put into a 3 x 3 matrix form:

K>S0 ¥\ cos o 1 ging lzcos e y
Focusing /K oK
y' | = |- /K sing cos ¢ sin ¢ y' (3.21)
o)
Ap Ap
— 0 0 1 —_—
P/ PN
, 1. ho-1!
K <0 y cosh ¢ —— sinh o SOSM & -1 y
Defocusing /=K -pK
y' | = | /=K sinh ¢ cosh ¢ sinh ¢ y' (3.22)
o/-K
Ap Ap
— 0 0 1 _
P /2 1

The orbit of an off-momentum particle is usually expressed using a momentum disper-

sion function, D(s), such that

y = 2P p(s) (3.23)
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3.5 Edge focusing

So far we have considered regions of uniform K(s), or rather different magnetic ele-
ments, without worrying about the boundaries between them, except to define the hard edge
model in Section 2.3. In some small weak focusing machines and in zero gradient synchro-
trons a boundary effect called edge focusing is very important. A brief account of edge
focusing is given here, although it is of less importance for AG structures and of vir-
tually no interest in very large machines such as LEP.

If the boundary between elements is perpendicular to the central orbit, as is nor-
mally the case for quadrupoles, there is no edge focusing. The bending in dipoles first
introduced edge focusing problems and then it was soon found to be convenient to
intentionally slope the edges of dipoles to give focusing in early machines.

The focusing action arises in two ways.

3.5.1 Edge_focusing_in_the_plane_of _bending

In Fig. 11 two adjacent parallel ions having the same momentum are crossing a dipole.

Dipole i Drift

Trajectory 2

% Trajectory 1

Fig. 11 Beam crossing the edge of a dipole at an angle € to the normal

By the time the second ion reaches the magnet's edge, the first ion has already
suffered a kick A@, which is defocusing in the case of Fig. 11.

AQ=A_S‘=é_X_tan€ .

PP

Thus the focal length of this edge lens is

F=2%-_9° | (3.24)
AP tan e
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This edge effect is very local and rather weak, so we can use the thin lens approxi-
mation of Section 3.3, Eq. (3.14):

y 1 AYR
y. 9 = tan ¢ 1 yu 1 . (3.25)

Figure 12 summarises the effects of slanting the dipole ends and the sign convention

for .

€,, and €,,; negafive

Focusing

€rn = Egut = 0

No focusing

€,, and €., Ppositive

Defocusing

Fig. 12 Edge focusing in dipole in plane of bending

In the special case for which eijy = equt = 0, the dipole is referred to as a
sector magnet. For the standard parallel ended dipole ¢ is half the bending angle. The
final magnet matrices are found by multiplying the central field matrix and the ends in
the appropriate order.

This effect invokes the action of the longitudinal field components in the fringe
fields at the magnet ends. Figure 13 illustrates how these fields affect the focusing.

As in the earlier cases, by inclining the ends of the magnet the By component can
be changed in sign and magnitude. The exact form of the fringe field may not be known and
one is faced with a number of possibilities.

I am going to content myself here with just quoting a result assuming a linear drop-
off of the fringe field.
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Beam

y - z plane x -y plane

(assuming fringe field is purely 2-dimensional in y-z plane in the region of the beam)

Fig. 13 Focusing of longitudinal fringe fields in dipoles

1 o\ 7y

y
= (3.26)
Y 1.(.__11____ -tane) 1/ \y'/}

2 p 6p cos €

where b is the distance over which the fringe field drops linearly to zero.

4, MORE ABOUT BETATRON OSCILLATIONS

We have found that it is possible to build up a stepwise solution for an AG structure
by solving each section and then multiplying the matrices together in the appropriate
order. This appears to be a little disjointed* and lacking the beauty of smooth analytic
functions, although it is perfectly valid. In a circular structure, there is of course an
overall periodicity and by the nature of an AG structure the ions oscillate about the cen-
tral orbit in a pseudo-harmonic manner. Would it be possible to extend this pseudo-har-
monic behaviour and to choose a rather strange set of parameters for a given structure and
to end up with the satisfaction of having simple harmonic motion for the solution?

4.1 Parameterisation

We start by writing a general solution for Eq. (3.9) given below:

E;%2+ K(s)y =0 (3.9)
y(s) = Ag(s) cos [u(s)+B] , (4.1)

where E(s) and u(s) are specially chosen and take into account the variation in the struc-
ture which is expressed in K(s). A and B are constants.

* The displacement and its first derivative are continuous and only its second derivative
is discontinuous.
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More specifically we define

wis) = [ 35, (4.2)

By substituting Eq. (4.1) in (3.9) and using (4.2) in the differential form, du/ds =
l/g2 we find that g(s) must satisfy the equation

2
48 4 gsye = L. (4.3)
d52 E3

Traditionally, £(s) is written as vB(s) and the earlier equations become

y(s) = AB(s) cos [u(s) + B] (4.4)
s
w(s) = [ 95 . (4.5)
o B(s)

The function B(s) is known as the betatron amplitude function and p(s) as the
betatron phase. Since we know K(s), B(s) and p(s) can be determined. Finally, if we
define Y(s) = y(s)/V/B(s), we have simple harmonic motion defined with the so-called
normalised amplitude:

Y(s) = A cos [u(s) + B] .

The function K(s) can be retrieved at any point in the structure simply by combining
the betatron amplitude function and its second derivative according to Eq. (4.3). On the
other hand B(s) depends upon the whole structure, as does also p(s) the phase of the
betatron oscillation. Thus the ion travels round the machine in real space with a kind of

distorted sine wave whose amplitude varies as vB(s) and whose phase advances unevenly as
1//8(s).

The determination of B(s) for any structure of appreciable complexity must be carried
out by a computer, but assuming this can be done, further study of the structure can be
made using the analytic form of Eq. (4.4).

4.2 Generalised transfer matrix

First we rewrite Eq. (4.4) as
y(s) = &/B cos p + VB sinp , (4.6)

where C and D are constants.
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The derivative of y is easily obtained if we remember that dp/ds = 1/ from Eq.
(4.5). For convenience, we also define a new variable

«=-138
2 ds
' __C . D .
y'(s) = -2 (a cos p+ sinp) + — (cos p - a sin p) . (4.7)
/B /B

The initial conditions can be used to replace the constants C and D:

c=2_; - (y'/ﬁ + ——yl‘”> . (4.8)
/B1 ! /Bl

Although, it is a little more complicated than before, by substituting the expres-
sions for the constants in Eq. (4.8) into the two Egs. (4.6) and (4.7) one can verify
quite easily the generalised transfer matrix M(s,|s;) of Eq. (4.9),

—Eé-(cos B+ a; sin p) /B1B, sinp
= B1
M(s2]sy) _[(1+a1a2) sin u + (ay-a;) cos p) ?l_(cos L - sin p) (4.9)
VB1B2 B2

where

s
p = —1— ds .

sy B(s)

This form of transfer matrix is completely general.

If now we consider a circular structure comprising a series of identical periods, the
function K(s) will be periodic, i.e. K(s) = K(s+L) where L is the period length. If K(s)
is periodic the transfer matrix elements must also be periodic and by symmetry g, = g, = 8

and a; = ay = a. Thus for one period in a circular machine Eq. (4.9) reduces to

(cos p + a sin p) B sin p
M(s) = (4.10)
-y sin p (cos p - a sin p)

where
s and p are for one period

a«, B and y are the entry/exit values and

v = (1+a®)/p . (4.11)
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a, B and y are sometimes called the Courant and Snyder parameters and sometimes the
Twiss parameters.

By inspection, it can be seen that this form of the generalised matrix can be split
into two parts such that

M(s) = I cos p+ Jsinp ,

where

10 a B
I-= and J =
01 -y -a
and it is easily verified that
J2 = -1

The algebra of M(s) is clearly the same as that of a complex number and we can apply
De Moivre's formula which says that (cos 6 + j sin 0)™ = (cos m6 + j sin me). Thus for
transmission through m identical periods of structure, each period having a phase advance,
p, the matrix is

=
n

I cos (mp) + J sin (mp)

and

I cos (mp) - J sin (mp) .

Finally writing the matrix in full for transmission through m periods of a circular
machine we get

m cos (mp) + a sin (mp) B sin (mp)
M = ) (4.12)
-(liﬁ_) sin (my) cos (mp) -~ « sin (my)
B

4.3 Stability in a circular machine

Considering first a single cell, with a transfer matrix M, we search for eigen-
vectors, i.e. a vector (y,y') which when multiplied into M is returned multiplied by a
simple factor A, the eigenvalue.
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Multiplying out, we find

(M1 - M)y + Mppy!
Mar1y + (Mo - M)y!

n
o O

Firstly we can solve for A, by eliminating y and y' by dividing the two equations.
A% - (Mg + Mpp)h + (MiMpp - MigMpy) = 0

Now, it is easily verified that all the transfer matrices used so far have unit
determinants, so that

AT - (M + Mgo)a +1 =0

Hence, there are two roots and two eigenvectors:

A =

a,b [My + My ¢ /My o+ My)? - 4] . (4.13)

N

Let us choose, cos p = (My; + My5)/2 in the secure hope that p turns out to be the
betatron phase advance u already defined in Eq. (4.5).

Then Eq. (4.13) can be re-expressed as
Ay p = COSp £ jsiny = et (4.14)

We do not need to evaluate the eigenvectors explicitly, but we can say that all ini-
tial conditions can be expressed as a linear sum of these two vectors, so that for trans-
mission through m periods of structure

MMy = Ax';‘va + ergvb s (4.15)
where
V is a general vector (y,y')
V3 and Vp are the eigenvectors
A and B are constants, such that V = AVy + BVy.

In order that the motion is stable in Eq. (4.15) the eigenvalues Az and Ap must

be complex constants of unit modulus or in other words p must be real in Eq. (4.14) and

(M + Myy) = |1_Trace Ml <1. ‘ (4.16)
2

N |

This is the stability criterion for a circular machine and of course it has to be
satisfied in both planes.
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For a thin lens structure of alternate focusing and defocusing lenses with a constant
lens separation L, we have

1 L, ,1 o0, ,1 L 1 0
F F

2 2

1-L-o " a2
FF F
L 1+L
F2 F
2

CoS p = 1 Trace M =1 -.l (E) .

2 2 F

Thus, F > L/2 for stability.

4.4 Emittance, an invariant of the motion

Returning to the basic equation for the betatron motion, in the form of Eq. (4.4), we

have
y = A/B cos (p + B) (4.4)
y' o= - oA cos (p+B) - A sin (p +B), (4.17)
/B /B
where

A and B are constants set by initial conditions,
B, u, ¥y and y' are all functions of s, and
remembering dp/ds = 1/ and « = - 1/2 dg/ds.

The phase terms can be eliminated between these two Eqs. (4.4) and (4.17).

A cos (p+ B) =y/VB
A sin (p + B) = -(y'vB + ay/vVB) .

Squaring and adding, we find an invariant of the motion,

2
A (= constant) = [Y_ + (y'/B + ay/vB)?] .
B

This is in fact the equation of an ellipse in (y,y') space, or phase space as it is
known. The constant A? is equal to the ellipse area divided by n. Re-arranging slightly,

we get

E=A2n = n(yy? + 2ayy' + By'2) . (4.18)
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The area is here denoted by E, which is called the particle emittance (as opposed to
the beam emittance which will be defined later).

There 1is some possible confusion here, since E is often defined as the (area)/sn
rather than the area. To avoid such confusion, one can write for example, E = (10 =)
mm.mrad, showing that the = is included, whereas E = 31.4 mm.mrad leaves the reader gues-
sing if = is included or whether it is the alternative definition.

If we now have many particles distributed around the same phase space ellipse at the
entry to a structure, they are all characterised by the area of the ellipse, E and the
initial shape of the ellipse. As they subsequently pass through the structure, the
ellipse will change in shape according to the B, a« and y values, but its area E, remains
constant as demanded by Eq. (4.18). Certain simple geometric properties of an ellipse can
be used to find such quantities as the maximum excursion, maximum divergence, etc. at any
point in a structure knowing the emittance and the a, B and y values along the structure.
Figure 14 Tists some of these characteristics.

~
"

Fig. 14 Geometric properties of an ellipse

In practice, we do not have single particles, or even small numbers of particles with
the same invariant, E. Instead we have a beam comprising perhaps 1012-1013 particles with
most particles close to the central orbit and having small emittances and progressively
fewer particles at Tlarger emittances. In this case, we define a beam emittance, which is
representative of the beam as a whole. Again there are possible confusions between the
ways in which this is done. For these lectures, let us choose the definition which is
used for measurements in the CERN machines. If the beam profile is measured, it is the
population of the projected phase space ellipses which is seen (see Fig. 15). This popu-
lation will normally be a near-Gaussian, but in fact this is not really that important.
From the profile, the standard deviation of the distribution can be found, oy, and then
we arbitrarily define the beam emittance as corresponding to a beam width of 2 oy.

E=—-<—, Beam emittance, (4.19)

-~ E -
using the expression y =-v B and putting y = 2 Oy
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Fig. 15 Beam profile and its interpretation for emittance measurement

4.5 Distinctions between transfer lines and circular machines

Chapters 3 and 4 have been constructed so as to apply firstly to general structures
and then to the special restricted cases of weak focusing and then AG circular machines.
It is perhaps prudent, however, to think a little more about the distinctions between
transfer lines and circular machines.

4.5.1 Circular machines

A circular structure has an imposed periodicity, which imposes the same periodicity
on the Twiss parameters a, B and y and in fact determines them uniquely. If one samples
the co-ordinates of an ion after each successive turn in a circular machine, the points
will fill out an ellipse given by Eq. (4.18). Only one set of a, B and y values fit that
ellipse. It is the periodicity of the structure which makes it possible for that specific
ellipse to be returned unchanged turn after turn and for this reason it is called the
matched ellipse. Now suppose one injects a beam of particles, which define a different

ellipse (see Fig. 16). This ellipse is characterised by some other parameters, say a*, B*
and y*, but the circular machine will not faithfully return this ellipse after each turn.
Instead the ellipse will tumble round and round filling out a much larger ellipse of the
matched ellipse form. It does not take long for the particles to filament and uniformly
fill this matched ellipse.
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y' Matched ellipse 4\ y'
Yy?+ Zayy'+By”?

Unmatched ellipse
* 2 * P * ,2
Yy +2ayy'+f7y

Fig. 16 Matched and unmatched ellipses

Since filamentation will quickly transpose any beam ellipse into the matched ellipse,
there is no point in using and a, B and y values other than the matched ones. Since a, B
and y depend on the whole structure any change at any point in the structure will in
general (matched insertions excepted) change all the a, B and y values everywhere.

4.5.2 Transfer lines

In a transfer line, there is no such restriction. The beam passes once and the shape
of the ellipse at the entry to the line determines its shape at the exit. Exactly the
same transfer line injected first with one emittance ellipse and then a different ellipse
has to be accredited with different a, B and y functions to describe the two cases. Thus
a, B and y depend on the input beam as well as the structure. Any change in the structure
will only change the a, B and y values downstream of that point.

4.6 Matched single-cell characteristics

The very large AG machines often have a basic lattice cell of the form shown in Fig.
17 and the parameters are such that the thin lens formula in Eq. (3.14) can be safely
applied. By dividing up the cell as shown in Fig. 17 the maximum and minimum betatron
amplitudes for the matched ellipse can be found.

|
L.

L

0
V..

L

-
-——

Fig. 17 Basic FODO cell
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M=
L No 1/t 1 /\o 1\ 1
2F F 2F
2
L (1 - L (4.20)
2F? F
M =

2
Lt p+ly 1o
2F? 2F 2F?

This matrix must be equivalent to the matched cell matrix in Eq. (4.10)
cos p + a sin p B sin u

M= - (1"‘(12
B

) sin p €COS p - a Sin p (4.10)

Since we have chosen the entry and exit points at symmetry planes, B must be a maxi-
mum or minimum and o« is therefore zero, and

cos p B sin p
M= . .
_sinyp cos 1

B
By inspection we see that
2 L2
cos p = (1 -2 sin® p/2) = (1 - —
2F
and
sinb=z+L |
2 2F

Using the above, the strength of the lenses and the extrema of the betatron amplitude
function can be simply expressed in terms of the cell half length, L, and phase advance,
B

lens strength 126500 (4.21)
F L 2

2L
sin u

AV
betatron extrema B =

(1+sinty (4.22)
2
where

L is the half cell length
p is the phase advance in the cell
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5. ERRORS IN FIELD AND GRADIENT

In transfer lines there are two Tevels at which field and gradient changes are impor-
tant. Firstly there are large changes for steering and optimisation. In this case, one
uses the transfer matrices to predict the effect due to a field or gradient change. For
example, to steer a beam onto a target, it is sensible to use a dipole placed upstream of
the target such that there is a quarter betatron oscillation between them in order to get
the best sensitivity. Likewise to control both position and angle two dipole correctors
are needed again separated by a quarter wavelength. It is then simple matrix multiplica-
tion to find the effect of these two dipoles at a target or position monitor. The second
level is for small changes, such as power supply ripple, misalignments and re-setting
errors, which cause a mismatch at the end of the transfer line where the beam must arrive
with the correct matched ellipse and central orbit to circulate in the accelerator. This

problem is analysed in Section 5.1.

Once in the circular accelerator field errors or corrections to the orbit are domi-
nated by the machine periodicity and are dealt with in Section 5.2. Power supply ripple
will not be a problem in the same way as in the transfer line since its action will be
adiabatic and the whole beam moves while conserving its emittance. Ripple is still a
problem but beyond the present lectures. Finally whenever we talk about circular machines
we are using the matched ellipse a, B and y values although we are often rather slack
about defining this.

5.1 Dipole and misalignment errors in transfer lines

The motion of a particle in a transfer line can be written as

y = A/ sin (p + B) (5.1)
[from rearranging Eq. (4.4)].

This motion is an ellipse in phase space with

y' =R cos (u+B) - sin(u+8B) . (5.2)

/B 3

Rearranging we have

<
n

y/vB = A sin (p + B)
(5.3)
Y'

ya/YB + y'/B = A cos (pn + B),

where (Y,Y') are known as normalised phase space co-ordinates since with these variables

particles follow circular paths. Note: y' denotes dy/ds while Y' denotes dY/du.

The transformation to (Y,Y') is conveniently written in matrix form:

Y 1/v8 0 y
= . (5°4)
Y a/ /B /B \y!
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Consider now a beam for which the equi-density curves are circles in normalised phase
space. If this beam receives an unwanted deflection, D, it will appear at the time of the
deflection as shown in Fig. 18(a). However, this asymmetric beam distribution will not
persist. As the beam continues along the transfer line, the particles will re-distribute
themselves randomly in phase, while maintaining their distance from the origin, so as to
restore rotational symmetry. This effect is known as filamentation. Thus after a suffi-
cient time has elapsed the particles, which without the deflection D would have been at
point P in Fig. 18(b), will be uniformly distributed at a radius D about the point P.

For one of these particles the projection onto the Y-axis will be
Yo =Y, + D cos 6,

where the subscripts 1 and 2 denote the unperturbed and perturbed positions respectively.

(a) Beam directly after deflection, D (b) Particle distribution after phase
randomisation (Filamentation)

Fig. 18 Effect of an unwanted deflection
Taking the square of this amplitude

Y; = Yf + 2Y,D cos 8 + D% cos? o

and then averaging over the particles around the point P after filamentation has random-
ised the kick gives

<¥2> = <¥2> + 2 <Y,D cos &>+ <D? cos? >
2P 1P P p

Since Y; and D are uncorrelated (i.e. D does not depend on Y;), the second term can

be written as

2 <Y, D cos e>p =2 <Y1>p <D cos e>p .
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The second factor is zero, since D is a constant [Fig. 18(a)], which gives

= <Yi> s Lp2y 2y 4l

Y%
2 R I T

p

However, this result is true for any P at any radius A and hence it is true for the
whole beam and

2> = <y + 1?2 . (5.5)
2 1 2
The emittance blow-up will be
£, = E; + 21 D? (5.6)

where, by definition, E = 4y <¥2>. The subscripts 1 and 2 refer to the unperturbed and
perturbed emittances respectively, and remembering that Y = y//B.

Expanding the deflection, D,

02 = (aY)2 + (aY')? = (ay)? a+d, (ay')%p (5.7)
B

and substituting into (5.6) gives the emittance blow-up, in terms of the basic errors.
Thus

(1 + a?)

Ey = E; + 2n [(ay)? + (ay")? 8] (5.8)

where
Ay is a beam alignment error,

208
Ay' = z— an angle error from a field error AB of length 2 .
Bp

5.2 Gradient errors in transfer lines

Consider once again a beam for which the equi-density curves are circles in
normalised phase space. If this beam sees a gradient error, k, the equi-density curves
directly after the perturbation will be ellipses as shown in Fig. 19(a). Since the object
of this analysis is to evaluate the effects of small errors, it is sufficient to regard
this gradient error as a thin lens with the transfer matrix

O
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where

k= 26 4y amplitude dependent kick arising from the gradient
Bo error AG of length 2.

A

Y

- Deflection aY

(a)

Fig. 19 Effect of a gradient error

Denoting the matrix in Eq. (5.4) as T, it is easy to show that

(o)1 G)m GGG,

It is now convenient to find a new co-ordinate system (YY,YY'), which is at an angle
6 to the (Y,Y') system, and in which the perturbed ellipse is a right ellipse [see Fig.

19(b)].
YY, c -s\/1 0\/Y; ( )
= 5.10
(YW> (S c )(kﬁ 1)(Y')
2 1

where s and c denote sin 6 and cos 6 respectively.

Introducing the initial distribution Y, = A sin (u + B), Y] = A cos (u + B), in the
above expression for the new distribution, gives

YY, = A /1 + s2k282 - 2sckp sin (p + B + @)

(5.11)

s A /1 + c2k282 + 2sckp sin (p + B + @') ,
where

g = tan-! (__;fi.__) and @' = tan -! (___fi___) .
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The (YY,,YY,) ellipse will be a right ellipse when (@-8') = =/2, which gives the
condition

tan (26) = 2/kp . (5.12)

Equations (5.11) can be simplified using (5.12) and the relationship (8-0') = n/2 and
rewritten as

Yy tan o o \/vv
= (5.13)
Yy 0 1/tan o) \vy

where

YY]. = A sin (|J.+B')

‘ i.e. Y, and Y| with a phase shift
YY; = A cos (p+B')
B* = (B+@) =[B+tan"! (1/tan 6)] .

Thus it has been possible to diagonalise Eq. (5.10) by introducing a phase shift @
into the initial distribution. Equation (5.13) 1is therefore not a true point-to-point
transformation, as is Eqg. (5.10) but since the initial distribution is rotationally
symmetric the introduction of this phase shift has no effect.

The distance from the origin of a perturbed particle is given by Eq. (5.13) as

(YY2 + vY'2) = [tan? 0 A% sin? (p + B') + —— A% cos? (p +8')] .
2 2 tan o
Averaging over 2rn in p gives
v + vy =L (tan2 0+ L) <p2> |
2 2 2 tan? o

but

<KAZ> = <YYZ + YY'2> = <¥2 + ¥'2>
1 1 1 1

and from (5.12)

(tan 0 + L ) = k22 + 2 .
tan? o
Thus,
av? vy =1 (k282 4 2) <yy? + vy (5.14)
2 2 2 1 1
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As in the previous case for dipole errors, the asymmetric beam distribution will not
persist. The beam will regain its rotational symmetry by filamentation or phase random-
isation. Each particle, however, will maintain constant its distance from the origin.
Once filamentation has occurred, the distribution will not distinguish between the YY and
YY' axes and Eq. (5.14) can be rewritten as

s - 1 k262 + 2 <y (5.15)
2

and hence the emittance blow-up will be
E, =1 (k%2 +2)E . (5.16)

2
For a series of errors the order must be respected and complete randomisation is

assumed between them. This is clearly not true in a real-world situation but this anal-
ysis does give an approach for specifying power supply tolerances for example.

5.3 Dipole errors in circular machines

In Section 3.4 the equation of motion was derived for a momentum error, this is
analogous to a momentum error which is a function of the position round the machine. By
directly translating Ap/p into AB/B we get

2
Y+ K(s)y = (sign) 28], (5.17)
ds Bp
where (sign) = -1 when the field error is in the plane of bending and +1 when it is

perpendicular to the plane of bending.

The betatron oscillation of Eq. (4.4) executes Q * oscillations when going round a
circular machine. Q is known as the tune of the machine. It is useful to use this fact

to normalise the betatron phase advance, u, into a variable, @, which changes from 0 to 2n
in a single turn. If the displacement,y, is divided by /B, we have what are known as the
normalised variables (Y, @). Equation (5.17) can be re-expressed, using these variables,
to give

2
IV 4 @2y = -q263/2 (sign) 2B . (5.18)
d¢? Bp

This form of the equation allows us to use all the known results for driven harmonic
oscillators, but first consider only a single kick AB at s = sg. The solution to the
inhomogeneous Eq. (5.18) is then a betatron oscillation launched at s = sg with an angle
(AB As)/Bp. If we add to this, a solution to the homogeneous equation such that the sum
of the two solutions returns the input conditions, we get the situation in Fig. 20, where
the addition of the two oscillations, which are not individually closed round the machine,
make a continuous trajectory, called the closed orbit. If there are many field errors the
individual solutions can be added linearly. The formal expression for the closed orbit is

given below.



Kick | - Solution
inhomogeneous eqn.
7 \/ \/ Solution
/ /-\ homogeneous eqn.
> X +
/
/l \/ \_/ Kick angle

Sum of
solutions

| is closed

S=3°
Fig. 20 Effect of a single field error
B+2n
Y(9) = (sign) — & " [ /288 (4) cos q (n+ 0 - ¢) do, (5.19)
2sinnQ 9 Bp

where ¢ is a variable in @ used for the integration only.

Certain features of interest can be seen in Eq. (5.19). Firstly if Q is integer,
then Y(@) goes to infinity, since sin nQ = 0. The integer number of oscillations causes
the error to reinforce its effect on each turn. At a point 18(° in @ round the machine

from a single error, Y must be a maximum or a minimum. At the error the orbit
displacement is

y = _;_ (sign) g é?.& cot (=Q) .

Bp

Also by suitably manipulating (5.19) the conditions for local bumps can be found.

5.4 Gradient errors in circular machines

Suppose we introduce a gradient error of focal length F into an accelerator at one

point. The transfer matrix for one turn then becomes

cos p + a sin p B sin 1 0
M =
-y sin p cosS p - a Sin p 1
-— 1
F
c05p+asinu-gsinu B sinu
M= F

-ysinp-l(COSp-asinp) €osS p - o Sin p
F
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From Section 43. Eq. (4.16) we know that half the trace of M must be less than 1 for
stability.

cos v = |cos p - P sin u‘ <1 , (5.20)
2F

where v is the phase advance for one turn around the perturbed machine.
Clearly the gradient error could drive the machine into instability.

If we now assume that the change in phase advance is small, we can write v = + 8y
where 8, € 1 so that cos 6y = 1 and sin by = 6,, we find the approximation

5 =18_.15246
W 2F 2 B
or
AQ = E_.ﬁ 146 . (5.21)
4 Bp

This tune change arises from the modulation of the betatron amplitude around the
machine.

6. EMITTANCE BLOW-UP DUE TO THIN WINDOWS IN TRANSFER LINES

Transfer lines are often built with a thin metal window separating their relatively
poor vacuum from that of the accelerator or storage ring that they serve. The beam must
pass through this window with as little degradation as possible. Luminescent screens are
also frequently put into beams with the same hope that they will have a negligibly small
effect on the beam emittance. It is therefore interesting to know how to calculate the
blow-up for such cases.

The root mean square projected angle due to multiple Coulomb scattering in a window
is given by

v<e2> = M 7 L (1 + l 10910 L__ ) [radian] , (6.1)
6p inc L 9 L
rad rad

where
inc s particle charge in units of electron charge
= v/c
is thickness of scatterer |

Lrad 1s radiation length in material of scatterer.

See Review of Particle Properties in Bibliography.
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Consider a particle with a projected angular deviation of 97 at the window due to the
initial beam emittance. This particle receives a net projected kick in the window of g

and emerges with an angle 6, given by

By squaring and averaging over the whole beam this becomes

<82 = <% + <8%> + 2<010 >
2 1 S S

but, since the initial @) is in no way correlated to 65>

2€8 0> = 2¢8)> B = 0

and the above simplifies to

02> = <% + <8 (6.2)
2 1 S

This describes the situation immediately after the scattering (see Fig. 21) when the

beam is no longer matched.

Particle distribution
after scattering

Matched ellipse
before scattering

(Y, Y are normalised
coordinates of section 5.1)

Fig. 21 Effect of a thin scatterer in normalised phase space

Using the same arguments as in Section 5.1 we see that this initial distribution

filaments and the average angular divergence becomes

w2 = <o + L o> | (6.3)
2 1 s

2
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For conversion to beam sizes or emittance the following relationships can be used:

2, . 2 (1+a®) _E (1+d%)

<@ 5 (6.4)
B 4n B
where
o is the r.m.s. amplitude in the plane of projection
E is the beam emittance in the plane of projection.
Combining (6.3) and (6.4) gives the beam blow-up,
2 2
6> ¢
[ N M T <02> _ 8 (6.5)
£ <ei> af Er (1 + o?)

in which <e§> is given by Eq. (6.1)

7. ACCELERATION

The whole object of accelerators and transfer lines is to deliver high-energy, well-
focused ion beams onto targets. The transverse focusing and guidance of these beams is
only part of the problem and now we must study ways of accelerating the ions to higher
energies and of controlling the energy spread in the beam, so that the ions are focused
around the ideal energy, in much the same way as they were focused around the central
orbit.

There are some fundamental choices to be made when designing an accelerator. The
accelerating force, F, can be a directly applied electric field, E, across a gap as in a
Van der Graaff accelerator,

F=¢eE , (7.1)

or it can be the electric field induced by a time-varying magnetic field, B,

vxE=-2%8 (7.2)
ot

as in the bhetatron or in the cavities of synchrotrons.

Van der Graaff accelerators are always linear structures but the principle of using
time varying fields is applied in both linear and circular accelerators. Unless the ener-
gies are so high that the ions radiate their energy faster than they receive it, the cir-
cular structure is preferred and is the option that will be considered in these lectures.
[ will first briefly describe betatrons since they illustrate very clearly the principle
of absorbing energy from a varying magnetic field.

7.1 Betatrons

The betatron resembles a cyclotron as regards its magnet, but the beam stays on a
stationary orbit near to the pole edge rather than spiralling outwards from the centre as

its energy increases. This stationary orbit position is achieved by varying the guiding
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magnetic field to match the ion's energy and at the same time the changing flux enclosed
by the orbit induces a voltage to accelerate the ion. Clearly some definite relationship
must be observed to match the induced voltage to the guide field.

Equation (7.2) can be re-expressed in integral form as Faraday's Law, which equates
the induced voltage round a closed loop to the rate of change of magnetic flux within the

lo0p.

‘f’E‘d_Sf-%féE'S , (7.3)

where
s is the vector following the circular orbit in the betatron

S is the area enclosed by the orbit
[ BedS is the magnetic flux inside the orbit.
N

For circular symmetry, Eq. (7.3) is directly reduced to

where Eg is the azimuthal component of E.

The force on a charged ion due to Eg is simply

Fedlm) ep . (7.5)
dt

From Appendix A, we know that for cyclotron motion, the orbit must satisfy

(mv) = -epB,q » (A7)

so that if we want the radius, p, to remain constant,

d8
d(mv) - _gp 20 . (7.6)

dt dt

Combining Eqs. (7.4), (7.5) and (7.6), we find

2 ———

0 1 ® [ Beds
dt  mpZ at ST

We can replace the surface integral by an average field, By, multiplied by the

pole area inside the orbit, npz, which gives

04 g =98 ,2.=8_. (7.7)
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Thus the average field must increase at twice the rate of the guiding field, which is
known as the "2-to-1" rule. This device has the advantage of being simple, but it is
limited in energy by saturation in the iron core and the size of the magnet required. The
energy transferred to the beam comes from the stored magnetic energy and is proportional
to the flux change.

7.2 Accelerating cavities

Let us consider first a resonant lumped circuit of a parallel plate capacitor bridged
by an inductance (see Fig. 22). If we wish to raise the frequency of this circuit we have
to reduce C, by separating the plates, and reduce L, by removing turns from the induct-
ance. Gradually the inductance becomes a straight wire and then forms the walls of a box
or cavity.

C

Fig. 22 Evolution from a lumped circuit to a cavity

In this way, one can build a resonant circuit (cavity), which can work at the high
frequencies seen in accelerators.

A less descriptive approach to cavities is to first consider free space electro-
magnetic waves:

2
VXE=-u~a—=ﬂ V2£ uea—-E-
>
v2H

1<
X
(=
ll
m
I

where p and € are the permeability and dielectric constant of free space respectively.

When solving these equations the boundary conditions lead to different types of solu-
tions, which can be generally classified as:

TEM waves No E or H component in direction of propagation. E and H trans-
verse only.

H-waves or TE waves H in direction of propagation. E transverse to direction of
propagation.
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E-waves or TM waves E 1in direction of propagation. H transverse to direction of
propagation.

Waves guided by conducting plates in three different geometries are of special interest to
us, (i) radial transmission line, (ii) cylindrical wave guide, and (iii) co-axial Tine.
These cases are sketched below.

(i) Radial transmission line

TEM mode

(ii) Cylindrical waveguide

H

£
—_— t

Direction of

propagation
E - wave or TM mode

(iii) Co-axial line

Direction of
t ) propagation

'/ E\ TEM mode /

Cavities are formed by shorting any of these guiding systems either by conducting

o
AN
qp

walls where E » 0 or by a capacitive gap where E » maximum, so that standing waves can be
excited in resonance. There are basically two types of cavity of interest to us.

7.2.1 Radial line resonator

Figure 23 shows the basic mode for fields inside a "pill-box" cavity. This mode can
either be regarded as a shorted radial transmission line (i.e. 2 parallel discs guiding
waves radiating from the centre) with a standing wave mode or as a cylindrical waveguide
mode at cut-off. In the first case, it is called a radial line resonator and in the
second a TMg;o resonator. TM indicates that the magnetic field is transverse to the s-

axis along which the electric field is aligned and that this axis would be the direction
of propagation in the waveguide. The suffixes indicate the number of waves in the field
first azimuthally, then radially and finally axially (note: not the normal co-ordinate
order).

o
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TMy9 mode
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Fig. 23 Pill-box cavity or radial line resonator with the TMy;o mode

If we make a small hole on the s-axis and send an ion through at the correct moment
in time, it will see the maximum axial electric field,
E, = Jo(kr) eI
(7.8)
. jwt
By= ) (kr) &3°
where

k is a constant depending on geometry
Jo and J; are Bessel Functions.

The magnetic field, Bg, is 9(° out of phase with Eg and thus when Eg is maxi-
mum, the rate of change of the magnetic field, 3Bg/dt is also a maximum. The accelerat-
ing voltage is induced by the varying field just as in the betatron only the topology is
inverted; instead of the beam surrounding the field, the field surrounds the beam (see
Fig. 24). In this way energy can be taken out of the field on each passage, which would
not be possible in an electrostatic field. The sinusoidal time variation in the field is
therefore needed, but as we shall see later it also provides an important mechanism for
focusing.

# E.eds = - ww'yiieodA
NN N
— |
)/ /

\-—‘_ - __._,/Cuwfy

Fig. 24 Action of a cavity
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7.2.2 Foreshortened co-axial and radial line resonators

By starting with two co-axial plates as the capacitor in Fig. 22 it would be logical
to end up with a shorted co-axial line resonator. In this resonator the electric field
vector is radial, which is of no use to us, but by opening a gap as shown in Fig. 25,
there is an axial field again, and the resonator is termed foreshortened. The resonant
length is a quarter wavelength and the maximum electric field appears across the gap.

'
Y

L\

Fig. 25 Foreshortened co-axial and radial line resonators

If the dimensions are larger radially than axially, the resonator is called a fore-
shortened radial line resonator, which brings us back to the first cavity. In practice,

the shape can be distorted in many ways, the volume loaded with ferrite and so on.

7.3 Phase stability

When an ion passes through the accelerating cavity it sees an electric field and
receives a step, 8E, in its energy equal to its charge times the cavity voltage at that
moment .

8E = eV sin ¢ (7.9)

where
V is the maximum cavity voltage
¢ is the phase of the cavity voltage as the ion traverses the cavity.

Ideally we now increase the field in the machine, so that the particle continues
round the machine on the same orbit as before. We also adjust the frequency of the cavity
such that when the particle re-enters the cavity one turn later the cavity voltage has the
same phase. This ideal particle is called the synchronous particle and the phase of the
cavity voltage is called the synchronous phase, ¢g. The above is easily said and less

easily achieved. The energy gain appears as a velocity gain, which determines the neces-
sary increase in frequency, and also as a mass gain, which with the velocity determines
the increase necessary in the strength of the guide field. Since magnets have non-linear
excitation curves, there is one more factor to include. Satisfying the requirements of



- 46 -

the synchronous particle is analagous to designing the central orbit, but just as focusing
was needed to keep the beam close to the central orbit, so we will also need focusing to
keep the natural energy spread of the beam clustered around the energy of the synchronous
particle.

Consider now some particles which have small energy deviations from the synchronous
particle. Because they have different energies their speeds are different and their
momenta are different. The speed directly affects the revolution period and the momentum
indirectly affects the revolution period since the particle will follow a new orbit of a
different length. We must next discover whether an increase in energy also means an
increase in revolution frequency due to the speed increase, or a decrease in revolution
frequency due to the relativistic momentum increase, which requires more field to achieve
27 radians of bending and hence a longer orbit.

To do this we express the revolution time, t, as a function of orbit length and

speed,
_C
T = — ’
v
giving
doo (40 _dvy . (R _dvy | (7.10)
T C Y R v

where C = machine circumference = 27R and R is the average machine radius.

Firstly we define the momentum compaction factor, a, as
@ = AR/A_D , (7.11)
p

which is a measure of the proximity of the orbits of different momenta. This factor
depends on the machine optics and is determined by averaging the dispersion function, D(s)
of Eq. (3.23) so that a = D. This is a source of some possible confusion, since a is
sometimes defined as

- AR /Ap

R p

and the dispersion function D is often denoted by ap-

The term dv/v (or dp/p where B = v/c) can be re-expressed as

_=—2—— ) (7‘12)

where
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Here we have used B and y in their traditional roles in relativity theory and hope-
fully there will be no confusion with the earlier use as Courant and Snyder parameters.

Substituting Egs. (7.11) and (7.12) in (7.10) we have

dv _ _df _ ap

— =

T f p

%- L. (7.13)

Clearly dt changes sign as 1/y% becomes larger than a/R and this transition occurs at
what is known as the transition energy, Yo

y% = R/a . (7.14)

Finally we express Eq. (7.13) in the form

n = (Af-/ﬁ) =L .1y, (7.15)

flp (R

Thus the revolution frequency increases with Ap/p while the machine is working below
the transition energy, but this situation is reversed as soon as y > Vi The frequency
spread with unit momentum spread is traditionally represented by n and is sometimes
defined with the opposite sign.

Assuming first that the accelerator is working below transition, we follow a particle
which is slightly more energetic than the synchronous particle. By Eq. (7.15) we see that
this particle will arrive at the cavity a little ahead of the synchronous particle, since
its revolution frequency is higher. If we arrange the cavity voltage as shown in Fig. 26
the voltage seen by this particle will be lower, the energy gain will be lower than that
of the synchronous particle and consequently on the next turn the particle will slip back
towards the synchronous particle. Conversely, if the particle has a lower energy, it
turns more slowly in the machine, but by the time it reaches the cavity the voltage has
had time to rise higher, which means the particle gets a bigger kick to help it catch up
the synchronous particle. Within limits the cavity voltage can be considered linear and
the energy given to the particle varies linearly with the lag or lead with respect to the
synchronous particle. The second diagram in Fig. 26 shows the inverted situation when the
accelerator is working above transition. Over many turns, the off-momentum particles will
lead and lag and lead and so on, the synchronous particle. The resultant oscillations are
known as synchrotron oscillations (see Fig. 27). In this way the voltage ramp has a
focusing action.

A more quantitive approach is as follows.

The energy increment received by the synchronous particle is merely that of Eq. (7.9)
with the appropriate synchronous phase. This increment will be the difference in energy
between the kth and (k-1)th turns, which for the synchronous particle we fix as constant
for all k,

6ES = (Ek,s - Ek-l,s) = eV sin ¢S (7.16)

and likewise for a general particle
8E = (Ek - Ek-l) = eV sin ¢ . (7.17)
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Fig. 26 Focusing action of the accelerating voltage
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Fig. 27 Synchrotron oscillations

Just as we described orbits with respect to the central orbit, we now wish to
describe the energy oscillations of the non-synchronous particles with respect to the
synchronous particle. Defining the energy difference with the synchronous particle as
AE = (Eg - Ek,s), we have

(Ek - Ek,s) - (Ek_1 - Ek-l,s) = eV (sin ¢ - sin ¢S)
(7.18)
(AEk - AEk-l) = eV (sin ¢ - sin ¢S) .

Assuming that ¢ and E change slowly, which is generally the case, we convert the dif-
ference Eq. (7.18) into a differential equation. If there are n accelerations per second,
then dn/dt = wpgy/2n for a single cavity, where wpey is the revolution frequency for
the synchronous* particle,

1 daE eV (gin g - sin o) - (7.19)

Wpay dt 2n

Returning to the synchronous particle, we know that in order for synchronisation to
be maintained

wep = o, (7.20)

where

wpf 1s the cavity frequency
h is known as the harmonic number and is of course integer.

Now the rate of phase slip of the general particle is d¢/dt and the phase slip in one
turn will be 7tpey d¢/dt. Alternatively, we can express this as the excess time needed
to make one turn, At, multiplied by wpf from Eq. (7.20). Thus,

* The subscript "s" is used to denote the synchronous particle, but for the revolution
frequency it 1is customary to put wpey to avoid a possible confusion with the
synchrotron frequency.



T do At hw . (7.21)

Here we speak loosely about the phase of the particle meaning the phase of the cavity when
the particle arrives.

We have already got an expression for At in Eg. (7.13). So we can write

do _ Ap (1 1
_'hwrev—-(‘?’—i—) s
dt PoYy Y
but Ap/p can be written as AE/BiES giving
do AE
9 - hy T RE (7.22)
at rev . ¢
s
where
_1 o1 1
r=—(-=-
Bs vt s
Combining Egs. (7.19) and (7.22), we find
1 d , B 4 ev . .
— — —¢) = — (sin ¢ - sin ¢.),
w dt hw T dt 2n
rev rev
going to
E 2
s d¢=?_‘i(sin¢-sin¢s) (7.23)

2 2
wrevhr dt 2n

if we assume wpey and T vary slowly - adiabatic limit.

Suppose the oscillations are small and the general particle sees only small changes

in the cavity phase,
o= o+ 8¢ where 6¢ K1,

then the right-hand side of Eq. (7.23) becomes

E! (sin ¢_ cos &¢ + sin 8¢ cos ¢_ - sin ¢_)
7 S 3 s
eV

= — 8¢ cos ¢S

2n
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Since ¢g = constant, Eq. (7.23) becomes

2

2 eVw? hrcos ¢
:_2_ (56) + [- _r:VE_i} 56 = 0 (7.24)
t T
S
d? 2
W&p +0%0 =0 . (7.25)

where Q is called the synchrotron frequency.
Equation (7.25) can be stable or unstable depending on (cos ¢g T').

(a) Stable oscillations if, T cos ¢g < 0, sin ¢ close to sin ¢g.

(b) Unstable oscillations if, I cos g > 0. (Unstable equilibrium for synchronous par-
ticle.)

This is another way of saying that the correct slope for the voltage ramp must be
chosen in Fig. 26. The incorrect slope quickly drives the particle further from
synchronism.

If the oscillation is stable the particle is said to be trapped by the rf.

Clearly the ramp is only linear over a limited region in ¢ or At the lag or lead of
the particle with respect to the synchronous particle. Particles far from the linear
region are not trapped but only disturbed by the rf forces. The area in the (Ap/p,¢)
space which is stable or in which particles can be trapped is called a bucket.

If the harmonic number is large then the voltage ramp is steep, the stable region
narrow and the focusing forces strong. The small buckets will then contain short bunches.

If sin ¢g is increased the energy per turn increases and acceleration is quicker,
but the linear region on the ramp is restricted.

Finally if sin ¢g = 0, there is no net acceleration, but particles are still
trapped and the linear region on the ramp is maximum.

Returning to Eq. (7.23), we have

E 2
__?;L__.Q_% - Sing = - & sin o -
hmreth dt 2n 2n

This is similar to the equation for a biased pendulum (see Fig. 28).

In both positions the moment of the pendulum balances the counterweight. In position
(a) it is stable since small displacements will cause the pendulum to oscillate. In posi-
tion (b) the slightest force will unbalance the system. The first position is the stable
fixed point and the second the unstable fixed point.

Most AG accelerators span the energy range 1 to 20 times the injection energy. This
usually crosses the transition energy, so that we have the problem of jumping transition,

i.e. crossing from Fig. 26 (i) to 26 (ii).
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a) b)

Fig. 28 Biased pendulum

Equation (7.15) tells us that as we approach the transition energy the frequency
spread for unit momentum spread, n, goes to zero. This causes the particles to be bunched
tightly in terms of phase but the bunches will have a large Ap. The slow synchrotron
frequency and the tight bunching in phase make it possible to jump from Fig. 26 (i) to 26

(i1) and re-trap the beam.
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This final expression is well known in the accelerator field for protons as

B,oo = 3.3356 p (A8)

where
(Bzpo) is known as the magnetic rigidity in units of [Tm] remembering that B, is

the field component perpendicular to the motion,
p is the momentum in units of [GeV/c],
the constant = 10°/c = 3.3356.

One can, of course, arrive very quickly at the final result if one cheats slightly
and assumes the circular trajectory for reasons of symmetry and invokes the useful engi-
neering notion of centrifugal force. One then considers the rotating particle as being in
equilibrium between this force and the magnetic force (see Fig. A2).

Guiding field
B, Magnetic force = Centrifugal force
eB, v = mvZ/ Po
| ’ ——

Radius of ration,
- gy Po -_J

Fia. A2 Balance of forces in cyclotron motion

Finally in Eq. (A3) v, was found to be constant and tacitly assumed to be zero. Of
course, v, need not be zero and in a uniform field as described, it would remain con-
stant and stretch the cyclotron motion into a spiral. Without focusing, therefore, the
smallest vertical angle error in a cyclotron would cause the beam to spiral up or down and
hit the poles.
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APPENDIX B

TRACKING THROUGH 3-DIMENSIONAL FIELD PLOTS

In Appendix A, it was shown that in a uniform magnetic field an ion with velocity v
would move on a circular orbit transversely to the magnetic field and on a straight line
parallel to the field. The combination of these motions being a spiral in the field
direction. By assuming that over very small volumes of space the field B is constant,
this simple result can be used to track through complicated field plots. The accuracy
then depends upon how fine a mesh is used for the tracking, on the accuracy of
interpolation between the mesh points in the field plot and on the accuracy of the plot
itself.

Consider a particle of momentum p at the origin of the (x,y,z) frame which is aligned
with the field plot. We then choose a second frame (xx,yy,zz) with the same origin which
is aligned with the field B and force F remembering that the force is mutually
perpendicular to B and p (i.e. my).

A

z
2z

I
@
\
~<

Now,

"
o

p=p i+ pyi +p,k and put |p|

8

n
(o~}
.

B+ Byi + Bk and put |B|

Let values at the origin be suffixed by 0.

The momentum can be resolved into two components - p; parallel to B and py trans-
verse to B, i.e.

B + B + B
PL = 2 (p+B) = ( xzx 2ypy 2 1?22)
B (BX + By + BZ)
pr = /p% - P
p = 3.3356 Pr Eq. (A8) Appendix A.

B
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The motion parallel to B is unaffected while the motion transverse to B is made into
a cyclotron motion. Looking in the frame (xx,yy,zz) we see

_— Path of gyro-centre [\
22 . 7z
—— I\
- —
— [
g
!
\\p e
-
— Yy
B
g
XX

Since the 'yy' motion is uniform we can simply look at the xx-zz plane.
Let us specify that the field B is acceptably constant over a distance %, then the

new positions are

p
XX = p sin & = p sin (_Ig.f)
p e
p
zz = p(1 - cos 8) = p[1 - cos (_19:&]
p e
PL
yy = —2
p
and momentum components are
P10 2
Pyx = P1o €O° (—=)
P e
. P10 2
Pzz = Pyo S0 (—-)
P e

o

1l

i~}
—
o

yy
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It remains to transfer the new (xx,yy,zz) values for position and momentum into the

A

(x,y,2) frame.

z
72

Yy

Ny

my

XX
l1

Let the direction cosines of 'xx' in the (x,y,z) frame be
(L1sm,n1) .

(12 sM2 ,N2 )
(23 ,m3,n3)

Similarly, for, 'yy'
and, 'zz'

To transform (xx,yy,zz) we then have

X 21 X2 3 XX
Y | = M my mg yy
z ny no n3 zz
or
Py 2 2 23 Pyx
=f m m m
Py 1 My m3 Pyy
pz ny na n3 pzz

Since 'yy is coincident with B they have the same direction cosines, i.e.

BxO

L2 = s m2

Now ‘'zz' is coincident with F, i.e.

B

yO0

(p x B)/pB sin 6 where sin & = pyqo/p, hence,

21
3 = "“'(Bzopyo - Byopzo)

pB

_1
m3 = “‘(onpzo - Bzopr)

pB

1
ns = — (ByoPyo -

pB

B

B

(p x B)e/m.

P

x0" y0

np =

sin 6

sin @

)
sin ©

The unit F vector is therefore
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Finally 'xx' is mutually perpendicular to 'yy' and 'zz' in a right-handed system so that
the unit vector iy, = jyy x kyy giving

L) = mgn3 - m3ny

mp = 23n2 - 22N3
n = lzmg - m213 .

Thus,

X = XO + xx2; t yylo + z223

<
I

= Yo t xxmp + yymp + zzm3

Z =75+ xxnp + yyny + zzn3

Such calculations are impossibly complicated by hand, but superbly adapted to a com-
puter. It only remains to check if the field at the end point of a step is within a cer-
tain tolerance equal to the field at the start. If not, 2 must be reduced, if yes, the
initial and end fields can be averaged and the step recalculated, and so on.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

