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We show that supersymmetric ‘‘new physics’’ beyond the minimal supersymmetric standard model can

naturally accommodate a Higgs mass near 126 GeV and enhance the signal rate in the h ! �� channel,

while the signal rates in all the other Higgs decay channels coincide with Standard Model expectations,

except possibly the h ! Z� channel. The new physics that corrects the relevant Higgs couplings can be

captured by two supersymmetric effective operators. We provide a simple example of an underlying

model in which these operators are simultaneously generated. The scale of new physics that generates

these operators can be around 5 TeV or larger, and outside the reach of the LHC.
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I. INTRODUCTION

The ATLAS and CMS collaborations at CERN recently
presented strong experimental evidence for a Higgs-like
resonance around 126 GeV [1], marking a historic achieve-
ment in particle physics. The signal rates in the ZZ� and
WW� channels are in good agreement with the Standard
Model (SM) predictions. The b �b and �þ�� signal rates are
also compatible with the SM, although with substantial
error bars. At the time of writing, the signal rate in the
h ! �� channel is about 1.5–2 times larger than the SM
prediction. This discrepancy is only at the level of two
standard deviations, and there are theoretical uncertainties
[2]. Nevertheless, it is interesting to contemplate whether
physics beyond the SM can be responsible for this discrep-
ancy (for recent work in this direction, see Ref. [3]).

In this work we shall assume that the excess in the
diphoton channel is due to beyond the SM physics that has
a negligible effect on channels other than h ! ��. Indeed,
this channel is sensitive to new physics, since it is a loop-
level process in the SM. With this in mind, we shall focus on
the minimal supersymmetric (SUSY) extension of the SM
(MSSM) close to the ‘‘decoupling limit’’ [4], in which the
lightest neutral CP-even Higgs boson h is SM-like.

It is surprising that, despite its large number of parame-
ters, the MSSM has difficulties in accommodating an
enhancement of the h ! �� partial decay width �h��

without affecting the other partial decay widths. In fact
this requirement seems to single out loop-induced contri-
butions from very light color singlet superpartners with a
significant coupling to the Higgs, meaning strongly mixed

light stau sleptons, at around 100 GeV [5]. However, this
introduces issues with vacuum stability and may even be
possible to rule out at the LHC. In addition, large radiative
corrections are needed to obtain a mass of mh � 126 GeV
for the lightest Higgs of the MSSM. This requires large
supersymmetry-breaking terms, such as TeV stop masses
and/or a large top A term. The lack of evidence for super-
partners in the direct SUSY searchers at the LHC also
indicates that soft terms should be large. However, large
supersymmetry-breaking terms lead to severe fine-tuning
[6,7] in most versions of the MSSM1 (with or without
universal gaugino masses or Higgs soft masses at the UV
scale different from the other scalar soft masses). This
situation suggests that a solution to the problems of the
Higgs mass and the diphoton rate is not in the SUSY-
breaking sector but rather in the one that preserves
supersymmetry.
Following this idea, the purpose of this work is to answer

whether one can have a minimal supersymmetric extension
of the Higgs sector that allows for mh � 126 GeV without
undue fine-tuning and a simultaneous h ! �� enhance-
ment, no changing of the other Higgs branching ratios,
while also complying with the negative SUSY searches so
far. To this end, one way to proceed is suggested by
minimal extensions of the MSSM Higgs sector, like the
next-to-MSSM (NMSSM) model which contains an addi-
tional singlet chiral superfield (see Ref. [9] for a review),
and by models where the soft B� term is promoted to a
SUSYoperator [10]. In the NMSSM an enhancement of the
h ! �� branching ratio is possible, but unfortunately this
also alters other couplings beyond the SM level [11].
Further, the NMSSM also remains badly fine-tuned
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1For a discussion of the negative impact of the electroweak
fine tuning on the �2 fit of such models, see also Ref. [8].
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(fine-tuning �> 200) for mh � 126 GeV [12]. There are
known ways to bypass this problem such as in the so-called
‘‘generalized’’ version of NMSSM with a superpotential
mass term for the singlet superfield, where the electroweak
fine-tuning is significantly reduced to more acceptable
levels (� � 30) [12–14]. These are examples of explicit
supersymmetry-preserving modifications of the MSSM
that can render more natural the interpretation of the
resonance at 126 GeV as the lightest Higgs.

In this work, instead of considering such specific
models, we shall relax the rigid, minimal structure of the
MSSM Higgs sector and perform an effective field theory
analysis of the most relevant SUSY-preserving operators
in this sector. This approach should recover, in a particular
region of the parameter space, scenarios such as those
presented above (generalized NMSSM, etc). We show
that it is possible to naturally accommodate a Higgs
mass of 126 GeV, an enhanced Higgs coupling to photons,
and simultaneously SM-like Higgs couplings to the other
particles, using only a few supersymmetry-preserving
operators with small coefficients.

In general there is a large set of operators that one could
consider in the Higgs sector [15]. Regarding the Higgs
mass, it is known that the presence of the effective
dimension-five superpotential operator [16,17]

1

M
ðHu �HdÞ2 (1.1)

can accommodate mh � 126 GeV without undue fine-
tuning [13]. The suppression scale M represents the mass
scale of the SUSY degrees of freedom that have been
integrated out to generate Eq. (1.1). Concerning �h��,

from the list of effective operators of dimensions d ¼ 5
and d ¼ 6 in the Higgs sector [13,18], one notices the
presence of a SUSY effective operator

1

M2
ðHu �HdÞTrðW�W�Þ; (1.2)

where W� is the electroweak gauge field strength super-
field. The operator (1.2) can significantly increase the
h ! �� partial width. Note that this increase, and even-
tually also the change in the h ! Z� partial width, can be
accomplished without affecting the other partial widths.2

Based on these observations, we intend to investigate closer
the phenomenological impact of Eqs. (1.1) and (1.2).

As a simple example will show, these operators can be
generated simultaneously by an underlying microscopic
model, making their combination rather natural. The effect
of both operators is maximized for small tan�, where the
MSSM tree-level contribution to the Higgs mass is mini-
mized. This means that the impact of the d ¼ 5 operator in
accommodating an mh � 126 GeV is rather significant. To

our knowledge, the particular combination of the effective
SUSYoperators in Eqs. (1.1) and (1.2) has not been studied
in the past for the problems we address.3 One can also use
this information to set bounds on the scaleM of new physics.
The paper is organized as follows. In Sec. II we calculate

the corrections from the effective operators to the Higgs
mass and mixing angle. In Sec. III we discuss how these
operators correct the Higgs couplings and signal rates, with
a focus on the decoupling limit. The results in terms of the
Higgs mass and the partial widths for the h ! �� and h !
Z� channels are discussed in Sec. IV. Section V provides
an example of the origin of the effective operators, and
Sec. VI contains our conclusions, while some details con-
cerning the on-shell Lagrangian are given in the Appendix.

II. CORRECTIONS FROM SUSY OPERATORS
TO THE HIGGS COUPLINGS

The effective model we consider consists of the usual
MSSM Higgs sector, extended by the operators discussed
in the introduction. The relevant part of the Lagrangian is,
in standard notation,

L ¼
Z

d4�
X
i¼u;d

ð1�m2
i �

2 ��2ÞHy
i e

ViHi

þ
�Z

d2��ð1þ B�2ÞHd �Hu þ H:c:

�
þO5 þO6;

(2.1)

where the chiral superfields have components Hi �
ðhi; c i; FiÞ, and mi and B are the soft terms. O5 is the
only operator of dimension five that one can write in the
Higgs sector, up to nonlinear field redefinitions [20], and
has the form

O5 ¼ c0
M

Z
d2�ðHu �HdÞ2 þ H:c: (2.2)

For the component fields expression of O5, see Eq. (A3).
There is a long list of operators in the Higgs sector of

dimension d ¼ 6 [13,18,20]. A careful analysis of these
operators shows that of all these, there is one of them that
can couple, in a supersymmetric way, to two gauge bosons:

O6 ¼ 1

M2

X
s¼1;2

cs
16g2s�s

Z
d2�TrðW�W�ÞsðHu �HdÞ þ H:c:

(2.3)

Here g1 and g2 denote the Uð1ÞY and SUð2ÞL gauge cou-
plings, respectively, and �s is a constant that cancels the
trace factor. W� is the SUSY field strength of the Uð1ÞY
(SUð2ÞL) vector superfield V1 (V2) of components (	s, Vs;�,

Ds=2), s ¼ 1, 2. O5 and O6 provide a minimal set of
operators that is enough for our purposes. One can

2When W� corresponds to the gauge field strength of SUð3ÞC
gauge group, the operator (1.2) can affect the h ! gg partial
width (not considered in this work).

3The operator in Eq. (1.2) was separately discussed in
Ref. [19].
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also consider SUSY-breaking effects associated to these
operators [see the Appendix, Eq. (A3)], but we only seek
supersymmetric solutions to our problem. The effective
expansion is reliable when c0;1;2 ¼ Oð1Þ and M is the

largest scale in the theory. One can choose one of c0;1;2,
for example c0, and set it to c0 ¼ 1 by redefining M. But it
is useful to keep c0 to easily trace or turn off the effects of
O5. Also, to modify the diphoton rate c1 or c2 (or a
combination thereof) is enough, so together with the scale
M, we effectively have only two parameters. Keeping both
c1;2 generates an additional interesting coupling; see later

in the text.
Additional operators of d ¼ 6 can be present. Although

they could have an impact on the Higgs mass [18], they
have an additional scale suppression relative to4 O5. There

is an operator similar to O6 but involving instead the
SUð3ÞC gauge group, which we do not consider here; this
would change dramatically the Higgs decay rate to gluons,
away from the SM values. We take the good agreement
with the SM in most channels as evidence that if present,
the coefficient of this operator must be small. Finally,
another reason to restrict our analysis to O5;6 is that, as

discussed later, they can be simultaneously generated by
underlying physics.

A. On-shell Lagrangian

The calculation of the on-shell Higgs Lagrangian ex-
tended by O5 and O6 is detailed in the Appendix. The
result is

L ¼ � 1

2

�
Da

2D
a
2

�
1þ c2

2M2
ðhu � hd þ H:c:Þ

�
þ ð2 ! 1Þ

�

�
���������þ 2

c0
M

hd � hu
��������

2ðjhdj2 þ jhuj2Þ þ
�
�

4

�
c2
M2

	a
2	

a
2 þ

c1
M2

	2
1

�
ðjhdj2 þ jhuj2Þ þ H:c:

�

þ
�
c2
4M2

ðhu � hdÞ½ið	a
2


�D�
�	a
2 �D�

�	a
2 �


�	a
2Þ� þ H:c:þ ð2 ! 1Þ

�

þ c0
M

½2ðhu � hdÞðc d � c uÞ � ðhu � c d þ c u � hdÞ2� þ H:c:

þ
�
c2
4M2

�
� 1

2
ðhu � hdÞ

�
Fa��
2 Fa

2�� þ
i

2
���
Fa

2��F
a
2


�

� ffiffiffi
2

p ðhu � c d þ c u � hdÞ
��	a
2F

a
2�� � c u � c d	

a
2	

a
2

�
þ ð2 ! 1Þ þ H:c:

�

þ ½�Bðhd � huÞ þ H:c:� � ~m2
djhdj2 � ~m2

ujhuj2; (2.4)

where ~m2
i ¼ m2

i þ j�j2, i ¼ u, d. For the explicit form of Da
2D

a
2 and D2

1, see Eqs. (A7) and (A8).
Equation (2.4) contains all the information one needs to extract the corrections to the Higgs masses and couplings. In

particular, notice the presence of new, supersymmetric couplings:

� 1

8
ðhu � hdÞ

�
c2
M2

TrF2
2 þ

c1
M2

TrF2
1

�
�

���������þ 2
c0
M

hd � hu
��������

2ðjhdj2 þ jhuj2Þ þ H:c:; (2.5)

which are important below. There are also direct Higgs-Higgsino and Higgsino-gaugino couplings that can be relevant for
dark matter models. From Eq. (2.4) we find the Higgs scalar potential Vh:

Vh ¼ ~m2
djhdj2 þ ~m2

ujhuj2 � ½�Bhd � hu þ H:c:� þ g22
2
jhydhuj2

�
1þ c2

2M2
ðhd � hu þ H:c:Þ

�

þ 1

8
ðjhdj2 � jhuj2Þ2

�
g2 þ

�
ðhd � huÞ

�
g21c1
M2

þ g22c2
M2

�
þ H:c:

��
þ 4

��������
c0
M

��������
2jhd � huj2ðjhdj2 þ jhuj2Þ

þ
��

2
c0
M

��
�
ðjhdj2 þ jhuj2Þðhd � huÞ þ H:c:

�
; ðg2 � g21 þ g22Þ; (2.6)

which depends on two parameters: c0 from the effective
dimension-five operator and the combination (g21c1 þ
g22c2) from the effective dimension-six operator. Note

that last term in the first line above does not contribute to
the neutral Higgs sector masses.
We also include dominant loop corrections, although

they do not play the same crucial role they do in the
MSSM. In the small tan� regime and for dominant top
Yukawa coupling, the one-loop and leading two-loop
correction to Vh is [21]

4Strictly speaking, this is true for the small tan� region, which
will actually be the relevant region in our case.
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�Vh ¼ g2

8
�jhuj4; (2.7)

where

� � 3h4t
g2�2

�
ln
M~t

mt

þ Xt

4
þ 1

32�2
ð3h2t � 16g23Þ

�
�
Xt þ 2 ln

M~t

mt

�
ln
M~t

mt

�

Xt � 2ðAt �� cot�Þ2
M2

~t

�
1� ðAt �� cot�Þ2

12M2
~t

�
; (2.8)

with M2
~t � m~t1m~t2 , and g3 is the QCD coupling.

B. Higgs mass and mixing angle

The scalars receive mass corrections from the usual
one-loop radiative corrections but now also from the
effective operators. Here we take the parameters c0, c1,
c2 to be real. We find the following result for the mass of
the lightest Higgs scalar h:

m2
h ¼

1

2
fm2

A þm2
Z þ �m2

Zsin
2�� ffiffiffiffi

w
p g þ�m2

h; (2.9)

where

w � ½ðm2
A �m2

ZÞ cos 2�þ �m2
Zsin

2��2
þ sin 22�ðm2

A þm2
ZÞ2 (2.10)

and where �m2
h is the contribution due to the higher-

dimensional operators:

�m2
h ¼

�
2�

c0
M

�
s1 þ

�
2�

c0
M

�
2
s2 þ

�
g21c1
M2

þ g22c2
M2

�
s3

þO
�
1

M3

�
; (2.11)

with

s1 ¼ v2 sin 2�

�
1þ ðm2

A þm2
ZÞffiffiffiffi

w
p

�

s2 ¼ v4

4�2
sin 22�þ v4ffiffiffiffi

w
p

�
�1þ 1

2�2
ðm2

A þm2
ZÞsin 22�

�

þ 1

w3=2
ðm2

A þm2
ZÞ2v4sin 22�

s3 ¼ v4

32
sin 2�þ v4 sin 2�

128
ffiffiffiffi
w

p ½8m2
A � ð4þ 3�Þm2

Z

þ 6�m2
Z cos 2�þ 3ð4m2

A � �m2
ZÞ cos 4��; (2.12)

where we kept (small) effects from the interplay between
the effective operators and the one-loop correction to Vh.
The mass of the CP-odd Higgs boson is

m2
A ¼ 2B�

sin 2�
� 2v2

sin 2�

�
c0
M

�

�

� v4

32

cos 22�

sin 2�

�
g21c1
M2

þ g22c2
M2

�
þO

�
1

M3

�
; (2.13)

which does not receive one-loop corrections. The mixing
angle � is given by

tan 2� ¼ � 1

D

�
ðm2

A þm2
ZÞ tan 2�� 2v2

cos 2�

�
2�

c0
M

�

�
�
2
c0
M

�
2
v4 tan 2�

þ
�
g21c1
M2

þ g22c2
M2

�
v4ðm2

ZfZ �m2
AfAÞ

32Dcos 22�

�
; (2.14)

with

D ¼ m2
A �m2

Z þ ðsec 2�� 1Þ�m2
Z=2

fZ ¼ 4 cos 2�� ð2� 5 cos 2�þ 6 cos 4�

� 3 cos 6�Þ�=4
fA ¼ cos 2�þ 3 cos 6�: (2.15)

One can see the corrections to tan 2� due to the effective
operators, which are used below.
We also note that the new operators correct the gauge

field kinetic terms when the Higgs fields receive vacuum
expectation values (VEVs). The corrected gauge couplings
are the ones that appear in the following.

III. CORRECTIONS TO THE PARTIALWIDTHS
OF h ! ��AND h ! Z�

In this section we study how the new operators correct
the Higgs couplings to the SM particles. To this end, we
parametrize these corrections in terms of the usual MSSM
Higgs couplings.

A. Higgs couplings and signal rates

The renormalizable part of the Lagrangian for the light-
est neutral CP-even Higgs scalar h can be written [22] as

Lren ¼ �ct
mt

v
ht�t� cc

mc

v
hc �c� cb

mb

v
hb �b

� c�
m�

v
h�þ�� þ cZ

m2
Z

v
hZ�Z�

þ cW
2m2

W

v
hWþ�W�

� ; (3.1)

where the dimensionless coefficients are given by

ct ¼ cc ¼ cos�

sin�
; cb ¼ c� ¼ � sin�

cos�
;

cZ ¼ cW ¼ sin ð�� �Þ;
(3.2)

where the mixing angle � is given in Eq. (2.14). In the
scenario under consideration, all loop corrections to the
tree-level coefficients in Eq. (3.2) are negligible. The usual
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SM values for the couplings in Eqs. (3.1) and (3.2) are
obtained in the decoupling limit, in which � ! �� �=2,
implying that cos� ! sin�, sin� ! � cos�, and hence
ci ! cSMi ¼ 1, where i ¼ t, c, b, �, Z, W.

We work in the limit when loop contributions from
superpartners and other Higgs scalars are negligible. The
dimension-five part of the Higgs Lagrangian, which takes
into account one-loop contributions from SM particles as
well as the contributions from the effective operators in
Eq. (2.4) can be written as

Ldim 5 ¼ cloopg
�S

12�v
hTrG��G�� þ ðcloop� þ cBMSSM

� Þ

� �EM

8�v
hF��F�� þ ðcloop�Z þ cBMSSM

�Z Þ

� �EM

4� sin �wv
hZ��F��: (3.3)

The one-loop contributions to these coefficients are given
by5 [24]

c
loop
g ¼ ctA

ðtÞ
g þ cbA

ðbÞ
g � 1:03ct � ð0:05þ 0:07iÞcb

cloop� ¼ cWA
ðWÞ
� þ ctA

ðtÞ
� � �8:36cW þ 1:84ct

cloopZ� ¼ cWA
ðWÞ
Z� þ ctA

ðtÞ
Z� � 5:80cW � 0:31ct; (3.4)

where, in the last steps, we have inserted mh ¼ 126 GeV
in the one-loop form factors A, for which the explicit
expressions are given in Appendix A 2. In the decoupling
limit, where ci ! cSMi ¼ 1 in Eq. (3.2), the cloop coeffi-
cients in Eq. (3.4) approach the values they have in the SM,
which, for mh ¼ 126 GeV, follow trivially from Eq. (3.4),

c
loop
g ! cSMg � 0:98þ 0:07i c

loop
� ! cSM� � �6:52

c
loop
�Z ! cSM�Z � 5:49: (3.5)

In order to obtain the cBMSSM
� and cBMSSM

�Z coefficients in

Eq. (3.3), we extract the relevant component interactions
from the operators in Eq. (2.3), written in Eqs. (2.4) and (2.5),

O6 � v cos ð�þ �Þ
8M2

ð½c1cos 2�w þ c2sin
2�w�hF��F��

þ 2ðc2 � c1Þ sin �w cos �whF
��Z��Þ;

where we have used

hu �hd¼hþu h�d �h0uh
0
d; h0i ¼

1ffiffiffi
2

p ðviþReh0i þiImh0i Þ;

Reh0d¼�sin�hþcos�H; Reh0u¼cos�hþsin�H;

A1�¼cos�wA��sin�wZ�; Að3Þ
2�¼sin�wA�þcos�wZ�

(3.6)

and vd ¼ v cos�, vu ¼ v sin�, with v ¼ 246 GeV.
Moreover, the hypercharge gauge boson A1� and the (third

component of the) SUð2ÞL gauge boson Að3Þ
2� have been

rewritten in terms of the photon A� and the Z boson Z�.

Note that there is also a dimension-five operator generated
from Eq. (2.3) that involves the Higgs scalar h and two field
strengths of the Z boson (as well as an analogous operator
involving two field strengths of the W boson). However,
since these operators will have couplings comparable to
the �� or Z� couplings, but strongly phase space sup-
pressed, we expect them to be irrelevant with respect to the
usual dimension-three Higgs coupling to the Z andW bosons
in Eq. (3.1). Therefore, we do not consider them.
The contributions to Eq. (3.3) from Eq. (3.6) are given by

cBMSSM
� ¼ �v2 cos ð�þ �Þ

M2�EM

ðc1cos 2�w þ c2sin
2�wÞ

cBMSSM
�Z ¼ �v2 cos ð�þ �Þ

M2�EM

ðc2 � c1Þsin 2�w cos�w:

(3.7)

In the decoupling limit, where cos ð�þ �Þ ! sin 2�, we
see that the coefficients in Eq. (3.7) are maximized for
small tan�.
We can now define the relevant Higgs partial decay

widths, normalized to the corresponding SM value, in
terms of the dimensionless c coefficients in Eqs. (3.2),
(3.4), (3.5), and (3.7),

�hii

�SM
hii

¼ jcij2;
�hgg

�SM
hgg

¼
��������
c
loop
g

cSMg

��������
2

;

�h��

�SM
h��

¼
��������
cloop� þ cBMSSM

�

cSM�

��������
2

;

�h�Z

�SM
h�Z

¼
��������
cloop�Z þ cBMSSM

�Z

cSM�Z

��������
2

(3.8)

as well as the corresponding branching ratios (BRs),

BRhii

BRSM
hii

¼
��������

ci
ctot

��������
2

;
BRhgg

BRSM
hgg

¼
��������

cloopg

cSMg ctot

��������
2

BRh��

BRSM
h��

¼
��������
c
loop
� þ cBMSSM

�

cSM� ctot

��������
2

;

BRh�Z

BRSM
h�Z

¼
��������
c
loop
�Z þ cBMSSM

�Z

cSM�Z ctot

��������
2

:

(3.9)

The coefficient ctot in Eq. (3.9) can be written as

jctotj2 ¼
X

i¼t;c;b;�;Z;W

jcij2BRSM
hii þ

��������
cloopg

cSMg

��������
2

BRSM
hgg; (3.10)

where we have neglected the contributions from, for ex-
ample, h ! �� and h ! Z� as well as possible invisible
decays. Let us now define the inclusive as well as the
individual gluon-gluon fusion (ggF), vector boson fusion
(VBF), and vector boson associated (VH) production cross
sections, normalized with respect to the corresponding SM
values,5See also Ref. [23] for additional studies of h ! Z�.
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incl


SM
incl

¼ jcloopg =cSMg j2
SM
ggF þ jcV j2ð
SM

VBF þ 
SM
VHÞ


SM
ggF þ 
SM

VBF þ 
SM
VH

;


ggF


SM
ggF

¼ jcloopg =cSMg j2; 
VBF


SM
VBF

¼ 
VH


SM
VH

¼ jcV j2;
(3.11)

where we have denoted cV ¼ cZ ¼ cW , since the Higgs
couplings to Z andW bosons coincide in Eq. (3.2). We can
now write, for example, the signal rates in the inclusive and
dijet channels of the h ! �� decay mode, again normal-
ized with respect to the SM,

Rincl
�� ¼ 
incl


SM
incl

BRh��

BRSM
h��

R
dijet
�� ¼ ��ggFjcloopg =cSMg j2
SM

ggF þ ��VBFjcV j2
SM
VBF þ ��VHjcV j2
SM

VH

��ggF

SM
ggF þ ��VBF


SM
VBF þ ��VH


SM
VH

BRh��

BRSM
h��

; (3.12)

where the �� coefficients are the selection efficiencies for
the different production modes in the dijet-tag category of
final states.

B. Decoupling limit

Let us now take the decoupling limit, in which

ci
cSMi

¼ c
loop
g

cSMg
¼ c

loop
�

cSM�
¼ c

loop
�Z

cSM�Z
¼ 1; (3.13)

where i ¼ t, c, b, �, Z, W. This implies that jctotj ¼ 1 in
Eq. (3.10) and that

�hii

�SM
hii

¼ BRhii

BRSM
hii

¼ �hgg

�SM
hgg

¼ BRhgg

BRSM
hgg

¼ 1; (3.14)

whereas

�h��

�SM
h��

¼ BRh��

BRSM
h��

¼
��������1þ

cBMSSM
�;dec

cSM�

��������
2

;

�h�Z

�SM
h�Z

¼ BRh�Z

BRSM
h�Z

¼
��������1þ

cBMSSM
�Z;dec

cSM�Z

��������
2

(3.15)

for which the coefficients in Eq. (3.7) are given by, in the
decoupling limit,

cBMSSM
�;dec ¼ �v2 sin 2�

M2�EM

ðc1cos 2�w þ c2sin
2�wÞ

cBMSSM
�Z;dec ¼ �v2 sin 2�

M2�EM

ðc2 � c1Þsin 2�w cos�w:

(3.16)

In the decoupling limit, the production cross sections in
Eq. (3.11) are all equal to their SM corresponding SM
value,


incl


SM
incl

¼ 
ggF


SM
ggF

¼ 
VBF


SM
VBF

¼ 
VH


SM
VH

¼ 1: (3.17)

Thus, all signal rates, for any production mode, associated
with the channels h ! ii, for i ¼ t, c, b, �, Z,W, as well as
h ! gg, will be equal to their corresponding SM value. In
the h ! �� channel, we see that the signal rates in
Eq. (3.12) (as well as any other signal rate in the h ! ��
channel) will be given by the corresponding normalized
partial width,

R�� ¼ Rincl
�� ¼ R

dijet
�� ¼ �h��

�SM
h��

¼
��������1þ

cBMSSM
�;dec

cSM�

��������
2

; (3.18)

and the same for the h ! Z� channel,

RZ� ¼ Rincl
Z� ¼ R

dijet
Z� ¼ �hZ�

�SM
hZ�

¼
��������1þ

cBMSSM
Z�;dec

cSMZ�

��������
2

: (3.19)

In summary, in the decoupling limit, all the partial decay
widths, except for �h�� and �hZ�, are all equal to their

corresponding SM value. This implies that all the produc-
tion cross sections, as well as the signal rates in all other
channels, are equal to their SM values. Moreover, as seen
in Eqs. (3.18) and (3.19), the partial decay widths for h !
�� and h ! Z�, normalized with respect to the SM values,
coincide with the corresponding signal rates. Hence, in this
limit, �h��=�

SM
h�� and �hZ�=�

SM
hZ� can be compared directly

to the measured signal rates. From Eq. (3.16) notice that if
c1 ¼ c2, one can change �h�� without affecting �hZ�.

IV. RESULTS

We can now evaluate the effect of the operators in
Eqs. (2.2) and (2.3) on the mass of the lightest neutral
CP-even Higgs particle h and on the partial decay widths
�h�� and �hZ�, which directly correspond to the rates in the

decoupling limit, as discussed in the previous section.
The Higgs mass in Eq. (2.9) as a function of tan� is

displayed in Fig. 1. It is well known that we can accom-
modate a Higgs mass at 126 GeV by tuning the soft
parameters in the loop correction (2.7), but this usually
demands a large tan�, which we do not consider here
(since then additional Yukawa couplings that we do not
include become important). With the d ¼ 5 operator (2.2),
one can easily obtain a value of mh � 126 GeV (see
Fig. 1); this has an acceptable fine-tuning �< 30 [13],
even for small tan�< 10, which is an otherwise very fine-
tuned region of the MSSM. Therefore, the impact of the
d ¼ 5 operator in reducing fine-tuning is more important
than usually thought.
The dimensionless parameter � � c0�=M measures the

extent to which the contribution fromO5 to the mass can be
considered perturbative, and for the given numbers, it is
below � < 0:06. The mass contributions from O6 rarely
have any visible effect on curves such as those as in Fig. 1,
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but they are included for completeness. We included only a

subset of the loop corrections, which is relevant at low

tan�, so we expect the curves to differ from the complete

result by few GeV only, which we confirmed in our ex-

amples using FeynHiggs [25].
Setting the scale M of new physics around 5 TeV as in

the example above (which means that the new physics may

not be discovered at the LHC), one would like to examine

the signal rates for h ! �� and h ! Z�. These signal

rates R�� and RZ� in the decoupling limit, given in

Eqs. (3.18) and (3.19), are shown in Fig. 2 as functions of

the coefficients c1 and c2 of the operators in Eqs. (2.2) and
(2.3). Concerning the h ! �� channel, from the depen-
dence on c1 and c2 in cBMSSM

�;dec in Eq. (3.16), and from the

fact that cSM� is negative in Eq. (3.5), we see that the

maximal enhancement of R�� in Eq. (3.18) is obtained

for negative values of both c1 and c2. In contrast, for
positive (and not too large) values of the two coefficients,
the h ! �� signal is depleted with respect to the SM
prediction, as can be seen in Fig. 2. We emphasize again
that we actually do not need both coefficients c1 and c2
[corresponding to the Uð1ÞY and SUð2ÞL operators in

c0
= 0.5

tanβ

c0 = 0.7

c0 = 0.8

c0 = 1.0

c0 = 0 (MSSM)
c0 = 0 (MSSM)

tanβ

Mt̃ = 500 GeVMt̃ = 1 TeV

tree level (MSSM)
tree level (MSSM)

mh mh

FIG. 1 (color online). The mass of the lightest Higgs particle h as a function of tan�, forM ¼ 5 TeV,� ¼ 300 GeV, mA ¼ 1 TeV,
no mixing (Xt ¼ 0), M~t ¼ 1 TeV (left panel), M~t ¼ 500 GeV (right panel), c1 ¼ c2 ¼ �1, and for various values of the O5

coefficient c0. The solid curves include the MSSM loop corrections.
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FIG. 2 (color online). The h ! �� signal rate R�� (solid black lines) in Eq. (3.18) and the h ! Z� rate RZ� (dashed blue lines) in
Eq. (3.19) are shown as functions of the coefficients c1 and c2 of the operators in Eqs. (2.2) and (2.3). In the plots we have set tan� ¼ 3
(left panel) and tan� ¼ 7 (right panel), M ¼ 5 TeV, and we have taken the decoupling limit.
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Eq. (2.3)] to achieve enhancement; we could set e.g.
c2 ¼ 0, but the flexibility this additional parameter affords
is useful in the next figure. The maximum allowed en-
hancement continues to decrease for larger values of tan�,
unless of course if we simultaneously lower M.

From Eq. (3.16) we see that cBMSSM
�Z;dec is maximized when

c1 and c2 have opposite signs. Moreover, since cSM�Z is

positive in Eq. (3.5), in order to achieve an enhancement
ofRZ� in Eq. (3.18), it is required that ðc2 � c1Þ> 0. This is

seen in Fig. 2, where RZ� is maximized for large positive

values for c2 and large negative values for c1. Notice that

the dependence on the sign of c1 and c2 for R�� and RZ� is

not specific to this scenario or SUSY. It simply follows from

electroweak symmetry breaking, as can be seen in Eq. (3.6).
In Figs. 3 and 4, we show a different representation of

the same physics as in Fig. 2, where we fix the coefficients

c1 and c2 in each curve, and instead vary the overall scale

of new physics M. As expected, the effect of the higher-

dimensional operators decreases with increasing M, but

even for M approaching 10 TeV, there can be some small

FIG. 3 (color online). The h ! �� signal rate R�� from Eq. (3.18) as functions of the scaleM, where we have set the coefficients of the
two operators in Eq. (2.3) equal, c1 ¼ c2. We have setM~t ¼ 1 TeV,� ¼ 300 GeV,mA ¼ 1 TeV, and Xt ¼ 0. Dashed blue lines provide
rough estimates of the range of validity of the effective field theory. To contrast with Fig. 2, note that Fig. 2 has a fixed valueM ¼ 5 TeV.

RγZ RγZ

c2 = −5
c2 = −1

c2 = 1

c2 = 5

c2 = −5

c2 = −1c2 = 1

c2 = 5

tanβ = 3 tanβ = 7

M [TeV] M [TeV]

FIG. 4 (color online). The h ! Z� rate RZ� from Eq. (3.19) for various values of the coefficients c1 and c2 of the operators in Eqs. (2.2)
and (2.3), if we require R�� ¼ 1:3 and vary�5< c1 < 5 for fixed c2. The curve ends when c1 goes out of range for R�� ¼ 1:3 with the

given parameters. We have setM~t ¼ 1 TeV, � ¼ 300 GeV, mA ¼ 1 TeV, and Xt ¼ 0. Dashed blue lines provide rough estimates of the
range of validity of the effective field theory expansion. Again, to contrast with Fig. 2, note that Fig. 2 has a fixed value M ¼ 5 TeV.
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effect. This perhaps somewhat counterintuitive behavior is
simply because the relevant SM couplings are small to
begin with, as emphasized in the introduction. Since the
‘‘new physics’’ that generated these operators comes from
a scale around or larger than 5 TeV, it will not be within
easy reach of the LHC.

In Fig. 4 we have illustrated the behavior of R�Z if we

require, for example, R�� ¼ 1:3 (i.e. interpret the diphoton

excess as signal) and vary �5< c1 < 5, so each curve
represents a particular value of c2 and ends at some upper
bound value ofM where it is no longer possible to achieve
the prescribed value of R�� ¼ 1:3. We see that above

tan� ¼ 5 or so, one would have to rely on the scale M
being not too far above 5 TeV.

With hindsight, it may appear that the analysis of the
effects of O5 in Eq. (2.2) and O6 in Eq. (2.3) could have
been performed mostly independently of each other. To be
clear, we did not assume this; as a matter of principle, we
always include the contribution to, e.g., the mixing angle �
from Eq. (2.2) when computing the effects of Eq. (2.3).
But we emphasize that the R�� contributions arising from

the dimension-six operators in Eq. (2.3) are maximized
for small tan�; see Eq. (3.16). Therefore, since the
usual MSSM tree-level contribution to the Higgs mass is
minimized for small tan�, the contribution from the
dimension-five operator to the tree-level Higgs mass is
crucial in order to accommodate a 126 GeV Higgs mass,
as is seen in Fig. 1.

V. GENERATING THE EFFECTIVE OPERATORS
FROM UNDERLYING PHYSICS

The natural question is then what new physics could
generate the effective operators discussed. In this section
we discuss a simple example of an underlying model from
which both O5 and O2 arise simultaneously in the low-
energy effective theory, upon integrating out some massive
supersymmetric degrees of freedom. Consider a model that
contains the following superpotential, involving a massive
gauge singlet chiral superfield6 �,

W � ð�þ 	�ÞHd �Hu þ 1

2
�S�

2; (5.1)

and a gauge kinetic function � that depends on �,

�ð�ÞTrðW�W
�Þ with �ð�Þ � �

�
; (5.2)

where � is a dimensionful suppression scale. If the SUSY
mass �S is sufficiently large with respect to the energy
scale under consideration, then � can be integrated out
supersymmetrically via its holomorphic equation of mo-
tion, which sets

� ¼ � 	

�S

Hd �Hu � 1

�S�
TrðW�W

�Þ þ � � � ; (5.3)

where the dots stand for higher-dimensional terms (further
suppressed by �S, �). By inserting this solution back into
the original Lagrangian, we obtain the following terms:

Z
d2�

�
�Hd �Hu � 	2

2�S

ðHd �HuÞ2

� 	

�S�
Hd �HuTrðW�W

�Þ
�

þ
Z

d4�

���������
	

�S

��������
2ðHd �HuÞyðHd �HuÞ

�
; (5.4)

where we have included operators up to dimension six. We
see that operators O5, O6 of Eqs. (2.2) and (2.3) were
simultaneously generated as a consequence of integrating
out �.
The dimension-six Kähler potential operator in the

second line of Eq. (5.4) gives corrections to the quartic
Higgs scalar potential and hence to the tree-level Higgs
mass. However, in comparison to our dimension-five
operator in the first line of Eq. (5.4), this operator is
suppressed by a higher power of �S. As long as �S is
sufficiently large, the corrections from this dimension-six
operator will be smaller in size with respect to the correc-
tions from the dimension-five operator.
It should be acknowledged that this example is

not renormalizable since the gauge kinetic term (5.2) has
dimension d ¼ 5. To have a renormalizable microscopic
model, one should also specify the degrees of free-
dom responsible for generating this d ¼ 5 operator.
Nevertheless, this operator with a moduli-dependent gauge
kinetic function is generically present in models derived
from supergravity or string theory.
Finally in order to connect with the discussion in the rest

of the paper, we should assume that the dimension-five
operators in Eq. (5.2) only involve the Uð1ÞY and SUð2ÞL
gauge field strength, and not also the SUð3ÞC one that could
in principle be also present. In string models, something
along these lines could be achieved by, for example, con-
sidering a brane model in which the dimensionality of the
branes that give rise to theUð1ÞY and SUð2ÞL gauge fields is
different from those that give rise to the SUð3ÞC gauge
field. In this way, since the Uð1ÞY and SUð2ÞL branes and
the SUð3ÞC branes, respectively, wrap different cycles of
the internal geometry, they depend on different gauge
singlet moduli fields associated with the different cycles.

VI. CONCLUSIONS

Recent LHC data on the Higgs mass and its couplings to
the photon, and the negative SUSY searches, present in-
creasing difficulties for MSSM-like models to naturally
accommodate a Higgs mass near 126 GeV, without undue
fine-tuning, and a potential enhancement of the h ! ��

6Gauge singlet fields with a supersymmetric mass term appear
in general versions of the NMSSM [12–14].
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partial decay rate, without affecting other partial decay
widths. Motivated by these observations, in this work we
investigated whether supersymmetric effects beyond the
MSSM could simultaneously accommodate these results.
Using an effective approach, we identified two effective
operators of dimensions d ¼ 5 and d ¼ 6 that can address
these problems and give the leading-order corrections to
the Higgs quartic coupling and the Higgs coupling to
photons, respectively.

We showed that the MSSM with small, supersymmetric
corrections due to these effective operators can simulta-
neously naturally accommodate a Higgs boson with a mass
near 126 GeV, an enhanced Higgs coupling to photons (and
also Z�) relative to the SM expectation, and finally SM-
like Higgs couplings to the other SM particles. The scale of
the supersymmetric effective operators is in the region of
5 TeVor even larger and is therefore possibly not within the
LHC reach. The corrections from the dimension-six opera-
tors to the Higgs coupling to photons (and Z�) are maxi-
mized for small tan� which is also the region where the
dimension-five operator produces the most dramatic effect
relative to the MSSM. This suggests that it is natural to
consider these operators together, and this is further sup-
ported by the fact that both of them can be generated
simultaneously by an underlying model, as we showed.

There remains the question of how the existence of these
operators can be tested. Let us assume that the signal rate in
the h ! �� channel is confirmed to be higher than the SM
expectation while the signal rates in all the other channels
coincide with the SM values. If at the same time, one can
rule out light stau sleptons in the mass range (of 150 GeVor
so) needed in order to enhance the diphoton signal with the
correct amount, this would cause a real problem for the
MSSM, and physics beyond the MSSM will be required.
Should the excess go away when further data is analyzed,
our results will remain useful to provide bounds on the
scale M of supersymmetric new physics beyond the
MSSM. Either way, this suggests that the diphoton rate is
a useful, sensitive probe in this context.
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APPENDIX

1. Details concerning the Lagrangian

Here we derive the Lagrangian of Sec. II. Unlike in the
text, we also include SUSY-breaking effects associated
with operators O5, O6, by using the spurion field. The
starting point is

L ¼
Z

d4�
X
i¼u;d

ð1�m2
i �

2 ��2ÞHy
i e

ViHi

þ
�Z

d2��ð1þ B�2ÞHd �Hu þ H:c:

�
þO5 þO6:

(A1)

The superfield components are Vi ¼ ð	i; Vi;�; D
a
i =2Þ,

Hi ¼ ðhi; c i; FiÞ. Also Hd �Hu ¼ �ijHi
dH

j
u, with �ij�kj ¼

�ik; �ij�kl ¼ �ik�jl � �il�jk, �12 ¼ 1, hd � hu ¼
h0dh

0
u � h�d h

þ
u . Further,

O5 ¼ 1

M

Z
d2�ðc0 þ c00�

2ÞðHu �HdÞ2 þ H:c:

¼ c0
M

½2ðhu � hdÞðhu � Fd þ Fu � hd � c u � c dÞ

� ðhu � c d þ c u � hdÞ2� þ c00
M

ðhu � hdÞ2 þ H:c:;

(A2)

and

O6 ¼ 1

M2

X
s¼1;2

1

16g2s�

Z
d2�ðcsþ c0s�2ÞTrðW�W�ÞsðHu �HdÞþH:c:

¼ X
s¼1;2

cs
4M2

�
ðhu �hdÞ

�
ið	a

s

�D�

�	a
s �D�

�	a
s �


�	a
s ÞþDa

sD
a
s � 1

2

�
F
a��
s Fa

s��þ i���


2
Fa
s��F

a
s


��

� ffiffiffi
2

p ðhu � c dþ c u �hdÞð	a
sD

a
s þ
��	a

sF
a
s��Þþ ðhu �FdþFu �hd� c u � c dÞ	a

s	
a
s

�
þ c0s
4M2

ðhu �hdÞð	a
s	

a
s ÞþH:c:

(A3)
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Above we introduced D�
�	a ¼ @� �	a � gtabcVb

�
�	c for covariant derivatives of the gauginos.

From L one finds the equations of motion for the auxiliary fields of Higgs superfields:

F�q
d ¼ ��qphpu

�
�þ 2

c0
M

ðhd � huÞ � c2
4M2

	a
2	

a
2 �

c1
4M2

	2
1

�

F�q
u ¼ ��pqhpd

�
�þ 2

c0
M

ðhd � huÞ � c2
4M2

	a
2	

a
2 �

c1
4M2

	2
1

�
;

(A4)

where q is a SUð2ÞL doublet index. For the auxiliary fields of the vector superfields, we find

Da
2 ¼ �½g2ðhydTahd þ hyuTahuÞ

�
1� c2

2M2
ðhu � hd þ H:c:Þ

�
�

ffiffiffi
2

p
c2

4M2
ððhu � c d þ c u � hdÞ	a

2 þ H:c:Þ
�

(A5)

D1 ¼ �
�
g1

�
hyd

�
� 1

2

�
hd þ hyu

�
1

2

�
hu

��
1� c1

2M2
ðhu � hd þ H:c:Þ

�
�

ffiffiffi
2

p
c1

4M2
ðhu � c d þ c u � hdÞ	a

1 þ H:c:Þ
�
; (A6)

with Ta ¼ 
a=2. The squares become

Da
2D

a
2 ¼ g22

4

�
1�

�
c2
2M2

hu � hd þ H:c:

��
2½ðjhdj2 � jhuj2Þ2 þ 4jhydhuj2�

�
ffiffiffi
2

p
2

g2½hydTahd þ hyuTahu�
�

c2
2M2

ðhu � c d þ c u � hdÞ	a
2 þ H:c:

�
; (A7)

D2
1 ¼

g21
4

�
1�

�
c1
2M2

hu � hd þ H:c:

��
2ðjhdj2 � jhuj2Þ2 �

ffiffiffi
2

p
2

g1

�
hyd

�
� 1

2

�
hd þ hyu

�
1

2

�
hu

�

�
�

c1
2M2

ðhu � c d þ c u � hdÞ	1 þ H:c:

�
: (A8)

O5 andO6 and Eqs. (A4)–(A8) give the corrections to the MSSMHiggs Lagrangian. Using the corrected auxiliary fields in
the usual MSSM Higgs Lagrangian, additional terms suppressed by 1=M and 1=M2 are generated. The full on-shell
Lagrangian is then

L ¼ LD þLF þL1 þL2 þL3 þLSSB: (A9)

Eliminating the D-dependent terms in L, one finds [see Eqs. (A5)–(A8)]

LD ¼ X
s¼1;2

� 1

2
Da

sD
a
s

�
1þ cs

2M2
ðhu � hd þ H:c:Þ

�
(A10)

and uses Eq. (A8). Eliminating the F-dependent terms in L gives LF:

�LF � jFdj2 þ jFuj2 ¼
���������þ 2

c0
M

hd � hu
��������

2ðjhdj2 þ jhuj2Þ þ
�
�

�
� c2
4M2

	a
2	

a
2 �

c1
4M2

	2
1

�
ðjhdj2 þ jhuj2Þ þ H:c:

�
:

(A11)

Apart from auxiliary field contributions, there are also terms in the Lagrangian with space-time derivatives, which
contribute to the kinetic terms for Weyl fermions c u;d, 	

a
1;2 when the neutral singlet h0u;d components of hu;d acquire a

VEV:

L1 ¼ c2
4M2

ðhu � hdÞ½ið	a
2


�D�
�	a
2 �D�

�	a
2 �


�	a
2Þ� þ H:c:þ ð2 ! 1Þ: (A12)

When the Higgs neutral singlets acquire a VEV, these terms produce wave function renormalization of Weyl kinetic terms
and a threshold correction to gauge couplings g1 and g2.

There are also terms contributing to fermion masses when the Higgs fields acquire VEVs,

L 2 ¼ c02
4M2

ðhu � hdÞð	a
2	

a
2Þ þ

c01
4M2

ðhu � hdÞð	1	1Þ þ c0
M

½2ðhu � hdÞð�c u � c dÞ � ðhu � c d þ c u � hdÞ2� þ H:c: (A13)
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Further, there are some interaction terms generated:

L3 ¼
�
c2
4M2

�
� 1

2
ðhu � hdÞ

�
Fa��
2 Fa

2�� þ
i

2
���
Fa

2��F
a
2


�
� ffiffiffi

2
p ðhu � c d þ c u � hdÞ
��	a

2F
a
2�� � c u � c d	

a
2	

a
2

�

þ ð2 ! 1Þ þ H:c:

�
: (A14)

Finally, the Lagrangian contains (F- and D-independent) corrections from supersymmetry breaking due to spurion
dependence in the dimension-5 operator as well as the usual soft terms of the MSSM. All these together give LSSB:

LSSB ¼ �VSSB ¼
�
c00
M

ðhu � hdÞ2 þ�Bðhd � huÞ þ H:c:

�
�m2

djhdj2 �m2
ujhuj2:

This concludes the presentation of the Lagrangian to 1=M2 order. From L we find the scalar potential Vh for the Higgs
sector shown in the text, Eq. (2.6), in which as usual hu;d denote SU(2) doublets. From this one obtains

m2
h ¼ m2

h;loop þ�m2
h; (A15)

with

m2
h;loop ¼

1

2
fm2

A þm2
Z þ �m2

Zsin
2�� ffiffiffiffi

w
p g w � ½ðm2

A �m2
ZÞ cos 2�þ �m2

Zsin
2��2 þ sin 22�ðm2

A þm2
ZÞ2 (A16)

and

�m2
h ¼ f1

�
2�

c0
M

�
þ f2

�
�2

c00
M

�
þ f3

�
2�

c0
M

�
2 þ f4

�
�2

c00
M

�
2 þ f5

�
2�

c0
M

��
�2

c00
M

�
þ f6

�
g21

c1
M2

þ g22
c2
M2

�
þO

�
1

M3

�
;

(A17)

where

f1 ¼ v2 sin 2�

�
1þ ðm2

A þm2
ZÞffiffiffiffi

w
p

�
f2 ¼ v2

2

�
1� cos 2�ffiffiffiffi

w
p ½ðm2

A �m2
ZÞ cos 2�þm2

Z�sin
2��

�

f3 ¼ v4

4�2
sin 22�þ v4ffiffiffiffi

w
p

�
�1þ 1

2�2
ðm2

A þm2
ZÞsin 22�

�
þ 1

w3=2
ðm2

A þm2
ZÞ2v4sin 22�

f4 ¼ � v4

16w3=2
ðm2

A þm2
ZÞ2sin 24� f5 ¼ � v4

4w3=2
ðm2

A þm2
ZÞ½�m2

Z þ ð2m2
A � ð2þ �Þm2

ZÞ cos 2�� sin 4�

f6 ¼ v4

32
sin 2�

�
1þ 1

4
ffiffiffiffi
w

p ½8m2
A � ð4þ 3�Þm2

Z þ 6�m2
Z cos 2�þ 3ð4m2

A � �m2
ZÞ cos 4��

�
(A18)

and finally

m2
A ¼ 2B�

sin 2�
� v2

sin 2�

�
2�

c0
M

�
þ

�
2
c00
M

�
v2 � v4

32

cos 22�

sin 2�

�
g21c1
M2

þ c2g
2
2

M2

�
þO

�
1

M3

�
:

2. One-loop form factors

The form factors in Eq. (3.4) are given by

AðtÞ
g ¼ 3

4
A1=2ð�tÞ; AðbÞ

g ¼ 3

4
A1=2ð�bÞ; AðWÞ

� ¼ A1ð�WÞ; AðtÞ
� ¼ NcQ

2
tA1=2ð�tÞ;

AðWÞ
Z� ¼ cos �wA1ð�W; 	WÞ; AðtÞ

Z� ¼ Nc

Qtð2TðtÞ
3 � 4Qtsin

2�wÞ
cos �w

A1=2ð�t; 	tÞ;
(A19)

where �i ¼ 4m2
i =m

2
h, 	i ¼ 4m2

i =m
2
Z, Nc ¼ 3, Qt ¼ 2=3, TðtÞ

3 ¼ 1=2 and
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A1=2ð�Þ ¼ 2�2½��1 þ ð��1 � 1Þfð��1Þ�; A1ð�Þ ¼ ��2½2��2 þ 3��1 þ 3ð2��1 � 1Þfð��1Þ�;
A1=2ð�; 	Þ ¼ I1ð�; 	Þ � I2ð�; 	Þ; A1ð�; 	Þ ¼ 4ð3� tan 2�wÞI2ð�; 	Þ þ ½ð1þ 2��1Þtan 2�w � ð5þ 2��1Þ�I1ð�; 	Þ;

(A20)

where

I1ð�; 	Þ ¼ �	

2ð�� 	Þ þ
�2	2

2ð�� 	Þ2 ½fð�
�1Þ � fð	�1Þ� þ �2	

ð�� 	Þ2 ½gð�
�1Þ � gð	�1Þ�;

I2ð�; 	Þ ¼ � �	

2ð�� 	Þ ½fð�
�1Þ � fð	�1Þ�;

(A21)

and

fðxÞ ¼
8<
:
arcsin 2

ffiffiffi
x

p
x 	 1

� 1
4

�
log 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1�x�1

p
1�

ffiffiffiffiffiffiffiffiffiffiffi
1�x�1

p � i�

�
2

x > 1;
(A22)

gðxÞ ¼
8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�1 � 1

p
arcsin

ffiffiffi
x

p
x 	 1ffiffiffiffiffiffiffiffiffiffiffi

1�x�1
p

2

�
log 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1�x�1

p
1�

ffiffiffiffiffiffiffiffiffiffiffi
1�x�1

p � i�

�
2

x > 1:
(A23)
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