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Abstract

In this paper we investigate the connection between (non-)geometry and (non-)commutativity
of the closed string. To this end, we solve the classical string on three T-dual toroidal
backgrounds: a torus with H-flux, a twisted torus and a non-geometric background with
Q-flux. In all three situations we work under the assumption of a dilute flux and consider
quantities to linear order in the flux density. Furthermore, we perform the first steps of a
canonical quantization for the twisted torus, to derive commutators of the string expansion
modes. We use them as well as T-duality to determine, in the non-geometric background, a
commutator of two string coordinates, which turns out to be non-vanishing. We relate this
non-commutativity to the closed string boundary conditions, and the non-geometric Q-flux.
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1 Introduction

Strings are extended objects, and have a different perception of geometry than point particles
do. The simple fact that a string can wind around a compact dimension gives string theories
a wealth of interesting properties. Firstly, there is T-duality, which states that every string
theory that is compactified on a torus has a physically equivalent description on a dual torus.
Secondly, by applying T-duality to string compactifications with background fluxes, one can
obtain non-geometric situations, where the internal part of space-time is no longer a standard
manifold [1, 2]. Finally, both open and closed string theories can become non-commutative
in certain settings. In this paper, we study that assertion for closed strings propagating in a
non-geometric background.

Phenomenological motivations for non-geometric string configurations were found in an
analysis of four-dimensional supergravity (SUGRA) [3] (see [4] for a recent review on non-
geometry and more references). Usually, such theories arise from compactifications of the
ten-dimensional low-energy SUGRA description of string theory. If there are fluxes in the
compact directions, a superpotential is generated in the four-dimensional theory. Since such
four-dimensional theories stem from string compactifications, they were expected to transform
into each other under T-duality. However, such a duality could only be established if new
terms were introduced in the superpotential.1 The quantities generating these new terms were
dubbed non-geometric Q- and R-fluxes, and should be T-duals to quantities in the Neveu–
Schwarz sector of the string. More precisely, the T-duality chain needed for a covariant
four-dimensional superpotential is

Habc
TaÝÑ fa

bc
TbÝÑ Qc

ab TcÝÑ Rabc . (1.1)

In each step of this chain, a T-duality transformation is performed on direction a, b and
c, respectively. In this paper, our focus is on backgrounds with Q-flux, which has a local
geometric description. The more exotic R-flux configurations are obtained when T-dualising
on directions that are not isometries, and geometry should then be lost even locally [3, 5].

While the H-flux and the structure constant f have a clear ten-dimensional interpretation2

the non-geometric fluxes did not at the time. The Neveu–Schwarz sector of ten-dimensional
SUGRA contains precisely two types of fluxes, H and f , and so the origin of Q and R re-
mained obscure. This was amended recently using a SUGRA field redefinition, which yields
a globally defined ten-dimensional Q-flux in specific situations [4]. Following this strategy,
and also adopting the tools of double field theory [6], this result was extended and led to a
ten-dimensional action and expressions for both Q and R [7, 8].

Independently of these studies of effective SUGRA descriptions of the string, related prop-
erties of string world-sheet theories have been investigated. In particular, the commutativity
of the world-sheet fields, and the associated space-time geometry, in the presence of back-
ground fluxes has been under scrutiny. This led to the discovery of non-commutativity, when
it was shown that the boundary theory of an open string ending on a D-brane with either
constant B-field or an abelian gauge field is non-commuting [9, 10].

1Equivalently, the gauge algebra of the four-dimensional gauged SUGRA could only be made T-duality
covariant if new structure constants were introduced [3,5].

2H is the exterior derivative of the Kalb–Ramond field B and f is related to the spin connection, and so
indicates non-zero curvature. For this reason, f is also known as the geometric flux.
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In contrast, closed string theories are expected to remain commutative as long as the back-
ground is geometric, and more exotic set-ups seem to be required to find non-commutativity.
Indeed, recently evidence has been found for a connection between non-geometry and closed
string non-commutativity and even non-associativity [11–14]. Investigations adopting a K-
theory perspective in [15] also indicate that the closed string geometry becomes non-commutative
on such backgrounds [16].3 Approaches using dual membrane theories [18] and matrix mod-
els [19] arrive at the same conclusion.

It was shown in [12,14], for a non-geometric background with elliptic monodromy (which
can be viewed as a freely acting asymmetric orbifold), that a non-vanishing commutator of
closed string coordinates is proportional to the non-geometric flux times a winding number.
Guided by these results, we formalised in [8] the connection between non-geometric fluxes
and closed string non-commutativity through the conjecture

rX µ, X
νsclosed „

¿

Cρ

Qρ
µνpX q dX

ρ . (1.2)

The scope of this paper is to show that this conjecture holds in one of the most famous
examples of non-geometric set-ups: the Q-flux dual of the flat three-torus with H-flux [20,21].
This configuration, and its T-duals, have been studied at length in the literature (see [4, 13]
for recent accounts with focus on non-geometry and non-associativity). We will recapitulate
some salient features here, and also clarify how, by assuming a sufficiently dilute flux, these
set-ups can be approximations of string backgrounds.

The flat three-torus with H-flux has two isometries: the Kalb–Ramond field B necessarily
depends on one of the torus coordinates in order to give a non-trivial H-flux. It is useful to
describe the configuration as a (trivial) fibration of a two-torus over a base circle, and let B

live along the fibre and depend on the base circle coordinate. T-dualising on one of the fibre
directions, one finds (using the Buscher rules [22,23]) a twisted torus with zero H-flux, whose
fibre twisting is related to a non-trivial geometric flux f . T-dualising on the second fibre
direction, one reaches a non-geometric situation where the background metric and B-field are
not globally well-defined. Indeed, T-duality is required to act as transition functions for these
fields, and the configuration can be viewed as a T-fold [24]. As shown in [4], a description
with a globally defined metric and Q-flux exists for this set-up. Thus, this toroidal example
perfectly matches the T-duality chain (1.1) (and was, in fact, an inspiration for it).

To study strings on this field configuration, it should better be a consistent string back-
ground, and so in particular Weyl invariant. Thus, the one-loop β-functions of the string
sigma-model should vanish, which corresponds to satisfying the SUGRA equations of mo-
tion [25]. For the flat torus with H-flux, this is generically not the case. In particular, the
dilaton and Einstein equations restricted to the Neveu–Schwarz sector are given by

R ` 4p∇2φ ´ pBφq2q “ 1

12
HµνρHµνρ (1.3)

Rµν ´ Gµν

2
R ` 2∇µBνφ ´ 2Gµν p∇2φ ´ pBφq2q “ 1

4

ˆ
HµκλHν

κλ ´ Gµν

6
HρκλHρκλ

˙
. (1.4)

For a flat torus with constant dilaton but non-zero H, these equations are violated due to
terms proportional to the square of the H-flux. One way to make sense of this configuration

3See [17] for a different interpretation of these non-commutative theories.
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is to complete it with more ingredients (Ramond-Ramond fluxes, orientifold planes) in the
other dimensions not considered here; this has been done in [26] to get solutions of type IIB
SUGRA as those of [27]. We will proceed in a different manner. We only consider NSNS
sector contributions to the SUGRA equations of motion, and assume the torus volume is so
large that

H

R1R2R3

! 1 . (1.5)

Here, Rν“1,2,3 denote the radii of the torus, and H the flux component H123 (our conventions
are explained below (2.1) and above (2.8)). As we show in detail in section 2, the quadratic
flux terms in (1.3) and (1.4) are quadratic in this small flux density, and so can be neglected to
a good approximation. Thus, using this “dilute flux approximation”,4 this field configuration
can be viewed as an approximate string background. The result can easily be extended to the
two T-dual set-ups (T-duality actually guarantees that if it is true for one, it remains true
for the others).5

Consequently, for a dilute flux, we find that the torus with H-flux and the twisted torus
are both approximate geometric string backgrounds. It therefore makes sense to analyse the
properties of their world-sheet theories in detail, and we will do so in this paper. We will
derive the equations of motion and boundary conditions for the world-sheet fields and find
their solutions to linear order in the flux density. We will also investigate the T-duality rela-
tions between equations of motions, coordinate solutions and canonical commutators between
coordinates. This is presented in section 2, and shows that T-duality is a remarkable tool:
not only does it relate the classical coordinate solutions of the two geometric backgrounds,
but it also maps their quantum properties, i.e. most of their operator commutators.

However, a similar direct analysis of the non-geometric Q-flux background is not possible.
This is especially pertinent for the commutators of the coordinates. While it is natural to
impose canonical commutator relations in any geometric frame, the same does not hold in a
non-geometric setting. Thus, in these settings, the commutators of coordinates are a priori
undetermined. To compute them, we hence proceed indirectly through T-duality, using that
both the classical coordinate solutions and their commutator relations are T-dual to well-
understood geometric quantities. Thus, by T-dualising the twisted torus solution Y µpτ, σq,
we obtain the coordinate solutions Zµpτ, σq of the non-geometric situation as a (complicated)
combination of zero modes and oscillator modes. The commutation relations of these modes
are obtained from a (partial) canonical quantization of the twisted torus solution. As a result,
we find the following non-vanishing commutator

rZ1pτ, σq, Z2pτ, σ1qs σ1ÑσÝÝÝÑ ´ i

2

π2

3
N3H . (1.6)

As expected, our result shows that the non-commutativity is contingent on the flux and
winding. The explicit expression for the Q-flux, that was derived in [4], shows that Q is
proportional to H, and so the analysis confirms the conjecture (1.2). In particular, if H is

4In the twisted torus, the approximation could also be called a weak curvature approximation. Approxi-
mations of this type have been used before, see e.g. [13,28] and references therein for related discussions.

5The asymmetric orbifold studied in [14] is an example of an exact CFT solution where non-commutativity
appeared to be related to the underlying non-geometry. Thanks to the approximation considered here, we have
at hand another example with similar characteristics (a non-geometric set-up); it should therefore be enough
to recover the non-commutativity features, and we leave the study of a background beyond this approximation
to future investigations.
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zero, we have a geometric and commutative situation. Furthermore, just as suggested by
the integral in the conjecture, it is the extension of the string that is the source of non-
commutativity. Indeed, if we put the winding number of our solution to zero, we loose
non-commutativity. The relation to the extension of the string is not surprising, and shows
that the non-commutativity is a non-local effect.

The rest of this paper is organised as follows. In section 2 we perform a thorough analysis
of the T-dual configurations. We show that they are approximate string backgrounds when
the background flux density is small, and study the T-duality relations between equations of
motion and canonical commutators. In section 3 we solve the equations of motion in the two
geometric situations to linear order in the flux density, and discuss the T-duality relations
among their solutions. We then perform a partial canonical quantization for the twisted torus
background, deriving the commutation relations of the modes of its solution. In section 4, we
study the non-geometric background. Using T-duality we find its coordinate solutions, and
work out their commutators, leaving some details to appendix D. We study the origin of the
non-commutativity and compare with the geometric backgrounds. We also relate the non-
commutativity to the Q-flux. Finally, we summarize our conclusions and give suggestions for
future investigations. Appendices A and B explain our notation and target space aspects of
T-duality. In appendix C, we comment on the relations between monodromies, closed string
boundary conditions and non-geometry.

Since this paper is on the long side, let us decompose it into three themes. A reader
interested in non-commutativity should focus on sections 4.2 and 4.3 as well as appendix
C, while one more interested in the canonical quantization of the twisted torus should look
at 2.2, 2.4 and 3. Finally, 2.2.1, 2.2.2, 2.3 and 3.1 discusses the classical string on the two
geometric backgrounds.

2 Classical and quantum string on the T-dual backgrounds

In this section, our starting point is the standard world-sheet action

S “ ´ 1

4πα1

ż

Σ

d2σ
´

GµνpX q ηαβ ` BµνpX q εαβ
¯

BαX
µBβX

ν , (2.1)

where the metric G and the B-field specify which background we consider. The world-sheet
metric ηαβ is Minkowski with signature ηττ “ ´ησσ “ ´1, and we take as a convention
ετσ “ ´εστ “ 1. In addition, we fix for convenience α1 “ 1

2
.

From this action, we first recall Buscher’s T-duality procedure [22, 23], and deduce the
T-duality relations between string coordinates. We then present the three T-dual toroidal
backgrounds, and study the associated world-sheet equations of motion and closed string
boundary conditions.6 Finally, we come back to the T-duality relations among coordinates of
the different backgrounds and study how they relate the equations of motions and boundary
conditions, as well as the canonical commutation relations that we first introduce.

2.1 Buscher’s approach to T-duality

Let us first briefly sketch the procedure introduced by Buscher [22,23], in order to derive the
T-duality transformation rules we need. For more details, see for instance [29]. We start with

6In appendix C, the global properties of these backgrounds are rephrased in terms of monodromies, out of
which we propose a way to derive the boundary conditions of (doubled) string coordinates.
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the initial world-sheet action (2.1), that can be rewritten as follows

S “ 2

π

ż

Σ

d2σ EµνpX q Bσ´X
µ Bσ`X

ν , with Eµν “ Gµν ` Bµν , (2.2)

where we used the conventions given below (2.1), introduced σ˘ “ τ ˘ σ and 2Bσ˘ “ Bτ ˘ Bσ .
To perform a T-duality along µ “ ι, one needs this direction to be an isometry, meaning

in practice that background fields EµνpX q do not depend on X ι (we denote by µ “ κ, λ the
other directions). The first step of the procedure then consists in gauging this isometry, by
adding to Bσ˘X ι gauge fields A˘, and to the initial action S the following piece

SA “ ´ 2

π

ż

Σ

d2σ X̂
`
Bσ´A` ´ Bσ`A´

˘
. (2.3)

Here, the field X̂ is a Lagrange multiplier, which will become the T-dual coordinate. The
fields A˘ can be thought of as light-cone gauge fields; it is thus their field strength which
appears here. The equation of motion for X̂ puts this field strength to vanish, so that these
gauge fields are pure gauge. Imposing this constraint, and shifting X ι (possible thanks to the
isometry), one recovers the initial theory given by the action S.

One can equivalently integrate out the gauge fields, instead of X̂ . To do so, one should
first derive their equations of motion. Note that these are the same as the equations for
Bσ˘X ι ` A˘ (in particular one can replace A˘ by this sum within SA, without changing it).
To integrate out A˘, one then in practice replaces in the full action these quantities by their
on-shell value. By construction, the resulting theory is equivalent to the starting one: we say
that the new action is T-dual to S. Up to a total derivative, this new action has the same
form as S, where one replaces X ι by X̂ , and the field Eµν by Êµν , given as follows

Ĝιι “ 1

Gιι
, Êικ “ ´Eικ

Gιι
, Êκι “ Eκι

Gιι
, Êκλ “ Eκλ ´ EκιEιλ

Gιι
. (2.4)

These are the well-known Buscher rules [22, 23] that describe how the target space fields
transform under T-duality. We rediscuss these target space transformations in appendix B.

Let us come back to the equations of motion derived for A˘ (equivalently for Bσ˘X ι `A˘).
These equations are the core of the procedure and allow to relate the T-dual situations. As
before, performing a trivial shift on X ι would absorb a pure gauge A˘ into Bσ˘X ι; equivalently
one can choose to gauge-fix A˘ to zero. In both cases, the equations of motion simplify to7

Bσ`X̂ “ Gιι Bσ`X
ι ` Eικ Bσ`X

κ (2.5)

Bσ´X̂ “ ´Gιι Bσ´X
ι ´ Eκι Bσ´X

κ . (2.6)

Consequently, one deduces the following relations between derivatives of T-dual coordinates8

Bτ X̂
ι “ GιιBσX

ι ` GικBσX
κ ` BικBτ X

κ (2.7)

BσX̂
ι “ GιιBτ X

ι ` GικBτ X
κ ` BικBσX

κ

Bτ X̂
κ “ Bτ X

κ , BσX̂
κ “ BσX

κ .

We will make use of these relations, but let us first present the different T-dual backgrounds
we will work with.

7On the matter of gauge-fixing, see [30]. On the relations between T-dual coordinates, see also [31].
8Note that in the whole procedure, another set of conventions is possible. In particular, one can take the

opposite sign in front of SA, and the opposite sign for ετσ. This results in having the opposite sign for the
off-diagonal pieces in (2.4), and in exchanging the indices of these same pieces in (2.5) and (2.6). One can of
course choose such conventions, but they will be incompatible with the conventions of (B.2).
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2.2 The classical string on the different T-dual backgrounds

In this section, we present the different T-dual backgrounds, and derive for each of them the
world-sheet equations of motion. We also discuss the boundary conditions of the coordinates.

2.2.1 Torus with H-flux

We first consider three dimensions of the target space to be a flat torus along X µ “ Xµ“1,2,3

with periodic identifications Xµ „ Xµ ` 2π, and a H-flux H3 “ HdX1 ^ dX2 ^ dX3, where
H is a constant. We only consider the target space fields along the torus; the metric is then
given in terms of the radii Rµ by

G “

¨
˝

R2
1 0 0

0 R2
2 0

0 0 R2
3

˛
‚ , (2.8)

and the B-field is fixed to a particular gauge that is linear in X3,

B12 “ ´B21 “ HX3 , B13 “ B31 “ B23 “ B32 “ 0 . (2.9)

As discussed in the introduction, for this configuration of fields to be a valid string theory
background, the SUGRA equations of motion should be satisfied. With a constant dilaton,
the equations (1.3) and (1.4) reduce here to

ˆ
H

R1R2R3

˙
2

“ 0 , (2.10)

where we used that in curved indices, H123 “ H. Thus, these equations of motion are satisfied
up to linear order in H{R1R2R3. This can be realised physically by considering a sufficiently
large torus which would dilute the flux, and assure that (1.5) is satisfied. Note that the flux,
i.e. H, is quantized in string theory. The flux density H{R1R2R3 can be small, and we will
work with this approximation of the dilute flux throughout the paper, i.e. at linear order in
the previous quantity. Finally, we should also consider the B-field equation of motion and
the H-flux Bianchi identity, given respectively by the forms

dpe´2φ ˚ H3q “ 0 , dH3 “ 0 . (2.11)

While the latter is trivially satisfied for our constant H-flux, the former is less straightforward,
because the Hodge star ˚ involves the volume and the orthogonal metric components. Here we
restrict ourselves to the three-dimensional flat torus with a constant dilaton, and the equation
is satisfied because all fields are constant. In a more general case, other assumptions will have
to be made.

Given this background, we now study the closed string living on it. Starting from (2.1)
and its associated conventions, using (2.8) and (2.9), we derive the equation of motion for a
closed string moving on a torus with H-flux:

BαBαXµpτ, σq “ GµλHλνρBσXνBτ Xρ . (2.12)

In order to simplify notations, and the approximation, we rescale all quantities (see table 3
in appendix A), which results in

Xµ Ñ 1

Rµ
Xµ (no sum) , Gµν Ñ ηµν , H Ñ HR1R2R3 . (2.13)
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These rescaled quantities will be used in the remainder of the paper. We then have the
rescaled equations of motion

BαBαXµpτ, σq “ Hǫµ
νρBσXνBτ Xρ , (2.14)

where ǫµ
νρ “ ηµλǫλνρ. In this rescaled notation, the approximation (1.5) translates simply

into retaining terms up to linear order in H, which is now to be regarded as a flux density:
pHqnew “ pHqold{R1R2R3. Note as well that this new H is equal to H123 in flat indices, i.e.
the one that enters the T-duality chain (1.1). This is a first hint that this quantity will appear
and play the same role in the other T-dual backgrounds.

Finally, let us consider the following boundary conditions

Xµpτ, σ ` 2πq “ Xµpτ, σq ` 2πN
µ
X , (2.15)

that are compatible with the torus periodic identifications. These boundary conditions will
be completed in (C.15) with those of dual coordinates, using a doubled formalism.

We index here the winding modes N
µ
X by X to distinguish them from the modes Nµ

in the twisted torus configuration. The same distinction will be made on the other modes;
in particular, to ease the notations, no specific index will be carried by the modes of the
twisted torus, as those are the ones mostly used in the paper. Let us now turn to this second
configuration.

2.2.2 Twisted torus

Secondly, we consider a twisted torus along X µ “ Y µ“1,2,3 with metric

G “

¨
˚̊
˝

1

R2

1

´HY 3

R2

1

0

´HY 3

R2

1

R2
2 `

´
HY 3

R1

¯
2

0

0 0 R2
3

˛
‹‹‚ . (2.16)

This is a three-dimensional nilmanifold generated by the Heisenberg algebra, and its Maurer-
Cartan one-forms, in particular pdY 1 ´ HY 3dY 2q{R1, are globally well-defined provided the
following identifications are satisfied9

pY 1, Y 2, Y 3q „ pY 1 ` 2π, Y 2, Y 3q „ pY 1, Y 2 ` 2π, Y 3q „ pY 1 ` 2πHY 2, Y 2, Y 3 ` 2πq . (2.17)

In addition, we consider no B-field. Using (2.4), or appendix B, one can verify that this field
configuration is related to the flat torus with H-flux by a T-duality in the X 1-direction. This
is true provided we identify X3 “ Y 3, while the H parameter and the radii we have here are
the same as in (2.8) and (2.9). We will return to this T-duality in section 2.3.

To identify the dilute flux approximation in this background, we again study the target
space equations of motion. For a constant dilaton and no H-flux, equations (1.3) and (1.4)
become

R “ 0 , Rµν ´ 1

2
GµνR “ 0 . (2.18)

Using that the non-zero components of the Ricci tensor (in curved indices) and the Ricci
scalar for the twisted torus are

R11 “ 1

2R2
1

ˆ
H

R1R2R3

˙
2

, R22{33 “ ´
R2

2{3

2

ˆ
H

R1R2R3

˙
2

, R “ ´1

2

ˆ
H

R1R2R3

˙
2

, (2.19)

9See [32] for a review on nil- and solvmanifolds, their compactness and associated discrete identifications.
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we find, just as in the T-dual situation discussed above, that these equations are satisfied at
linear order in H{R1R2R3. Another way to see that the approximation remains (1.5), is to
notice that the (non-trivial) structure constant f1

23 “ ´H{R1R2R3. As already mentioned
for the flat torus, this is the quantity that appears in the T-duality chain (1.1), and is
considered small in our approximation.

It is straight forward to derive the world-sheet equations of motion in the twisted torus
background. In order to simplify their appearance, and the approximation, we again rescale
according to table 3 in appendix A, giving in particular

Y 1 Ñ R1Y 1 , Y 2,3 Ñ 1

R2,3
Y 2,3 , H Ñ HR1R2R3 . (2.20)

Then, our approximation is again simply given by the linear order in H, while the rescaled
equations of motion are

BαBαY 1 “ H
`
Y 3BαBαY 2 ` BαY 2BαY 3

˘
(2.21)

BαBαY 2 “ H
`
BαY 1BαY 3 ´ HY 3BαY 2BαY 3

˘
(2.22)

BαBαY 3 “ H
`
´BαY 1BαY 2 ` HY 3BαY 2BαY 2

˘
. (2.23)

They simplify, at linear order in H, to

BαBαY µ “ Hθµ
νρBαY νBαY ρ , (2.24)

where we introduce θ1
23 “ θ2

13 “ ´θ3
12 “ 1, with all other components being zero.

The twisting of the torus, described by the identifications (2.17), makes the boundary
conditions for the coordinate fields non-trivial. Allowing for some winding Nµ, we have

Y 1pτ, σ ` 2πq “ Y 1pτ, σq ` 2πN1 ` 2πN3HY 2pτ, σq (2.25)

Y 2pτ, σ ` 2πq “ Y 2pτ, σq ` 2πN2 (2.26)

Y 3pτ, σ ` 2πq “ Y 3pτ, σq ` 2πN3 . (2.27)

These boundary conditions will be completed in (C.16) with those of dual coordinates, using
a doubled formalism.

2.2.3 The non-geometric background

Finally, we consider a third situation with the string coordinates denoted X µ “ Zµ“1,2,3 and
the following field configuration

G “ f

¨
˚̊
˝

1

R2
1

0 0

0 1

R2

2

0

0 0
R2

3

f

˛
‹‹‚ , B “ f

¨
˚̋

0 ´ HZ3

R2
1
R2

2

0

HZ3

R2
1
R2

2

0 0

0 0 0

˛
‹‚ , f “

˜
1 `

ˆ
HZ3

R1R2

˙2
¸´1

. (2.28)

This configuration is known to be non-geometric in the sense of [1, 2]. Indeed, when going
around the circle along Z3, one cannot find a diffeomorphism or a gauge transformation
which would make these fields globally defined; on the contrary one can achieve this by using
a T-duality as the transition function between two patches on the Z3 circle [20,21].
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This field configuration is also T-dual to the twisted torus. By performing a T-duality
along X 2, and identifying Y 3 “ Z3, one obtains precisely the above fields using (2.4) or
appendix B (the parameter H and the radii are the same as before). This implies that if the
torus with H-flux or the twisted torus are consistent string backgrounds, or can be completed
to such, the same should hold here. We infer that we can make the same approximation
as (1.5), so that the non-geometric field configuration becomes a background. There is an
easy way to verify this: after rescaling quantities as indicated in table 3 in appendix A, and
considering at most the linear order in H, the non-geometric fields (2.28) reduce to precisely
those of the torus with H-flux, up to a change of sign of the B-field (see table 1), so they
clearly satisfy the SUGRA equations.

Despite the similarity with this previous geometric background, we know that the fields
here should only be considered locally, and that their global properties are non-trivial. The
global aspects differ from those of the torus with H-flux, as we discuss in appendix C, and
similarly, the T-duality relations (2.31) among coordinates will indicate boundary conditions
for the Zµ that are different from those of the Xµ. More generally, the idea of this paper is to
make an intensive use of the T-duality relations between these various backgrounds to study
the string properties on the non-geometric one.

Summary of the rescaled and approximated background fields

As argued for each of the three T-dual backgrounds, the supergravity equations of motion are
satisfied at linear order in the H parameter. In table 1, we summarize all target space fields,
namely (2.8) and (2.9), (2.16), and (2.28), rescaled according to table 3 in appendix A, and
expanded at linear order in H.

Backgrounds X µ Target space fields

Torus + H-flux Xµ G “

¨
˝

1 0 0
0 1 0
0 0 1

˛
‚ , B “

¨
˝

0 HX3 0
´HX3 0 0

0 0 0

˛
‚

Tw. torus Y µ G “

¨
˝

1 ´HY 3 0
´HY 3 1 0

0 0 1

˛
‚` OpH2q , B “ 0

Non-geom. Zµ G “

¨
˝

1 0 0
0 1 0
0 0 1

˛
‚` OpH2q , B “

¨
˝

0 ´HZ3 0
HZ3 0 0

0 0 0

˛
‚` OpH2q

Table 1: Rescaled background fields, keeping terms to linear order in H.

We recall that these fields are T-dual according to (2.4) or appendix B, provided one
identifies X3 “ Y 3 “ Z3 (on that point, see the discussion after (2.31)). These fields will be
used in the remainder of the paper, in particular to compute the canonical momentum (2.39).
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2.3 Relating the classical string on the different T-dual backgrounds

So far, we have presented three T-dual backgrounds. The corresponding string coordinates
can be related thanks to the T-duality relations derived in (2.7), so let us first give the latter
explicitly. We use the rescaled quantities in these relations (see the discussion around table
3 in appendix A), in particular the target space fields of table 1, and obtain

T-d. along ι “ 1 : Bτ X2,3 “ Bτ Y 2,3, BσX2,3 “ BσY 2,3, and

Bτ X1 “ BσY 1 ´ HY 3BσY 2 ðñ Bτ Y 1 “ BσX1 ` HX3Bτ X2

BσX1 “ Bτ Y 1 ´ HY 3Bτ Y 2 (all order in H) BσY 1 “ Bτ X1 ` HX3BσX2
(2.29)

T-d. along ι “ 2 : Bτ Y 1,3 “ Bτ Z1,3, BσY 1,3 “ BσZ1,3, and

Bτ Y 2 “ BσZ2 ` HZ3Bτ Z1 ðñ Bτ Z2 “ BσY 2 ´ HY 3BσY 1

BσY 2 “ Bτ Z2 ` HZ3BσZ1 (up to OpH2q) BσZ2 “ Bτ Y 2 ´ HY 3Bτ Y 1 (2.30)

and by composition

T-d. along 1 and 2 : Bτ X3 “ Bτ Z3, BσX3 “ BσZ3, and

Bτ X1 “ BσZ1 ´ HZ3Bτ Z2 Bτ Z1 “ BσX1 ` HX3Bτ X2

BσX1 “ Bτ Z1 ´ HZ3BσZ2 ðñ BσZ1 “ Bτ X1 ` HX3BσX2

Bτ X2 “ BσZ2 ` HZ3Bτ Z1 (up to OpH2q) Bτ Z2 “ BσX2 ´ HX3Bτ X1

BσX2 “ Bτ Z2 ` HZ3BσZ1 BσZ2 “ Bτ X2 ´ HX3BσX1

(2.31)

We find that the derivatives of the third coordinate always match, which is consistent with
this coordinate being unaffected by T-duality along X 1 and X 2. It means that we have a base
circle in the geometry which remains invariant under T-dualities of a two-torus that is fibered
over it. This equality of the derivatives of the third coordinate indicates that X3, Y 3, Z3 could
be identified, up to a possible difference in the center of mass position constant. However, we
mentioned previously the need for the exact identification, so that the target space fields are
T-dual. We refine this requirement in what follows, and will only identify the zeroth order in
H, i.e. X3

0
“ Y 3

0
“ Z3

0
. Doing so we ignore the freedom in the zeroth order center of mass

position.

Let us now make use of the relations (2.29) to investigate the equations of motion for
the two geometric T-dual backgrounds. Under T-duality along X 1, the equations of motion
(e.o.m.) of the two coordinates that are not dualised match:

X2 e.o.m. (2.14) ô Y 2 e.o.m. (2.22) (2.32)

X3 e.o.m. (2.14) ô Y 3 e.o.m. (2.23) , (2.33)

as can be seen by simply using (2.29). Here, we consider the equations of motion valid to all
order in H, so those relations are always valid. Again, this is consistent with T-duality only
affecting the coordinate that is dualised. Interestingly, the X1 e.o.m. (2.14) and Y 1 e.o.m.
(2.21) do not lead to one another when using the T-duality relations (2.29); doing so rather
makes them automatically satisfied to all orders (one obtains trivial identities) [31]. To get
these e.o.m., one only needs the T-duality relations (2.29) and then considers the (trivial)

12



equalities

0 “ BσpBτ X1q ´ Bτ pBσX1q ñ Y 1 e.o.m. (2.21) , (2.34)

0 “ BσpBτ Y 1q ´ Bτ pBσY 1q ñ X1 e.o.m. (2.14) . (2.35)

To conclude, given the T-duality relations, the equations of motion in one background can be
obtained from those of the T-dual background, together with trivial constraints.

Likewise, one can easily show that the closed string boundary conditions for X, given in
(2.15), and Y , given in (2.25), (2.26), and (2.27), are mapped onto each other by the T-duality
transformation (2.29), up to the precise value of the winding constants. In particular, one
can notice that the non-trivial Maurer-Cartan one-form of the twisted torus is precisely the
quantity entering in these T-duality relations; its global-definedness is then mapped.

These properties will play an important role in what follows. The map of equations of
motion and boundary conditions in not dualised directions implies that the classical string
solutions in these directions can as well be mapped. This requires the T-duality relations to
hold, and those are also important for the map of the dualised direction. Verifying explicitly
these T-duality relations may bring new constraints, but will then guarantee that starting
from a string solution, one gets a solution after T-duality. We will investigate these important
features in more details for the geometric T-dual backgrounds, and use this same idea as a
starting point in our analysis of the non-geometric background in section 4.

At linear order in H, the world-sheet equations of motion for the non-geometric back-
ground should locally be the same as those of the torus with H-flux, up to a sign on H, as
can be seen on the target space fields in table 1. We however expect the classical solution
to differ, and this can be understood as a consequence of the different boundary conditions.
The latter encode the global aspects, which are known to differ between geometric and non-
geometric backgrounds. The relation between the global aspects and the boundary conditions
is also discussed in appendix C when studying monodromies. Here, one can verify explicitly,
by looking at the T-duality relations (2.31), that the boundary conditions cannot be the same
between these two backgrounds.

2.4 Canonical commutation relations and T-duality

In this section, we turn to quantum aspects. We initiate the canonical quantization by
presenting the general canonical commutation relations for the string, and their explicit H

expansions, for the two geometric backgrounds at hand. We then study how T-duality relates
the canonical commutators of the two backgrounds, and find that the information of these
commutators in one background can be obtained by studying the commutators in a T-dual
one. This will be useful in the study of the non-geometric situation in section 4.

In any geometric background, the canonical commutation relations are10

rX µpτ, σq, X
νpτ, σ1qs “ 0 (2.36)

rPµpτ, σq, Pνpτ, σ1qs “ 0 (2.37)

rX µpτ, σq, Pνpτ, σ1qs “ i δµ
ν δpσ ´ σ1q , (2.38)

10We use right away the rescaled quantities, see the discussion around table 3 in appendix A.
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where

Pµ ” δL

δBτ X µ
“ 1

π
pGµνpX qBτ X

ν ` BµνpX qBσX
νq , (2.39)

is the canonical momentum. Here the Lagrangian L is read from the action S “
ş
Σ

d2σ L in
(2.1), and we follow the conventions given there. Importantly, Pµ depends on the background
fields and thus differ between the torus with H-flux and the twisted torus backgrounds. To
compute Pµ and the canonical commutators, we use the target space fields in table 1, and
expand the coordinates fields to first order in H as

X
µpτ, σq “ X

µ
0

pτ, σq ` HX
µ
Hpτ, σq , (2.40)

where X0 (XH) solves the equation of motion and boundary conditions to zeroth (first) order
in H. The full solutions will be presented in section 3.1, and we will use this to start an
explicit canonical quantization of the string on the twisted torus in section 3.2.

Zeroth order At zeroth order in H, the torus with H-flux and the twisted torus reduce
to a fluxless torus background. For both of them, the rescaled background metric then boils
down to ηµν , B vanishes and the canonical commutation relations become simply

rX µ
0

pτ, σq, X
ν
0 pτ, σ1qs “ 0 (2.41)

rBτ X
µ
0

pτ, σq, Bτ X
ν
0 pτ, σ1qs “ 0 (2.42)

rX µ
0

pτ, σq, Bτ X
ν
0 pτ, σ1qs “ iπ ηµν δpσ ´ σ1q . (2.43)

These are the standard relations for the free string, as expected.

First order To start with, the commutator of two coordinates still vanishes as given by
(2.36), but this translates into

0 “ rX µpτ, σq, X
νpτ, σ1qs|H “ H rX µ

0
pτ, σq, X

ν
Hpτ, σ1qs ` H rX µ

Hpτ, σq, X
ν
0 pτ, σ1qs , (2.44)

where by |H we mean exactly the H-order term (it does not contain the zeroth order term).
This commutator relation holds for the two geometric backgrounds.

We now turn to the commutators that involve the canonical momentum, and start with
the torus with H-flux. From (2.38), using (2.39), the zeroth order commutators, and the
target space fields, it is easy to deduce

rXµpτ, σq, Bτ Xνpτ, σ1qs|H “ 0 . (2.45)

It is less straightforward to deduce the commutator of two Bτ Xµ from the one involving two
canonical momenta (2.37). Using again (2.39), the zeroth order commutators, and the target
space fields, one finds that the non-trivial commutators are

rBτ X1pτ, σq, Bτ X2pτ, σ1qs|H “ iπH
`
X3

0 pτ, σ1q ´ X3

0 pτ, σq
˘

Bσδpσ ´ σ1q (2.46)

rBτ X3pτ, σq, Bτ X1pτ, σ1qs|H “ iπH δpσ ´ σ1q Bσ1X2

0 pτ, σ1q (2.47)

rBτ X3pτ, σq, Bτ X2pτ, σ1qs|H “ ´iπH δpσ ´ σ1q Bσ1X1

0 pτ, σ1q . (2.48)

For the twisted torus we have Pµ “ 1

π
Gµν pY qBτ Y ν , so by multiplying (2.38) on the left

by GρνpY qpτ, σ1q and using (2.36), we get

rY µpτ, σq, Bτ Y νpτ, σ1qs “ iπ δpσ ´ σ1q GµνpY qpτ, σ1q . (2.49)
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The above inverse metric, at first order in H, can be obtained from the one in table 1 by
only changing the sign of the off-diagonal components. From this we obtain one non-zero
commutator (for any other combination of coordinate indices, (2.49) at first order is zero)

rY 1pτ, σq, Bτ Y 2pτ, σ1qs|H “ rY 2pτ, σq, Bτ Y 1pτ, σ1qs|H “ iπH δpσ ´ σ1q Y 3

0 pτ, σ1q . (2.50)

Finally, to relate (2.37) to the commutator of two Bτ Y µ, we first consider the commutator of
two Gµρ Pρ. It is more involved than (2.37), because of the dependence of the metric on Y .
Using the identity rAB, Cs “ ArB, Cs ` rA, CsB, together with (2.38) and the explicit form
of the inverse metric, we deduce

rBτ Y 3pτ, σq, Bτ Y 1pτ, σ1qs|H “ ´iπH δpσ ´ σ1q Bτ Y 2

0 pτ, σ1q , (2.51)

rBτ Y 3pτ, σq, Bτ Y 2pτ, σ1qs|H “ ´iπH δpσ ´ σ1q Bτ Y 1

0 pτ, σ1q , (2.52)

all other rBτ Y µpτ, σq, Bτ Y νpτ, σ1qs|H “ 0 . (2.53)

In addition, we get using (2.50), or Bσ(2.38),

rBσY 1pτ, σq, Bτ Y 2pτ, σ1qs|H “ rBσY 2pτ, σq, Bτ Y 1pτ, σ1qs|H “ iπH Y 3

0 pτ, σ1q Bσδpσ´σ1q , (2.54)

that we combine with (2.44) and (2.53), for future convenience, to

rBσǫ1
Y 1pτ, σq, Bσ1

ǫ2

Y 2pτ, σ1qs|H “ rBσǫ1
Y 2pτ, σq, Bσ1

ǫ2

Y 1pτ, σ1qs|H (2.55)

“ iπ

4
H

´
ǫ1 Y 3

0 pτ, σ1q ` ǫ2 Y 3

0 pτ, σq
¯

Bσδpσ ´ σ1q ,

introducing the notation ǫ “ ˘1 so that σǫ “ σ˘.

With these canonical commutators at order H at hand, we can investigate how they are
related under T-duality along X 1. Since the T-duality only relates the derivatives of the
coordinates, it is primarily the σ or σ1 derivatives of these commutators that are mapped.
More precisely, provided the zeroth order commutation relations (2.41) - (2.43) and the T-
duality relations (2.29), one shows that one set of the following commutators gives the other
one

rBσXµpτ, σq, Bσ1 Xνpτ, σ1qs|H rBσY µpτ, σq, Bσ1 Y νpτ, σ1qs|H
rBσXµpτ, σq, Bτ Xνpτ, σ1qs|H ðñ rBσY µpτ, σq, Bτ Y νpτ, σ1qs|H
rBτ Xµpτ, σq, Bτ Xνpτ, σ1qs|H (at order H) rBτ Y µpτ, σq, Bτ Y νpτ, σ1qs|H

or in other words

BσBσ1(2.44) BσBσ1(2.44)
Bσ(2.45) ðñ Bσ(2.49)

(2.46), (2.47), (2.48) (at order H) (2.51), (2.52), (2.53)

For instance, one reproduces (2.46) as follows

rBτ X1pτ, σq, Bτ X2pτ, σ1qs|H “ rBσY 1pτ, σq, Bτ Y 2pτ, σ1qs|H ´ H rY 3

0 BσY 2

0 pτ, σq, Bτ Y 2

0 pτ, σ1qs
“ iπH

`
Y 3

0 pτ, σ1q ´ Y 3

0 pτ, σq
˘

Bσδpσ ´ σ1q using Bσ(2.49), (2.43)

“ iπH
`
X3

0 pτ, σ1q ´ X3

0 pτ, σq
˘

Bσδpσ ´ σ1q .

To conclude, given the relations between coordinates in T-dual backgrounds, we can use
the information in one background to compute commutators in another. This will be useful
when we analyse the non-geometric situation in section 4.
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3 Analysis of the geometric backgrounds

In this section, we analyse the torus with H-flux and the twisted torus in more detail. For
these backgrounds, we find the solutions to the equations of motion and boundary conditions
to linear order in H, and discuss how they are related by T-duality. Subsequently, we turn
to the canonical quantization of the twisted torus. The classical modes of its solution are
promoted to operators, and we derive those commutation relations that are needed for the
analysis of the non-geometric set-up in section 4.

3.1 Solutions for the coordinate fields

The equations of motion and boundary conditions for the coordinate fields were given in
sections 2.2.1 and 2.2.2. Using the dilute flux approximation, we will now find solutions to
these equations up to linear order in H. Our presentation will be fairly brief, as the (lengthy)
computations are straightforward and the analyses of the two T-dual situations are very
similar (although the respective solutions differ).

We start our analysis by examining the boundary conditions, i.e. (2.15) for the torus with
H-flux, and (2.25)-(2.27) for the twisted torus. These boundary conditions show that while
the coordinates are not periodic in σ, the following functions are

Xµ ´ N
µ
Xσ , Y 2,3 ´ N2,3σ , Y 1 ´ N1σ ´ H

ˆ
N3σpY 2 ´ N2σq ´ 1

2
N3N2σp2π ´ σq

˙
.

Therefore, all these functions can be expanded as Fourier series in σ, with τ -dependent ex-
pansion coefficients. We can develop these expansion coefficients order by order in H, so that
at linear order, we get for the torus with H-flux

Xµpτ, σq “ N
µ
Xσ `

ÿ

nPZ

b
µ
Xnpτqe´inσ ` H

´ ÿ

nPZ

c
µ
Xnpτqe´inσ

¯
, (3.1)

and, for the twisted torus,

Y 1pτ, σq “ N1σ `
ÿ

nPZ

b1

npτqe´inσ

` H
´

N3σpY 2 ´ N2σq ´ 1

2
N3N2σp2π ´ σq `

ÿ

nPZ

c1

npτqe´inσ
¯

(3.2)

Y 2,3pτ, σq “ N2,3σ `
ÿ

nPZ

b2,3
n pτqe´inσ ` H

´ ÿ

nPZ

c2,3
n pτqe´inσ

¯
, (3.3)

where the bX , b and cX , c are H-independent functions of τ . We will determine the coefficients
of these series by inserting (3.1), (3.2) and (3.3) into the equations of motion (2.14) and (2.24)
respectively. This will lead to solutions of the form

X
µpτ, σq “ X

µ
0

pτ, σq ` HX
µ
Hpτ, σq ` OpH2q , (3.4)

where X0 is the solution to the equation of motion at OpH0q, and XH is the solution at OpHq.
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Twisted torus Let us now focus on the string in the twisted torus background. The analysis
for the torus with H-flux proceeds in the same way, and we will only present the result below.
At OpH0q the equation of motion and boundary conditions are just those for the free string,
and the solution is given by (with σ˘ “ τ ˘ σ)

Y
µ

0
“ yµ ` pµτ ` Nµσ ` i

2

ÿ

n‰0

1

n

`
rαµ

ne´inσ` ` αµ
ne´inσ´

˘
. (3.5)

For future convenience, let us decompose these into left- and right-moving parts

Y
µ

0L “ y
µ
L ` p

µ
Lσ` ` i

2

ÿ

n‰0

1

n
rαµ

ne´inσ` , Y
µ

0R “ y
µ
R ` p

µ
Rσ´ ` i

2

ÿ

n‰0

1

n
αµ

ne´inσ´ , (3.6)

Y
µ

0
“ Y

µ
0L ` Y

µ
0R , Ỹ

µ
0

“ Y
µ

0L ´ Y
µ

0R , and yµ “ y
µ
L ` y

µ
R , ỹµ “ y

µ
L ´ y

µ
R ,

pµ “ p
µ
L ` p

µ
R , Nµ “ p

µ
L ´ p

µ
R .

The division of yµ is conventional, and ensures that yµ, ỹµ are dual to pµ, Nµ respectively.

Proceeding to linear order in H, (2.24) gives11

BαBαY
µ

H “ θµ
νρ BαY ν

0 BαY
ρ

0
, (3.7)

where we recall that θ1
23 “ θ2

13 “ ´θ3
12 “ 1, and all other components are zero. We define

similarly λµ
νρ as λ1

23 “ 1, and all other components are zero. With these definitions the
equations at order H given by (3.7) become, using (3.2) and (3.3),

BαBα

˜
ÿ

nPZ

cµ
npτqe´inσ

¸
“ θµ

νρ BαY ν
0 BαY

ρ
0

(3.8)

´ λµ
23 BαBα

ˆ
N3σpY 2

0 ´ N2σq ´ 1

2
N3N2σp2π ´ σq

˙
,

Solving this equation for the Fourier coefficients cµ
n, one finds the most general solutions

to (3.7) and the boundary conditions (2.25)-(2.27). After some non-trivial rearranging, the
solutions take the form

Y
µ

Hpτ, σq “ y
µ
H ` p

µ
H τ ` i

2

ÿ

n‰0

1

n

`
rγµ

ne´inσ` ` γµ
ne´inσ´

˘
(3.9)

` θµ
νρ ppρpν ´ NρNνq τ2

2

` θµ
νρ

1

2
τ

`
pρY ν

0 |Σ ´ NρỸ ν
0 |Σ ` pνY

ρ
0

|Σ ´ Nν Ỹ
ρ

0
|Σ

˘

´ θµ
νρ

1

4

`
Ỹ ν

0 |ΣỸ
ρ

0
|Σ ´ Y ν

0 |ΣY
ρ

0
|Σ

˘

` λµ
23 N3

ˆ
N2

τ2

2
` τ Ỹ 2

0 |Σ ` σpY 2

0 ´ N2σq ´ 1

2
N2σp2π ´ σq

˙
,

11This order by order method decomposes the non-linear equations of motion for the twisted torus as two
linear differential equations: the wave equation and (3.7), where the latter has a non-zero right-hand side. This
is a great simplification, since generic properties of such equations, as the decomposition into homogeneous
and particular solutions, can thus be used.
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where y
µ
H , p

µ
H , rγµ

n and γµ
n are arbitrary constants and we denote

Y
µ

0
|Σ “ i

2

ÿ

n‰0

1

n

`
rαµ

ne´inσ` ` αµ
ne´inσ´

˘
. (3.10)

The expression (3.9) makes it clear that the boundary conditions are satisfied. Indeed, all
terms but the λµ

23 ones are periodic in σ, and the (last two) λµ
23 terms give precisely the

boundary conditions (2.25)-(2.27). It is less obvious that this expression solves the equation
of motion (2.24). However, one can actually rewrite the solution as

Y
µ

Hpτ, σq “ ´θµ
νρ

4

`
Ỹ ν

0 Ỹ
ρ

0
´ Y ν

0 Y
ρ

0

˘
` f

µ
Lpσ`q ` f

µ
Rpσ´q , (3.11)

where the left- and right-moving functions fL{R can be computed straightforwardly. In addi-
tion, by decomposing on left and right movers and using 2Bσ˘ “ Bτ ˘ Bσ, one finds

´ 1

4
BαBαpỸ ν

0 Ỹ
ρ

0
´ Y ν

0 Y
ρ

0
q “ BαY ν

0 BαY
ρ

0
. (3.12)

The expression (3.11) then makes it clear that Y
µ

H solves the equation of motion at order H.
The price to pay for this reformulation is that the rewritten solution no longer manifestly
satisfies the boundary conditions. Note that the reformulation (3.11) requires a split of y

µ
H

into y
µ
H L,R, just as for the free string. We will use this decomposition in appendix D.

Torus with H-flux To complete this section, let us record the solution at zeroth and linear
order in H for a string propagating in a torus with H-flux. Using the same methods as above,
we find

X
µ
0

“ xµ ` p
µ
Xτ ` N

µ
Xσ ` i

2

ÿ

n‰0

1

n

`
rαµ

Xne´inσ` ` α
µ
Xne´inσ´

˘
, (3.13)

X
µ
Hpτ, σq “ x

µ
H ` p

µ
HX τ ` i

2

ÿ

n‰0

1

n

`
rγµ

Xne´inσ` ` γ
µ
Xne´inσ´

˘
(3.14)

´ ǫµ
νρ

ˆ
p

ρ
XNν

X

τ2

2
` 1

2
τ

`
Nν

XX
ρ
0

|Σ ´ pν
XX̃

ρ
0

|Σ
˘

` 1

4
X̃ν

0 |ΣX
ρ
0

|Σ
˙

,

where xµ, p
µ
X , N

µ
X , rαµ

Xn, α
µ
Xn, x

µ
H , p

µ
HX , rγµ

Xn and γ
µ
Xn are arbitrary constants.12

Constraints from T-duality Given the solutions for Xµ and Y µ, we can now use the
T-duality relations in section 2.3 to relate their expansion coefficients. At zeroth order, the
T-duality rules (2.29) are obeyed if we match

p1

X “ N1 , N1

X “ p1 , p
2,3
X “ p2,3 , N

2,3
X “ N2,3 , (3.15)

α1

Xn “ ´α1

n , rα1

Xn “ rα1

n , α
2,3
Xn “ α2,3

n , rα2,3
Xn “ rα2,3

n . (3.16)

This simple match is expected from the T-duality relations (2.29). Since xµ and yµ drop out
when taking derivatives, we seem to be free to choose them independently. However, using the

12A solution to the equation of motion (2.14) has previously been presented in [13]. This solution differs
from the one presented here, in that it fails to satisfy the boundary condition (2.15). For the sake of clarity,
let us also mention that since we are considering an OpHq correction to the coordinate solutions, we avoid a
restriction on the string zero modes that is present in [13].
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decomposition into left and right movers (3.6) in conjunction with the fact that the canonical
commutators (2.41)-(2.43) hold in both frames, we have at the level of commutators

x1 “ ỹ1 , x2,3 “ y2,3 . (3.17)

In other words, we must identify the commutation relations of these operators. This repro-
duces the standard T-dual solutions for the free string, as expected.

We proceed to first order in H, and directions 2 and 3 (i.e. X
2,3
H and Y

2,3
H ). Just as at

zeroth order, the equations of motion and the boundary conditions for these coordinate fields
are mapped to each other by T-duality, see (2.32)-(2.33). We thus expect the solutions to
match by a simple identification. This is indeed the case, and the identification is

p
2,3
HX “ p

2,3
H , γ

2,3
Xn “ γ2,3

n , rγ2,3
Xn “ rγ2,3

n . (3.18)

Again, x
µ
H and y

µ
H drop out when taking derivatives. Inspired by the zeroth order relations,

x
2,3
H “ y

2,3
H is a natural choice.

For X1
H and Y 1

H , the situation is more involved, since the equations of motion do not map
to each other, but rather to trivial conditions, see (2.34)-(2.35). Nevertheless, by imposing
the T-duality relations (2.29), we can solve for one set of expansion coefficients in terms of
the other. We get the following conditions

rγ1

Xn “
˜

rγ1

n ` i

n
pp3

Lrα2

n ´ p2

Lrα3

nq ´ 1

2
y3rα2

n ´ i

2

ÿ

m‰0,n

1

m
rα3

m rα2

n´m

¸
(3.19)

γ1

Xn “ ´
˜

γ1

n ` i

n
pp3

Rα2

n ´ p2

Rα3

nq ´ 1

2
y3α2

n ´ i

2

ÿ

m‰0,n

1

m
α3

mα2

n´m

¸
(3.20)

p1

HX “
`
N3y2 ´ N2y3 ´ πN2N3

˘
´ i

4

ÿ

n‰0

1

n

`
rα3

n rα2

´n ´ α3

nα2

´n

˘
(3.21)

p1

H “ y3p2 ` i

4

ÿ

n‰0

1

n

`
rα3

nrα2

´n ` α3

nα2

´n

˘
. (3.22)

As expected, the first three of these equations relate modes in the H-flux background to
modes for the twisted torus solutions. On the contrary, the last condition is a constraint
that acts exclusively on the zero modes in the twisted torus set-up. The reason for this is
that we have imposed, in both situations, that there is no OpHq correction to the winding
numbers (see the boundary conditions). Since momentum and winding modes are mapped
by T-duality, it is clear that imposing a constraint on the winding mode in one frame, will
restrict the T-dual momentum mode, and thus the last constraint follows.

We will now proceed to the quantization of the twisted torus. For the sake of generality,
we will ignore these constraints, and come back to them in appendix D, used in section 4.2.

3.2 Commutation relations for the twisted torus

With the solutions to the classical equations at hand, we can now initiate a canonical quanti-
zation of a string propagating in the twisted torus, to linear order in H. We thus promote the
expansion coefficients in the twisted torus solutions, that we derived in the previous section,
to operators and deduce their commutation relations using the results of section 2.4. We limit
ourselves to this part of the quantization procedure, since, as we will see in section 4, it gives
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enough information to show non-commutativity in the non-geometric background. For the
same reason, we restrict our analysis to the commutators of Y 1 and Y 2 and their derivatives.

The canonical commutation relations (2.36)-(2.38), that are the starting point for our
analysis, contain a δ function. Accordingly, most of the relations in this section have to be
understood in the sense of distributions. Thus, we use the following representation of the δ

function

δpxq “ 1

2π

ÿ

nPZ

e´inx . (3.23)

Moreover, for functions f : x ÞÑ fpxq with compact support, the derivative of δ is defined as

fpxqBxδpxq ” ´δpxqBxfpxq . (3.24)

As a consequence, since σ P r0, 2πs, we find

pσ1 ´ σq Bσδpσ ´ σ1q “ δpσ ´ σ1q . (3.25)

On a similar tone, we will have to make use of the following

pσ ´ σ1q δpσ ´ σ1q “ 0 . (3.26)

Finally, for any function upτ, σq “ ř
nPZ un e´inσ` , where un are constant, one can show that

ÿ

k‰0

e´ikpσ´σ1qpupτ, σq ´ upτ, σ1qq “ ´pupτ, σq ´ upτ, σ1qq . (3.27)

This can be reformulated, in the sense of distributions (using (3.23)), as

δpσ ´ σ1qpupτ, σq ´ upτ, σ1qq “ 0 . (3.28)

This equation is also valid for the above function if σ` is exchanged for σ´.

Zeroth order After stating these identities, let us commence the canonical quantization.
At zeroth order in H, we are left with the free string solution, and will of course only recover
the standard commutation relations for the zero modes and oscillators of the free string. It is,
however, useful to recall how these relations are derived, since we will use the same procedure
at first order in H. To obtain the commutators between the coefficients, one should consider
combinations of the coordinates and their derivatives which isolate a Fourier series with just
one set of coefficients (e.g. αµ

n). By commuting such useful combinations, we then easily
obtain the commutators of these coefficients from the canonical commutation relations. For
instance, (using the shorthand ǫi “ ˘1 for left and right movers) we find that

rBσǫ1
Y

µ
0

pτ, σq, Bσ1
ǫ2

Y ν
0 pτ, σ1qs “ iπ

4
pǫ1 ` ǫ2qηµνBσδpσ ´ σ1q , (3.29)

where all three zeroth order canonical commutation relations (2.41)-(2.43), together with their
derivatives, have been used, as well as the even parity of the δ-function. For the free string,
we have the useful relation

2Bσǫ Y
µ

0
“ 2pµ

ǫ `
ÿ

n‰0

αµ
nǫ e´inσǫ , (3.30)
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where we again use a shorthand notation for left and right movers: α
µ
n `1

“ rαµ
n, α

µ
n ´1

“ αµ
n,

etc. Inserting this into (3.29), using (3.23), and identifying the various Fourier coefficients,
one reads off the commutators between the coefficients of (3.30). With this result at hand, one
should go back to the canonical commutators (2.41)-(2.43) and verify that they are satisfied.
This is automatic for (2.42), while the other two fix the remaining commutators. The result
is the following non-zero commutators of the free string:

rrαµ
m, rαν

ns “ rαµ
m, αν

ns “ m δm,´n ηµν @m, n P Z
˚ , (3.31)

ryµ, pνs “ i

2
ηµν .

This last commutator is usually decomposed into left and right movers

ryµ
ǫ1

, pν
ǫ2

s “ δǫ1,ǫ2

i

4
ηµν . (3.32)

This division identifies the winding N as the momentum associated to ỹ, just as p is associated
to y, and is motivated by studies of T-duality of the free string. The other commutators of
yµ

ǫ with the free string modes are taken to vanish. We will use these commutators in the
following.

First order At first order in H, we proceed analogously. We first identify the following
useful periodic combination from the solution (3.11)

Πµ
ǫ ” BσǫY

µ
H ` 1

2
BσǫY

ν
0ǫ

´
´θµ

νρY
ρ

0p´ǫq ` θµ
νρpyρ

´ǫ ´ σǫp
ρ
´ǫq ´ 2λµ

νρσǫppρ
ǫ ´ p

ρ
´ǫq

¯
(3.33)

` 1

2
BσǫY

ρ
0ǫ

´
´θµ

νρY ν
0p´ǫq ` θµ

νρpyν
´ǫ ´ σǫp

ν
´ǫq

¯

“ p
µ
H

2
` λµ

23

N3ǫ

2
py2 ´ πN2q `

ÿ

n‰0

e´inσǫ

2

ˆ
γµ

nǫ ` θµ
νρ

i

n
p

pν
´ǫα

ρq
nǫ ` λµ

νρNρǫ
i

n
αν

nǫ

˙
(3.34)

where, as above, ǫ “ ˘1 denotes left and right movers, and we refer to the line below (3.7)
for the parameters θµ

νρ and λµ
νρ.13 This is more involved than the zeroth order counterpart

(3.30), but can be used in a similar way. The main difference is that, since the first order
canonical commutators, like (2.44), are sums of two terms, we can only determine certain
linear combinations of operator commutators. Fortunately, this is enough for our purposes:
we derive these commutator relations in order to analyse the properties of the non-geometric
T-dual of the twisted torus, and the linear combinations we find suffice for this analysis.

Thus, consider the sum of commutators

rH Πµ
ǫ1

pτ, σq, Bσ1
ǫ2

Y ν
0 pτ, σ1qs ` rBσǫ1

Y
µ

0
pτ, σq, H Πν

ǫ2
pτ, σ1qs (3.35)

for pµ, νq “ p1, 2q or p2, 1q. On the one hand, using the periodic expression (3.34) of Πµ
ǫ1

, as
well as (3.30) for Bσǫ2

Y ν
0 , and the zeroth-order commutators of coefficients, we obtain a sum

of commutators between the first order coefficients (pµ
H , γµ

nǫ) with the zeroth order coefficients
(αµ

n, . . .).14 On the other hand, we can use the definition (3.33) of Πµ
ǫ to equate (3.35)

13To obtain the expression (3.34), we have used that @ǫ , ỹ2 “ ´ǫy2 ` 2ǫy2
ǫ , N3 “ ǫpp3

ǫ ´ p3
´ǫq, and also

the convenient parametrization that @µ , λµ
23N3Y 2

0ǫ “ λµ
νρNρY ν

0ǫ.
14Note that commutators of first order coefficients among themselves only appear at second order in H .
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with a combination of known zeroth- and first-order (canonical) commutators, in particular
(2.55). This is where considering a sum of commutators is necessary, so that we can use
H-order information, as in (2.44). Matching the two expressions thus obtained , one can
now deduce the value of the commutators of coefficients entering the former. More precisely,
both expressions are Fourier series in τ and in σ, so each coefficient of those series should be
matched. To see this, we must use both (3.23) and (3.25).

Through this procedure, which is technically rather involved, we deduce the following
commutators among modes of the Y 1 and Y 2 coordinates of the twisted torus:

@ ǫ1, ǫ2, @ m ‰ 0, @ n, k ‰ 0, k ` n ‰ 0 ,

rp1

H , p2

ǫ2
s “ rp2

H , p1

ǫ1
s , (3.36)

rγ1

mǫ1
, p2

ǫ2
s ´ 1

2
rp2

H , α1

mǫ1
s “ rγ2

mǫ1
, p1

ǫ2
s ´ 1

2
rp1

H , α2

mǫ1
s “ i

8
α3

mǫ1
, (3.37)

rγ1

mǫ1
, α2

´mǫ2
s ´ rγ2

´mǫ2
, α1

mǫ1
s “ δǫ1,ǫ2

ˆ
y3m ´ iN3ǫ1

2

˙
, (3.38)

rγ1

kǫ1
, α2

nǫ2
s ´ rγ2

nǫ2
, α1

kǫ1
s “ i

4

k ´ n

k ` n
δǫ1,ǫ2

α3

pk`nqǫ1
. (3.39)

Using the freedom to choose ǫ1 and ǫ2, one can actually deduce from (3.36) and (3.37) the
following @ ǫ, @ m ‰ 0

rp1

H , N2s “ rp2

H , N1s “ rp1

H , p2s ´ rp2

H , p1s “ 0 (3.40)

rγ1

mǫ, N2s “ rγ2

mǫ, N1s “ 0 (3.41)

rγ1

mǫ, p2s ´ rp2

H , α1

mǫs “ rγ2

mǫ, p1s ´ rp1

H , α2

mǫs “ i

4
α3

mǫ . (3.42)

As for the free string, we can record further conditions on the commutators between
modes by systematically inserting the relations just derived into the canonical commutators.
We start with commutators having more derivatives, and proceed to those with no derivative,
i.e. we begin with (2.53), continue to (2.50), and finally study (2.44). Actually, using (3.23)
and (3.28) and the commutators above, we find that (2.53) is already satisfied (just as at
zeroth order), so the next set of conditions is obtained from (2.50). Making use of (3.26) and
(3.28), we find that this commutator implies that, @ǫ, @n ‰ 0,

ry1, p2

Hs ` ry1

H , p2s “ ry2, p1

Hs ` ry2

H , p1s “ i

2
y3 , (3.43)

ry1, γ2

nǫs ` ry1

H , α2

nǫs “ ry2, γ1

nǫs ` ry2

H , α1

nǫs “ ´ 1

8n
α3

nǫ . (3.44)

As the last step of the analysis, we turn to (2.44), i.e. rY 1pσ, τq, Y 2pσ1, τqs “ 0. Given the
relations above, this holds if we impose

ry1, y2

Hs ´ ry2, y1

H s “ 0 (3.45)

rN1, y2

Hs “ rN2, y1

Hs “ 0 .

This ends the derivation of the p1, 2q or p2, 1q commutators. We have verified that the
set of commutators derived on the coefficients, namely (3.36) to (3.42), together with (3.43),
(3.44), and (3.45), is equivalent to the OpHq canonical commutation relations (2.44), (2.50)
and (2.53). This is very similar to the zeroth order result.
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As a final remark, note that we find non-trivial commutators between modes of Y 1 and
Y 2 at linear order in H. This is in contrast to the zeroth order commutators, which always
vanish between operators associated to different directions. As we will see in the next section,
these non-vanishing commutators are crucial for the non-commutativity of the non-geometric
background.

4 Analysis of the non-geometric background

Here, we turn to our main goal: the analysis of commutators between coordinates in a non-
geometric background. We will make use of all results derived in previous sections. First,
we use the relations of section 2.3 to T-dualise the twisted torus along the Y 2 coordinate.
This results in a non-geometric background, where we will be able to give the explicit mode
expansion of the string coordinates Zµ. Second, leaving some details to the appendix D, we
work-out an expression for rZ1pτ, σq, Z2pτ, σ1qs, which turns out to be nonzero in the limit
σ1 Ñ σ, and thus the coordinates fail to be commutative. We finally discuss the origin of this
non-commutativity, and interpret it using in particular the non-geometric Q-flux.

Before getting started, let us recall a few things on this background. We have seen in
section 2.2.3 that performing a T-duality transformation on the twisted torus leads to a field
configuration (here in rescaled notation)

G “ f

¨
˝

1 0 0
0 1 0
0 0 f´1

˛
‚ , B “ f

¨
˝

0 ´HZ3 0
HZ3 0 0

0 0 0

˛
‚ , f “

´
1 `

`
HZ3

˘2
¯´1

, (4.1)

where we now denote the coordinates as Zµ, and still identify Z3
0 “ Y 3

0 . Taking into account
the factor f , it is easy to check that neither G nor B respect the periodicity of Z3. To be
precise, we cannot find an atlas of the above space such that the fields G and B are patched
only by diffeomorphisms and gauge transformations. Including T-duality in the set of allowed
transition functions amends this problem. So, this background is a non-geometric background
and can be viewed as a T-fold [24]. An alternative take on the problem is to perform a field
redefinition, that replaces the ill-defined fields G, B with globally defined objects [4,7,8]. One
of those is the non-geometric Q-flux mentioned in the introduction.

Interestingly, to linear order in H, the above configuration (4.1) is equivalent to the flat
torus with H-flux (see table 1). It seems possible that the non-geometric properties are
invisible at this order, but this naive expectation is wrong. In fact, the difference between
the two situations is visible in the boundary conditions of the coordinates, as discussed in
section 2.3. The classical solutions thus are different and so are the commutators between
coordinates. This is consistent with the idea that non-geometry is related to global aspects,
and therefore to the boundary conditions.

4.1 Classical solution from T-duality

We will now use the T-duality relations (2.30) to derive the coordinate expansions Zµ. These
relations give explicit expressions for the derivatives of Zµ in terms of the solutions for Y µ.
Integrating these with respect to τ or σ, we obtain expressions for Zµ. As an integrability
check, we compute the derivatives of the relations (2.30):

BσBτ Z2 “ BσBσY 2 ´ HBσpY 3BσY 1q , Bτ BσZ2 “ Bτ Bτ Y 2 ´ HBτ pY 3Bτ Y 1q . (4.2)
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Subtracting these two expressions, and keeping terms to linear order in H, we recover the
equation of motion for Y 2 (the same phenomenon as in (2.35)). We thus expect to find a
consistent expression for Z2 up to OpH2q terms.

Our approach now allows to determine the Zµ order by order in H,

Z1 “ Z1

0 ` HZ1

H , Z2 “ Z2

0 ` HZ2

H . (4.3)

Zeroth order At zeroth order, the T-duality relations (2.30) integrate to

Z1

0 pτ, σq “ z1 ´ y1 ` Y 1

0 pτ, σq (4.4)

Z2

0 pτ, σq “ z2 ´ ỹ2 ` Ỹ 2

0 pτ, σq , (4.5)

where z1, z2 are so far arbitrary integration constants. They will be related to y1, ỹ2 on a
quantum level in section 4.2. We conclude that, at zeroth order in H, T-duality essentially
changes the sign of the right-moving part of Y 2

0 , as expected. The functions Z1
0 and Z2

0 are
again free string solutions. For completeness, let us recall that we take Z3

0 “ Y 3
0 .

First order At the first order in H, the T-duality relations (2.30) reduce to

Bτ Z2

H “ BσY 2

H ´ HY 3

0 BσY 1

0 , BσZ2

H “ Bτ Y 2

H ´ HY 3

0 Bτ Y 1

0 , (4.6)

Bτ Z
1,3
H “ Bτ Y

1,3
H , BσZ

1,3
H “ BσY

1,3
H ,

where Y
µ

0
are the zeroth order solutions (3.5) and Y

µ
H are given by (3.9). It is easy to obtain

Z1
H as

Z1

Hpτ, σq “ z1

H ´ y1

H ` Y 1

Hpτ, σq , (4.7)

where z1
H is an arbitrary integration constant. Also Z2

H can be obtained from a straightforward
computation, followed by a rearrangement of the solution,

Z2

Hpτ, σq “ z2

H ` p2

Hσ ` i

2

ÿ

n‰0

1

n

´
rγ2

ne´inσ` ´ γ2

ne´inσ´

¯
(4.8)

´ 1

4

`
Y 3

0 |ΣỸ 1

0 |Σ ´ Y 1

0 |ΣỸ 3

0 |Σ
˘

` 1

2
τ

`
p1Ỹ 3

0 |Σ ` p3Ỹ 1

0 |Σ ´ N1Y 3

0 |Σ ´ N3Y 1

0 |Σ
˘

´ py3 ` p3τ ` N3σqỸ 1

0 |Σ

´ p1y3σ ´ N1py3 ` N3σqτ ´ 1

2
pN1p3τ2 ` p1N3σ2q

´ i

4

ÿ

n‰0

1

n

“
σ`α̃1

´nα̃3

n ´ σ´α1

´nα3

n

‰

` 1

2

ÿ

n‰0

1

n2

´ “
p1

Lα̃3

n ´ p3

Lα̃1

n

‰
e´inσ` ´

“
p1

Rα3

n ´ p3

Rα1

n

‰
e´inσ´

¯

` 1

4

ÿ

n,m‰0

m‰´n

1

npn ` mq
”
α̃1

mα̃3

ne´ipn`mqσ` ´ α1

mα3

ne´ipn`mqσ´

ı
.

Note that z2
H is an undetermined integration constant. From this expression, we obtain the

boundary condition for Z2

Z2pτ, σ ` 2πq “Z2pτ, σq ` 2πp2 (4.9)

`H
´

2πN3pỹ1 ´ Ỹ 1

0 q ` 2πpp2

H ´ p1y3 ´ p1N3πq ´ iπ

2

ÿ

n‰0

1

n

“
α̃1

´nα̃3

n ` α1

´nα3

n

‰ ¯
,
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where by Ỹ 1
0 we mean the quantity in (3.6). One can verify that equation (4.9) is in full

agreement with the boundary conditions found in (C.18) up to a constant shift, as expected.
Finally, we note that Z2

H can be rewritten in the following form

Z2

H “ 1

4

`
Y 1

0 Ỹ 3

0 ´ Y 3

0 Ỹ 1

0

˘
` gLpσ`q ` gRpσ´q , (4.10)

where gL and gR are functions of the left- or right-moving coordinate only. As discussed for
(3.11), this rewriting makes manifest that Z2

H is a solution to the equations of motion.

Summary These are the coordinate solutions obtained after T-dualising on Y 2:

Z1pτ, σq “ z1 ´ y1 ` Y 1

0 pτ, σq ` Hpz1

H ´ y1

H ` Y 1

Hpτ, σqq (4.11)

Z2pτ, σq “ z2 ´ ỹ2 ` Ỹ 2

0 pτ, σq ` HZ2

Hpτ, σq
Z3pτ, σq “ Y 3

0 pτ, σq ` Hpz3

H ´ y3

H ` Y 3

Hpτ, σqq ,

where the zeroth order, free string, solutions are given by (3.6), Y
µ

H are given by (3.9) or
(3.11), Z2

H is given by (4.8), and zµ, z
µ
H are integration constants.

4.2 Commutator of coordinates

We will now use the explicit solutions (4.11) to compute the coordinates commutator

rZ1pτ, σq, Z2pτ, σ1qs . (4.12)

The result is presented in (4.23) and discussed in section 4.3, to which we direct readers that
are not interested in the computional details. The general procedure is that we take over the
commutators (3.31), (3.32), (3.36) - (3.42) from the twisted torus background and use them
here to conclude what the commutator of interest has to be. In some sense this is the reverse
procedure compared to what was done in section 3.2. Recall that in table 1 we find that for
vanishing H, all three T-dual situations reduce to the free string on a flat torus. This is a
well-understood, geometric setting where the canonical commutator relations hold. We can
thus conclude that non-commutativity is only possible at linear or higher order in H.

Let us start computing the commutator (4.12) by plugging in the explicit solutions (4.11).
We have

rZ1, Z2s “ rz1 ´ y1, z2 ´ ỹ2s ` rz1 ´ y1, Ỹ 2

0 s ` rY 1

0 , z2 ´ ỹ2s (4.13)

` H
´

rZ1

H , z2 ´ ỹ2s ` rz1 ´ y1, Z2

H s
¯

` H
´

rZ1

H , Ỹ 2

0 s ` rY 1

0 , Z2

H s
¯

,

where we omitted pτ, σq and pτ, σ1q for simplicity.

Given the argument above, we require that non-commutativity must not stem from zeroth
order commutators. Therefore, we set

rZ1

0 , Z2

0 s “ 0 . (4.14)

This restricts the undetermined commutators at zeroth order to

rz1 ´ y1, any 0th order operators “ rz2 ´ ỹ2, any 0th order operators “ 0 . (4.15)
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In other words, we require that z1 (z2) has the same zeroth order commutators as y1 (ỹ2). It
follows, that the first line of (4.13) vanishes. The first term on the second line simplifies to

rZ1

Hpτ, σq,z2 ´ ỹ2s ` rz1 ´ y1, Z2

Hpτ, σ1qs (4.16)

“
”
z1

H ` p1

H τ ` i

2

ÿ

n‰0

1

n

`
rγ1

ne´inσ` ` γ1

ne´inσ´
˘

, z2 ´ ỹ2

ı

`
”
z1 ´ y1, z2

H ` p2

H σ1 ` i

2

ÿ

n‰0

1

n

´
rγ2

ne´inσ1
` ´ γ2

ne´inσ1
´

¯ı
,

using (4.7) and (4.8). The most involved computation is the last term of (4.13), so we give it
in two parts. Using (4.8) and all the commutators discussed so far, we compute

rY 1

0 pτ, σq, Z2

H pτ, σ1qs “
”
Y 1

0 pτ, σq, z2

H ` p2

H σ1 ` i

2

ÿ

n‰0

1

n

´
rγ2

ne´inσ1
` ´ γ2

ne´inσ1
´

¯ı
(4.17)

´ i

4
N3

ÿ

n‰0

1

n2
e´inpσ1´σq

` 1

8

`
y3 ` N3p3σ1 ´ 2σq ´ p3τ ` Y 3

0 pσ1q ` 2Y 3

0 pσq
˘ ÿ

n‰0

1

n
e´inpσ1´σq

` i

4
σ1

`
´y3 ` N3pσ ´ σ1q ´ Y 3

0 pσq
˘

` i

4
τ

`
p3σ ` Ỹ 3

0 pσ1q ´ Ỹ 3

0 pσq
˘

.

Similarly, using (4.7), we compute

rZ1

Hpτ, σq, Ỹ 2

0 pτ, σ1qs “
”
z1

H ` p1

H τ ` i

2

ÿ

n‰0

1

n

`
rγ1

ne´inσ` ` γ1

ne´inσ´
˘

, Ỹ 2

0 pτ, σ1q
ı

(4.18)

´ 1

8

`
´y3 ` 3N3σ ` p3τ ` Y 3

0 pσq
˘ ÿ

n‰0

1

n
e´inpσ1´σq

` i

4
σ

`
2πN3 ´ p3τ

˘
` i

4
τ

`
Ỹ 3

0 pσq ´ ỹ3
˘

´ i

4
N3pτ2 ` σ2 ´ 2σσ1q .

The sum of the first lines of (4.17) and (4.18) exactly contain the right combinations of
commutators to use (3.36), and (3.38) to (3.42). Performing that replacement and compiling
all results, we eventually obtain for the commutator of interest

1

H
rZ1pτ, σq, Z2pτ, σ1qs “

”
z1, z2

H

ı
`

”
z1

H , z2

ı
` τ

˜”
p1, z2

H

ı
`

”
z1

H , N2

ı
`

”
p1

H , z2

ı¸
(4.19)

` σ

˜”
N1, z2

H

ı
` iπ

2
N3

¸
´ σ1

˜”
p2, z1

H

ı
`

”
p2

H , z1

ı
` i

2
y3

¸

` i

2

ÿ

n‰0

1

n

˜
e´inσ`

´”
rα1

n, z2

H

ı
`

”
rγ1

n, z2

ı¯
` e´inσ1

`

´”
z1

H , rα2

n

ı
`

”
z1, rγ2

n

ı¯ ¸

` i

2

ÿ

n‰0

1

n

˜
e´inσ´

´”
α1

n, z2

H

ı
`

”
γ1

n, z2

ı¯
´ e´inσ1

´

´”
z1

H , α2

n

ı
`

”
z1, γ2

n

ı¯ ¸

` i

16

ÿ

n‰0

1

n2

´
rα3

npe´inσ1
` ´ e´inσ`q ´ α3

npe´inσ1
´ ´ e´inσ´q

¯

´ i

2
N3

ÿ

n‰0

1

n2
e´inpσ1´σq ` 1

2
N3pσ1 ´ σq

ÿ

n‰0

1

n
e´inpσ1´σq ´ i

4
N3pσ1 ´ σq2 .
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Before we proceed, a few comments are in order.

• From the T-duality relations (2.30) and using (2.43), (2.54) we can immediately deduce

rBσZ1pτ, σq, Bσ1 Z2pτ, σ1qs “ rBσY 1pτ, σq, pBτ Y 2 ´ HY 3Bτ Y 1qpτ, σ1qs “ 0 , (4.20)

without referring to any particular mode expansion. This has to be understood in the
sense of distributions and implies that the commutator between Z1 and Z2 can be
written, up to possible contributions from distributions, as

rZ1pτ, σq, Z2pτ, σ1qs “ f1pτ, σq ` f2pτ, σ1q , (4.21)

where f1, f2 are arbitrary functions from this perspective. In other words, the σ- and
σ1-dependence of this commutator has to be separable. This holds for the expression
(4.19), up to the last line, but one can verify by using (3.23) and (3.25) that

BσBσ1

˜
´ i

2
N3

ÿ

n‰0

1

n2
e´inpσ1´σq ` 1

2
N3pσ1 ´ σq

ÿ

n‰0

1

n
e´inpσ1´σq ´ i

4
N3pσ1 ´ σq2

¸

“ iπN3
`
δpσ1 ´ σq ` pσ1 ´ σqBσ1 δpσ1 ´ σq

˘

“ 0 , (4.22)

to be understood in the sense of distributions. We conclude that (4.20) is fulfilled, which
is a non-trivial check of our result (4.19). This comment also indicates that the last line
of (4.19) is very special.

• All the remaining commutators in (4.19) are undetermined by our construction. The
reason is that they involve the new integration constants z1,2 and z

1,2
H for which we do

not have information in the T-dual backgrounds. In appendix D, we fix the value of
these unknown commutators by using some physical arguments and reasonable analogies
with situations we know. Nevertheless, in absence of a more fundamental guideline,
this fixing can strictly speaking be considered as a restriction or a subcase among other
possibilities. At least, the result obtained makes this subcase interesting to consider: the
particular choice of the undetermined commutators we argue for leads to non-commuting
coordinates.

Then, using the values given in (D.1) - (D.3) and (D.15) - (D.18) for the remaining commu-
tators, we eventually reduce (4.19) to

1

H
rZ1pτ, σq, Z2pτ, σ1qs (4.23)

“ ´ i

2
N3

ÿ

n‰0

1

n2
e´inpσ1´σq ` 1

2
N3pσ1 ´ σq

ÿ

n‰0

1

n
e´inpσ1´σq ´ i

4
N3pσ1 ´ σq2 .

This expression is the one we consider from now on.

4.3 Non-commutativity

In the previous section, we computed the commutator between Z1 and Z2, and finally got to
the result given in (4.23). From this, one can easily infer the appearance of non-commutativity
in the limit σ1 Ñ σ

rZ1pτ, σq, Z2pτ, σ1qs σ1ÑσÝÝÝÑ ´ i

2

π2

3
N3H . (4.24)
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We will discuss this result in terms of non-geometric fluxes and the conjecture (1.2), and
mention an associated effective action. But before that, let us spell out the precise origin of the
non-commutativity, and show why it does not occur in the other two geometric backgrounds.

4.3.1 Origin of non-commutativity

As can be seen from (4.23), the only relevant part of the commutator rZ1pτ, σq, Z2pτ, σ1qs is
given by

A ” ´ i

2
N3

ÿ

n‰0

1

n2
e´inpσ1´σq . (4.25)

In this section we give a guideline to the details of how A arises in our analysis, which shows
that T-duality plays a dominant role in this explanation. In what follows, we first spot the
origin of A in the non-geometric situation by tracing two different contributions. After that,
we show how T-duality induces subtle changes such that there is no A in the two geometric
backgrounds.

Non-geometric background There are two different contributions to A, each of them
adding one half of it.

a) The first contribution can be seen in the second line of rY 1
0 , Z2

H s, (4.17). It comes from
the zeroth order commutator,

rα1

mǫ, α1

nǫs “ m δm,´n , (4.26)

where one of the α1
m comes from Y 1

0 , and the other can be traced back to a particular
piece in Z2

H , namely the sixth line of (4.8),

` 1

2

ÿ

n‰0

1

n2

´ “
p1

Lα̃3

n ´ p3

Lα̃1

n

‰
e´inσ` ´

“
p1

Rα3

n ´ p3

Rα1

n

‰
e´inσ´

¯
. (4.27)

After using (4.26), one is left with two terms that add up to a piece proportional to
´pp3

L ´ p3
Rq “ ´N3, giving 1

2
A.

This contribution appears as a particular feature of T-duality in the following sense: the
above term can be characterized by noting its 1{n2 dependence. Such a dependence
originates from the third line of the solution in the twisted torus frame, (3.9),

` θµ
νρ

1

2
τ

`
pρY ν

0 |Σ ´ NρỸ ν
0 |Σ ` pνY

ρ
0

|Σ ´ Nν Ỹ
ρ

0
|Σ

˘
, (4.28)

and the particular form of the T-duality rules (2.30). To be precise, the crucial point is
the relation of σ-derivatives on Z2

H to τ -derivatives on Y 2
H , and vice versa,

Bτ Z2

H “ BσY 2

H ` . . . , BσZ2

H “ Bτ Y 2

H ` . . . , (4.29)

that after integration produces from (4.28), amongst others, terms with a 1{n2 dependence.

b) The second contribution comes from the commutator (3.38) between first order oscillators
γµ

n and zeroth order oscillators αµ
n,

rγ1

mǫ1
, α2

´mǫ2
s ´ rγ2

´mǫ2
, α1

mǫ1
s “ δǫ1,ǫ2

ˆ
y3m ´ iN3ǫ1

2

˙
. (4.30)
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Applying it to one part of the first lines of (4.17) and (4.18),

”
Y 1

0 pτ, σq, i

2

ÿ

n‰0

1

n

´
rγ2

ne´inσ1
` ´ γ2

ne´inσ1
´

¯ı
`

” i

2

ÿ

n‰0

1

n

`
rγ1

ne´inσ` ` γ1

ne´inσ´
˘

, Ỹ 2

0 pτ, σ1q
ı

,

produces pieces that combine into 1

2
A. It has to be emphasised that due to the δǫ1,ǫ2

in
(4.30) only commutators with either two right-moving or two left-moving oscillators are
nonzero. As also several combinations of γµ

n , γ̃µ
n with αµ

n, α̃µ
n appear, the result is very

sensitive to the signs they come with. Schematically, we have

rα̃1 ` α1,γ̃2 ´ γ2s ` rγ̃1 ` γ1, α̃2 ´ α2s (4.31)

“
`
rγ2, α1s ´ rγ1, α2s

˘
´

`
rγ̃2, α̃1s ´ rγ̃1, α̃2s

˘

`
`
rγ1, α̃2s ´ rγ̃2, α1s

˘
`

`
rγ2, α̃1s ´ rγ̃1, α2s

˘
.

These are exactly the combinations we have at hand. Here, the two possible permutations
for ǫ1 “ ǫ2 add up, while the terms in the last row are simply zero.

In table 2 we overview the fate of the two contributions a) and b), given in different lines, in
the various T-dual backgrounds. The rightmost column depicts the discussion for the non-
geometric background we have given so far, where the expression 1 ` 1 for the contribution
b) pays tribute to the subtle sign combination explained above.

Contribution H-flux Twisted torus Non-geometric

a) rα, αs ´1

2
0 1

2

b) rα, γs 1`1

4

1´1

4

1`1

4

Sum 0 0 1

Table 2: Contributions to (4.25) in units of A.

Geometric backgrounds

For the twisted torus, two things change when recapitulating the above explanations. First,
there is no type a) contribution - depicted by 0 in table 2. This is most easily seen by noting
the absence of any term with N3{n2 dependence in the expression for Y

µ
H , (3.9), that could

contribute. Second, the contribution b) is zero due to a sign change. As explained above,
in the non-geometric situation there are two pieces coming from only left-moving and only
right-moving oscillators. Here, they appear with the opposite sign and cancel out - depicted
by 1 ´ 1 in the table 2. Schematically, this can be seen from

rα̃1 ` α1,γ̃2 ` γ2s ` rγ̃1 ` γ1, α̃2 ` α2s (4.32)

“ ´
`
rγ2, α1s ´ rγ1, α2s

˘
´

`
rγ̃2, α̃1s ´ rγ̃1, α̃2s

˘

`
`
rγ1, α̃2s ´ rγ̃2, α1s

˘
´

`
rγ2, α̃1s ´ rγ̃1, α2s

˘
,
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where again the last row vanishes and now the opposite sign of the first term on the left-hand
side causes the above mentioned cancellation. The sign change exactly is the well-known sign
change of the right-moving oscillators due to T-duality. In summary, there is no term (4.25)
appearing in the twisted torus frame thanks to subtle adjustments from T-duality, which
exactly meets our expectations.

For the torus with H-flux, both contributions appear, cf. the matching (3.19) and (3.20),

rγ1

Xn “ rγ1

n ` i

n
pp3

Lrα2

n ´ p2

L rα3

nq ` . . . , γ1

Xn “ ´γ1

n ´ i

n
pp3

Rα2

n ´ p2

Rα3

nq ` . . . . (4.33)

The type a) pieces can be identified from some of the 1{n dependent terms in (4.33). Com-
muting these with X2

0 |Σ produces a term proportional to pp3
L ´ p3

Rq “ N3, similarly to the
non-geometric situation, giving here ´1

2
A. For the type b) pieces, a similar combination of

signs as in (4.31) leads to two parts adding up,

rα̃1 ´ α1,γ̃2 ` γ2s ` rγ̃1 ´ γ1, α̃2 ` α2s (4.34)

“
`
rγ2, α1s ´ rγ1, α2s

˘
´

`
rγ̃2, α̃1s ´ rγ̃1, α̃2s

˘

´
`
rγ1, α̃2s ´ rγ̃2, α1s

˘
´

`
rγ2, α̃1s ´ rγ̃1, α2s

˘
.

Nevertheless, in total the two different contributions a) and b) appear with opposite signs
and cancel out, as depicted in table 2. Again, there is no term (4.25) remaining thanks to a
rearrangement of signs from T-duality - as expected.

4.3.2 Interpretation in terms of non-geometric fluxes and effective action

In [8], we conjectured that the non-commutativity should be given by

rZµpτ, σq, Zνpτ, σ1qsclosed

σ1ÑσÝÝÝÑ c i

¿

Cρ

Qρ
µνpZq dZρ , (4.35)

where c is a numerical constant,15 and Cρ is a cycle, around which the closed string is wrapped
Nρ times. There are some physical arguments in favour of this conjecture, and it would be
nice to interpret the result of this paper (4.24) in the same manner. Let us repeat it here for
convenience

rZ1pτ, σq, Z2pτ, σ1qs σ1ÑσÝÝÝÑ ´ i

2

π2

3
N3H . (4.36)

To allow the comparison between the two, we need, to start with, the Q-flux involved in
(4.35), so let us first recall how it is derived.

In [4, 7, 8], we have proposed an effective action for (the NSNS sector of) non-geometric
backgrounds, given in terms of a metric G̃µν , an antisymmetric bivector βµν and a dilaton
φ̃. A nice feature of this action is that it involves the non-geometric Q- and R-fluxes, and in
that way provides a lift of some gauged supergravities that previously did not have a higher
dimensional origin. The Q-flux in particular is given by

Qρ
µν “ Bρβµν , (4.37)

15To be precise, the numerical factors and the i were missing in [8].
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and in the case the background satisfies the condition βµνBν “ 0 when acting on arbitrary
fields, the effective action then takes the form [4]

ż
dxd

a
|g̃|e´2φ̃

ˆ
R̃ ` 4pBφ̃q2 ´ 1

4
Q2

˙
, (4.38)

where pBφ̃q2 and Q2 are simply the squares contracted with G̃. This action has the same form
as the standard NSNS action. There is actually more to it: the effective action of [4, 7, 8] is
equal (off-shell) to the NSNS action up to a total derivative term, provided one performs a
field redefinition to go from one set of fields to the other. For instance, (the inverse of) G̃,
and β, can be derived from the standard metric G and B-field by considering the symmetric
and antisymmetric parts of the following quantity

pG ` Bq´1 “ G̃´1 ` β . (4.39)

By studying global properties, we found that given a non-geometric background, the action
we introduced can be better suited to describe the effective physics than the standard NSNS
one. This statement works very well for the non-geometric background we consider in this
paper, that was also studied in the appendix B of [4].16 The standard NSNS fields for
the non-geometric background were given in (2.28). Using the field redefinition (4.39), it is
straightforward to compute

G̃Q “

¨
˝

R´2

1
0 0

0 R´2

2
0

0 0 R2
3

˛
‚ , βQ “

¨
˝

0 HZ3 0
´HZ3 0 0

0 0 0

˛
‚ , (4.40)

from which one gets with (4.37) the only non-trivial components17

Q3
12 “ ´Q3

21 “ H . (4.41)

We now have a Q-flux at hand for the non-geometric background, and we can compare
our result to the conjecture (4.35). We have a constant flux and the base cycle C3 is just a
circle wound N3 times by the string. Thus, using (4.41),

rZ1pτ, σq, Z2pτ, σ1qsclosed

σ1ÑσÝÝÝÑ c i

¿

C3

Q3
12 dZ3 “ 2π c i H N3 . (4.42)

This is in perfect agreement with our result (4.36), if we adjust accordingly the numerical
factors: c i “ ´π

6

i

2
.

It is physically expected that the flux, as well as the winding, contribute to the RHS of
the commutator, as we can see in the integrand of (4.42). Indeed, setting the flux to zero
brings all the backgrounds to mere flat tori, for which the string is free and should clearly be
commutative. Another way to argue is that the flux is responsible for the non-geometry in
the last background, and so should have a non-trivial effect on the commutator. The winding

16In particular, the condition βµνBν “ 0 holds for this background, so it admits the effective action (4.38).
17The Q-flux with flat indices is given here by Q3

12

pflatq “ H{pR1R2R3q; as mentioned already for the two
geometric backgrounds, this is the quantity entering the T-duality chain (1.1) with respect to which we ap-
proximate. It is nice to verify that this definition of Q is consistent with that claim. In addition, the conjecture
equality (4.35) is invariant under the rescaling of table 3 in appendix A, so we can use directly (4.41).
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should also be present: the non-trivial monodromies of the backgrounds, in particular the
non-geometric one, only appears when going around the base circle, and for the string to
probe this, it must extend in this direction. In other words, its winding should be non-zero to
see a non-trivial effect. Finally, the numerical factors adjusted below (4.42) should be mostly
understood as coming from our conventions. For instance, all the non-trivial commutators
derived from the canonical commutation relations in section 2.4 come with an π factor, so it
is reasonable to get one as well. The i

2
can also be understood as coming from our free string

conventions as can be seen in (3.31).

5 Conclusion

The main result of this paper is that, for a closed string on a non-geometric background with
Q-flux, some of its target space coordinates are non-commutative. Indeed, we have obtained

rZ1pτ, σq, Z2pτ, σ1qs “ ´ i

2
N3H

˜
ÿ

n‰0

1

n2
e´inpσ1´σq ` ipσ1 ´ σq

ÿ

n‰0

1

n
e´inpσ1´σq ` 1

2
pσ1 ´ σq2

¸

σ1ÑσÝÝÝÑ ´ i

2

π2

3
N3H . (5.1)

Our results confirm the first examples of closed string non-commutativity in relation with
T-duality and non-geometry, which were found in [12, 14] by analysing non-geometric string
backgrounds with elliptic Z4 monodromy. The class of backgrounds treated here are given by
three-dimensional fibrations with parabolic monodromy transformations, when transporting
a two-dimensional fibre along a base circle.

To discuss quantum properties of a closed string, such as its coordinate commutators,
one has to choose a quantization method. For a geometric background, a standard option
is canonical quantization (see e.g. [33] for recent reviews on other approaches [34]). This
amounts at first to impose the canonical commutation relations, which imply that the co-
ordinates commute. On the contrary, for a non-geometric background, there is no reason
to have the same relations. As discussed in the introduction, the literature even suggests
that the coordinates do not commute. Therefore, to derive (5.1), we instead used an indi-
rect method. We considered a specific non-geometric background, related via T-duality to
geometric situations where the canonical quantization tools could be used. More concretely,
we started by solving the classical string on a three-dimensional torus with H-flux and on a
T-dual twisted torus. We then performed the first steps of a canonical quantization on the
latter, which resulted in the commutators of the various modes of the string (as is usually
done for the free string). We finally used the T-duality relations between the twisted torus
and the non-geometric background, to obtain the classical string on the latter in terms of the
former. The commutators derived could then be used to compute rZ1, Z2s as in (5.1).

Let us make several remarks on this procedure. First, for these three T-dual spaces with
flux to be consistent string backgrounds, one has to use the dilute flux approximation (1.5).
We therefore considered expansions of all quantities, in particular the world-sheet coordinates
and the target space fields, to linear order in the flux parameter H. We showed that this
parameter could be identified, according to the background, with respectively the H-flux, the
geometric flux f , or the Q-flux (as given in the T-duality chain (1.1)). This method, leading
to classical expressions for closed strings in non-trivial backgrounds (for instance the non-flat
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twisted torus) and associated quantum properties, is expected to be of more general use. As
the one-loop β-functions of our sigma-models vanish, it would be interesting to derive similar
results and properties using CFT techniques.

A second remark is that the T-duality relations (2.7) between coordinates X and their du-
als X̂ played a crucial role in our analysis. We derived them following the Buscher procedure,
but they were already considered in [31] and used since then in several different contexts.
They could definitely serve other purposes. For instance, using those, one may get a more
systematic definition of the doubled geometry (see [35] and references therein for a discussion
on that topic). It would be interesting to study this idea in more detail in the future.

The T-duality relations (2.7) essentially map derivatives of coordinates. An important
implication of this is that from T-duality, one can only deduce properties of the derivatives
of coordinates: as we did, for instance, for the equations of motion, and the derivatives of
commutators, in sections 2.3 and 2.4. Going to the coordinate itself involves an integration,
which can bring in important new information. For example, we discussed the new integration
constants which can appear, and also some non-trivial distribution contributions. The last
point is particularly relevant for the commutator of interest here: we showed in (4.20) and
below that rBσZ1, Bσ1Z2s vanishes in the sense distributions, which makes the expression for
its integrated counterpart (5.1) even more special. This discussion puts the common claim
that T-duality is a canonical transformation in a new light. This claim would make it sur-
prising, at a first glance, that a commutator of coordinates is not preserved under T-duality.
However, since this transformation only relates derivatives of coordinates, such claims are
subtle. As explained above, integration can bring important contributions and we should
expect at most rBσZ1, Bσ1 Z2s, and not rZ1, Z2s, to be preserved under T-duality, which is in
excellent agreement with our results.18

The point of view of the doubled geometry [5] offers another take on this discussion.
In appendix C, we argue on how to relate the target space monodromies to the boundary
conditions of doubled closed string coordinates. Comparing the explicit expressions for the
latter in the different backgrounds, namely (C.15), (C.16) and (C.18), it is clear that a T-
duality along ι exchanges X ι with X̂ ι. Pushing this idea, one could consider a doubled phase
space, with commutators among the standard coordinates and among the dual ones, and the
T-duality would then exchange the two. If at first coordinates commute while the dual do
not, this situation will be changed after T-duality. The non-commutativity then only “arises”
because we focused on the subspace of standard coordinates; from the doubled space point of
view, nothing really changes.

This is a way to understand what is happening here. We point out below (C.18) that
mixing standard and dual coordinates within boundary conditions is a sign of non-geometry,
possibly leading to non-commutativity. This mixing occurs in the non-geometric background,
and one can also see such an entanglement for the torus with H-flux, in the dual coordinates.
Following this line of thoughts, we can conclude that the dual coordinates do not commute in
this first geometric background, while the standard ones do, and this situation gets exchanged
in the non-geometric set-up. It would be interesting to compute in this last case other
canonical commutators, involving canonical momenta, and study similar exchanges for those.

The entanglement between coordinates and duals in the last background is really typical

18It is also worth noting that, in one reference on this topic, namely [36], no B-field was considered, while
for us the B-field plays a crucial role.
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of non-geometry, and was reinterpreted in different formulations such as the T-fold [24], the
doubled geometry [5], and also the generalized complex geometry where one would argue for
an entanglement of vectors and one-forms [37]. A way to rephrase this idea is by saying that
the toroidal fibre is fuzzy in the non-geometric case, and it becomes impossible to determine
precisely the string position in these directions. Actually, the (point particle) position con-
cept may not even make sense for a non-geometric background, but the string still knows how
to behave in such a space, thanks to its extension and additional symmetries. The indeter-
mination of its position in the non-geometric case gives a quantum mechanical uncertainty
relation

p∆Z1q2p∆Z2q2 ě H2 xN3y2 , (5.2)

which is in agreement with the non-vanishing commutator (5.1).
The difference with standard quantum mechanics is that the uncertainty here is a static

phenomenon, no momentum is involved but rather a second coordinate. Indeed, a closed
string winding the base circle would probe the (fuzzy) fibre with its non-trivial monodromy
due to the non-geometry, without even moving. This is in contrast to a point particle (or a
non-wound closed string), having still a well-defined position in the base, which therefore can
only test the local geometry of the fibre, and does not perceive the global aspects responsible
for the non-geometry and non-commutativity. This explains the presence of the winding (or
dual momentum) in our result (5.1) and (5.2). This discussion and the above relation provide
an interesting, though heuristic, origin to the non-commutativity observed.19

Finally, let us discuss the last step of the T-duality chain (1.1), involving an R-flux, for
which non-associativity has been argued to arise as mentioned in the introduction. In addition
to the non-commutativity relation (1.2), we also conjectured in [8], following [11–13], that the
non-associativity of the R-flux background should be given by the associator

rX 3, rX 1, X
2ssclosed ` perm „ R123 . (5.3)

As discussed for the Q-flux in section 4.3.2, to make sense of this relation one needs an
expression for the flux in terms of the background fields. This was discussed for the R-flux
in [7, 8] together with an effective action for such a background.20 So let us first recall the
procedure to get the R-flux, before coming back to the associator.

This last non-geometric situation is obtained after performing a T-duality in the direction
Z3 of the Q-flux background. Since the target space fields depend on Z3, the Buscher rules
do not apply anymore. However, as discussed in [8], double field theory [6] has a proposal on
how to T-dualise along a direction which is not an isometry: we just need here to formally
replace the coordinate Z3 by its dual coordinate Ẑ3, in analogy to the replacement of the
momentum p3 by its dual quantity the winding N3. Performing this replacement in (4.40),
we simply obtain for βR

βR “

¨
˝

0 HẐ3 0

´HẐ3 0 0
0 0 0

˛
‚ . (5.4)

19Note that another stringy feature than the winding has been pointed out to explain the non-commutativity:
its origin was traced back in section 4.3.1 to some oscillator terms in the string expansion, meaning that only
these stringy modes are responsible for the non-vanishing right-hand side of (5.1).

20To derive the R-flux effective action, we used the field redefinition (4.39). In [38] a different field redefinition
leading to another effective action for the non-geometric R-flux was proposed.

34



The R-flux proposed [7, 8] has the general form Rµνρ “ 3D̃rµβνρs “ 3
`
B̃rµβνρs ` βςrµBςβ

νρs
˘

(see also [39, 40]), where B̃ denotes the derivative with respect to the dual coordinate. It is
straightforward to see that the second term does not contribute, while the first gives

R123 “ H . (5.5)

Let us now come back to the associator (5.3). Before considering the last background, let
us start by saying a word on the Q-flux situation. For the latter, the first term on the LHS
of (5.3) can be computed to linear order in H: indeed, using (2.41), we get in the limit (5.1)

rZ3, rZ1, Z2ss “ rZ3

0 , rZ1, Z2s|H s ` rHZ3

H , rZ1

0 , Z2

0 ss “ ´ i

2

π2

3
HrZ3

0 , N3s “ 0 .

In addition for this background, it is simple to see from the fields (4.40) and the definition of
the R-flux that R123 is zero. Therefore, we are rather close to satisfy the associator condition
(5.3). However, the permutation terms involve H-order commutators between p1, 3q and p2, 3q
coordinates and associated modes. We have not determined these commutators here, and it
is not clear if they could all be set to zero, in view of the non-trivial commutators (2.51) and
(2.52). Even if we do expect that the permutation terms vanish in the limit, we leave the full
computation for future work.

The more interesting case for this associator is the R-flux background, with non-zero flux
(5.5). As above, we can say something on the first term of the associator but not on the
others. The reason is this time deeper: the T-duality relations among the coordinates (2.7)
were derived using the Buscher procedure, which needs an isometry. We therefore have here
no guideline to determine what is the mode expansion of the dual Ẑ3, implying in particular
that we cannot compute its commutators, such as those of the permutation terms. This
problem can be solved at zeroth order in H: there, we only have the free string and it is
therefore natural to take Ẑ3

0 ” Z̃3
0 , as defined in (3.6). To avoid any confusion, let us denote

the “coordinates” W µ for the R-flux background, meaning after the (formal) T-duality in the
third direction. We propose to define these coordinates as follows: W 1,2pp3

W q “ Z1,2pN3q,
W 3

0 “ Z̃3
0 , where p3

W is now the zeroth order momentum for W 3
0 , and W 1,2pp3

W q means that
these coordinates now depend on p3

W instead of the winding (dual momentum) N3 (i.e. we
replace one by the other and the closed string boundary conditions of the R-flux background
are now determined by p3

W ). This allows us to compute the first term in the limit (5.1)

rW 3, rW 1, W 2ss “ rW 3

0 , rW 1, W 2s|H s ` rHW 3

H , rW 1

0 , W 2

0 ss “ ´ i

2

π2

3
HrW 3

0 , p3

W s “ 1

4

π2

3
H ,

where we used (3.32). In view of the associator (5.3), it is nice to get a non-zero result,
proportional to H, now understood as the R-flux. We leave a full study for the future.

An R-flux background is usually thought of as being not even locally geometric [5]. For
such a situation, one could then indeed consider that the closed string “coordinates”, which
should be really viewed as fields living on the two-dimensional string world-sheet, become
non-associative. The precise mathematical structure of these non-associative spaces is very
interesting but still largely unknown, and hence deserves more investigations in the future.
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A Rescaling and summary of notations

For the three backgrounds we consider, the target space metric Gµν and the B-field Bµν

depend on the three radii Rµ“1,2,3. As a consequence, the world-sheet equations of motion and
the string coordinates classical solutions would also depend on them. To simplify formulas,
we perform the rescaling given in table 3 for each of the backgrounds. It is defined on any
object V with a (curved space) index µ, so in particular on the metric and B-field, on the
H-flux component, on the string coordinates, and on the winding numbers.

Background Rescaling

Torus + H-flux V µ Ñ 1

Rµ
V µ , Vµ Ñ RµVµ (no sum)

Tw. torus V 1 Ñ R1V 1 , V1 Ñ 1

R1
V1, and for µ “ 2, 3 as for the torus

Non-geom. V 1,2 Ñ R1,2V 1,2 , V1,2 Ñ 1

R1,2
V1,2, and for µ “ 3 as for the torus

Table 3: Rescalings.

Let us detail the rescaling of the H-flux component (first background). In curved space,
one has H123 “ H, which therefore gives H Ñ HR1R2R3, or in other words, Hold “
HnewR1R2R3. This has the important consequence of simplifying the assumption (1.5), so
that after the rescaling, all fields are expanded in H only.

Applying these rules to the target space fields of the different backgrounds, namely (2.8)
and (2.9), (2.16), and (2.28), has the simple effect of erasing all radii. The same is true for
the world-sheet equations of motion. Note also that all contractions invariant, in particular
differential forms, or the squared line element ds2 “ GµνdX µdX ν . Finally, the T-duality
relations (2.7), the string coordinates boundary conditions, and the canonical commutation
relations, are as well invariant under this rescaling. From section 2.3 on, we only use rescaled
quantities. The table 1 summarises the rescaled and approximated target space fields.

We denote the generic string coordinate by X µ, and introduce different notations for each
of the three T-dual backgrounds, namely Xµ, Y µ, and Zµ respectively. The index µ denotes
the three dimensions 1, 2, 3 of the target space that we consider; the third one is special and
always corresponds to the base circle of a toroidal fibration. As all the fields, the string
coordinate is expanded (after rescaling) up to second order terms in H, so we write it as

X
µpτ, σq “ X

µ
0

pτ, σq ` HX
µ
Hpτ, σq ` OpH2q . (A.1)

The zeroth and first order contributions have a classical mode expansion, once the equations
of motion with boundary conditions are solved. The modes of Y µ, i.e. for the twisted torus,
are those which appear mostly in the paper. The zeroth order Y

µ
0

turns out to be a free string,
so it depends on the standard constants: the center of mass position yµ, the momentum pµ,
the winding Nµ, and the oscillators rαµ

n, αµ
n. The H-order piece Y

µ
H has additional constants

playing a similar role: the H-order y
µ
H , p

µ
H , and the oscillators rγµ

n , γµ
n . The expression for

Zµ is built from the one of Y µ; the only new constants appearing there are the center of
mass positions zµ, z

µ
H . The solution for Xµ is computed from scratch, and we obtain similar

constants, denoted in the same manner but with an index X , except for xµ, x
µ
H . T-duality

then fixes the modes of Xµ in terms of those of Y µ (see section 3.1), so we rather express
things in terms of the latter.
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B Target space T-duality

One convenient way to perform a T-duality along a direction ι on the target space fields goes
as follows. One should first consider the generalized metric H

H “
ˆ

G ´ BG´1B BG´1

´G´1B G´1

˙
. (B.1)

The T-dual generalized metric Ĥ (where one can read form its entries the T-dual metric and
B-field) is then obtained, thanks to the action of the matrix T , as

Ĥ “ T HT , where T “
ˆ

1 ´ mι mι

mι 1 ´ mι

˙
, with mι “

¨
˝

1 0 . . . 0

0 0 . . . 0

.

.

.

.

.

.

.
.
.

.

.

.

0 0 . . . 0

˛
‚ , (B.2)

where the non-trivial entry of mι is along the direction ι (arbitrarily placed here in the top left
corner). One can show that the expressions of the T-dual fields obtained either by the Buscher
rules (2.4), or this procedure (B.2), precisely match, so the two procedures are equivalent.

To illustrate this method, let us focus on the two-torus with B-field as given in (C.1)
(we do not need to consider here the third direction X 3, which remains invariant under the
following transformations). We can rewrite the torus fields in terms of matrices as

G “ Imρ

Imτ

ˆ
1 Re τ

Re τ |τ |2
˙

, B “
ˆ

0 ´ Re ρ

Re ρ 0

˙
. (B.3)

We can then compute the T-duals of this configuration, by first constructing the generalized
metric H defined in (B.1)

H “ 1

Im ρ Im τ

¨
˚̊
˝

|ρ|2 |ρ|2 Re τ Re ρ Re τ ´ Re ρ

|ρ|2 Re τ |ρτ |2 Re ρ|τ |2 ´ Re ρ Re τ

Re ρ Re τ Re ρ|τ |2 |τ |2 ´ Re τ

´ Re ρ ´ Re ρ Re τ ´ Re τ 1

˛
‹‹‚ . (B.4)

The T-duals are obtained by applying the proper T-duality operators as in (B.2). Namely,
we obtain the following T-dual fields

T-duality along X 1 : G “ Im τ

Im ρ

ˆ
1 Re ρ

Re ρ |ρ|2
˙

, B “
ˆ

0 ´ Re τ

Re τ 0

˙

ô τ Ø ρ (B.5)

T-duality along X 2 : G “ Im τ |ρ|2
|τ |2 Im ρ

˜
1 ´Re ρ

|ρ|2

´Re ρ
|ρ|2

1

|ρ|2

¸
, B “ Re τ

|τ |2
ˆ

0 1
´1 0

˙

ô τ Ñ ´1

ρ
, ρ Ñ ´ 1

τ
(B.6)

T-duality along X 1 and X 2 : G “ Im ρ|τ |2
|ρ|2 Im τ

˜
1 ´Re τ

|τ |2

´Re τ
|τ |2

1

|τ |2

¸
, B “ Re ρ

|ρ|2
ˆ

0 1
´1 0

˙

ô τ Ñ ´ 1

τ
, ρ Ñ ´1

ρ
, (B.7)

where we read the corresponding exchanges of τ and ρ by comparing with (B.3). We can then
easily use these formulas to derive the T-dual background fields we consider, namely (2.8)
and (2.9), (2.16), and (2.28), or equivalently (C.2), (C.3), and (C.4).
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C Global properties and boundary conditions in terms of mon-
odromies

In this appendix, we study the global properties of the three T-dual backgrounds presented
in section 2.2, and express them in terms of monodromies (see [39] for a related discussion).
We then make use of this formulation, together with a doubled formalism, to discuss the
boundary conditions of the string coordinates.

C.1 Geometry and non-geometry from monodromies

The three backgrounds considered in section 2.2 can be described in a convenient uniform
manner: they all take the form, at least locally, of the fibration of the torus T 2 with (real) co-
ordinates X 1,2 over the circle S1 in the X 3-direction. A two-torus with B-field is parametrized
by two complex parameters known as the complex structure τ “ G12

G11
` i V

G11
and the complex-

ified Kähler class ρ “ ´B12 ` i V , where V denotes the volume of the two-torus.21 Therefore,
our three backgrounds can be reexpressed as

ds2 “ Im ρ

Im τ

ˇ̌
dX

1 ` τdX
2
ˇ̌2 ` R2

3

`
dX

3
˘2

, B12 “ ´ Re ρ , (C.1)

with

Torus with H-flux: τ “ i
R2

R1

, ρ “ ´HX
3 ` i R1R2 (C.2)

Twisted torus: τ “ ´HX
3 ` i R1R2 , ρ “ i

R2

R1

(C.3)

Non-geometric background: τ “ i
R1

R2

, ρ “ 1

HX 3 ´ i R1R2

, (C.4)

where the fibration can be seen via the dependence of τ and ρ on the base coordinate X 3.
The global structure of the fibrations can be characterised by the monodromy conditions,

which indicate how the T 2 is glued together when moving around the base S1:

X
3 Ñ X

3 ` 2π ñ T 2pX 3q Ñ T 2pX 3 ` 2πq . (C.5)

In order to obtain a consistent string background, the gluing conditions of T 2 have to be part
of the string symmetry group. The symmetries of a string on a two-torus, parametrized as
above, are well-known, and are essentially captured by two SLp2,Zq factors, acting on τ and
ρ separately, as

τ Ñ aτ ` b

cτ ` d
, A “

ˆ
a b

c d

˙
P SLp2,Zqτ , ρ Ñ a1ρ ` b1

c1ρ ` d1
, A1 “

ˆ
a1 b1

c1 d1

˙
P SLp2,Zqρ . (C.6)

Therefore, consistent string backgrounds are obtained from the configuration (C.1), if the
monodromy relation (C.5) can be written as

X
3 Ñ X

3 ` 2π ñ τpX 3 ` 2πq “ a τpX 3q ` b

c τpX 3q ` d
, ρpX 3 ` 2πq “ a1 ρpX 3q ` b1

c1 ρpX 3q ` d1
, (C.7)

21 V is the square root of the absolute value of the determinant of the T 2 metric, i.e. in our notations
V “

a
|G11G22 ´ pG12q2|.
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in terms of two SLp2,Zq transformations.

This reasoning however does not distinguish geometric or non-geometric backgrounds; in
particular the latter could occur since some T-dualities are part of this string symmetry group,
as can be seen in appendix B. So let us say a word on this distinction. First, monodromies
given in terms of SLp2,Zqτ , i.e. the transformations on the complex structure τ , are always
geometric. Indeed, one can verify that the transformation A in (C.6) can be reproduced
precisely by the global diffeomorphism Ã on T 2, given by

ˆ
dX 1

dX 2

˙
Ñ

ˆ
d b

c a

˙ ˆ
dX 1

dX 2

˙
, Ã “

ˆ
d b

c a

˙
, (C.8)

i.e. the metric (C.1) transforms in the same way by either transformation. In other words, any
SLp2,Zqτ monodromy A can be compensated by a discrete identification of the coordinates,
given by the inverse Ã´1 of (C.8); the latter also leaves the B-field invariant. This way, the
gluing of the T 2 is fine, and such backgrounds are geometric. One can verify from (C.3) that
it is precisely what happens for the twisted torus, as indicated by the identifications (2.17).

On the contrary, non-geometric backgrounds in general correspond to those monodromy
transformations which act non-trivially as SLp2,Zqρ on the Kähler parameter ρ. To see that
more precisely, let us first make the following distinction among the possible monodromies A1

of (C.6). We define the order n P N
˚ of A1 as the minimal value allowing for A1 n “ 1. Then,

we distinguish

• Constant monodromy: n “ 1, i.e. ρpX 3 ` 2πq “ ρpX 3q

• Elliptic monodromy: n ą 1 but finite; for instance the elliptic inversion with n “ 4:
ρpX 3 ` 2πq “ ´1

ρpX 3q

• Parabolic monodromy: a finite order does not exist; for instance the constant shift
ρpX 3 ` 2πq “ ρpX 3q ` b1, b1 P Z

˚.

As a side remark, note that the last two examples actually generate the whole SLp2,Zq group.

Constant monodromies obviously leave us with geometric backgrounds; some parabolic
also do. For instance the constant shift is only a gauge transformation on the B-field. An
example of it is given by the torus with H-flux, as can be seen from (C.2). Other parabolic
monodromies can give non-geometric backgrounds. For example, one obtains from (C.4)

ρpX 3 ` 2πq “ ρpX 3q
1 ` 2πHρpX 3q , (C.9)

which is a parabolic monodromy: it has the form of the “transpose” of a constant shift. Fi-
nally, the elliptic monodromy rather gives a non-geometric background, because the resulting
change on the physical fields is really non-trivial. For instance, the example given above can
correspond to a T-duality, as in (B.7).

C.2 Boundary conditions of (doubled) string coordinates

The monodromy transformations on the background parameters can be translated into the
closed string boundary conditions, that we use when solving the equations of motion. Namely,
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going around the closed string in the X 3-direction by doing σ Ñ σ ` 2π, i.e. considering its
winding (given by N3)

X
3pτ, σq Ñ X

3pτ, σ ` 2πq “ X
3pτ, σq ` 2πN3 , (C.10)

corresponds to having N3 times the transformation (C.7). So it precisely induces monodromy
transformations of the form described above

τpX 3pτ, σ ` 2πqq “ a τpX 3pτ, σqq ` b

c τpX 3pτ, σqq ` d
, ρpX 3pτ, σ ` 2πqq “ a1 ρpX 3pτ, σqq ` b1

c1 ρpX 3pτ, σqq ` d1
. (C.11)

From those we would like to deduce how the coordinates X 1,2 of the two-dimensional torus
transform, and understand it as the closed string boundary conditions in these directions. To
deduce the transformation of X 1,2 from a τ -monodromy given in (C.11), we can proceed as
discussed around (C.8). Thus, for a transformation A of τ given in (C.6) and (C.11), the
linear action of Ã´1 on X 1,2 is the one giving their boundary conditions.

We want to embed this idea in a doubled formalism inspired by the T-fold descrip-
tion [24]. To that end, we double the two toroidal coordinates and introduce the vector
~X “ pX 1, X 2, X̂ 1, X̂ 2q, where X̂ µ are the dual coordinates (denoted as in (2.7)). The trans-
formation of ~X is now given by the linear action of an Op2, 2,Zq element g, and we consider
the four-dimensional representation of gT Jg “ J , where J is given by two off-diagonal 12. So
the closed string boundary conditions are now written as

X
3pτ, σq Ñ X

3pτ, σ ` 2πq ñ ~X pτ, σq Ñ ~X pτ, σ ` 2πq “ g ~X pτ, σq , (C.12)

where the Op2, 2,Zq matrix g is determined by the monodromy transformations (C.11) (in
other words, g is given by an embedding of SLp2,Zqτ ˆ SLp2,Zqρ in Op2, 2,Zq). For instance,
from what we explained above, a τ -monodromy given by a matrix A fixes

gτ “
ˆ

Ã´1 02

02 ÃT

˙
, (C.13)

where the completion with ÃT is given by the Op2, 2,Zq condition.
Boundary conditions due to ρ-monodromies are determined differently than the τ ones.

Consider the complexified momentum vector Π “ Π
1 ` i Π2 “ 1?

Im ρ Im τ
pp2 ` τ̄ p1 ` ρ̄pN1 ´ τ̄N2qq,

and find the transformation of the momentum and winding pµ, Nν , which compensates the one
on ρ, so that |Π| remains invariant. This transformation on pp1, p2, N1, N2q is then identified
with gT . Let us give two examples

ρ Ñ ρ ` b1 : gb1 “

¨
˚̊
˝

1 0 0 0
0 1 0 0
0 ´b1 1 0
b1 0 0 1

˛
‹‹‚ , ρ Ñ ´1{ρ : gi “

¨
˚̊
˝

0 0 0 ´1
0 0 1 0
0 ´1 0 0
1 0 0 0

˛
‹‹‚ . (C.14)

The constant shift compensated by gT
b1 actually leaves the whole vector Π invariant, while the

elliptic inversion compensated by gT
i only leaves |Π| invariant. Considering igi would equally

well leave |Π| invariant; however such an action on the coordinates is not clear: this may
indicate that an elliptic inversion of ρ alone should not be considered. We will nevertheless
make use of igi in what follows when composing several inversions.

Now we are eventually ready to explicitly relate the monodromy conditions and the closed
string boundary conditions for the three backgrounds considered in this paper.
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Closed string boundary conditions for the torus with H-flux

Here the monodromy corresponds to a constant shift in the B-field: we read from (C.2) that
ρpX3pτ, σ ` 2πqq “ ρpX3pτ, σqq ´ 2πHN3. Therefore, using (C.14), the matrix g is given by
g´2πHN3 , leading to the following closed string boundary conditions

X1pτ, σ ` 2πq “ X1pτ, σq ,

X2pτ, σ ` 2πq “ X2pτ, σq ,

X̂1pτ, σ ` 2πq “ X̂1pτ, σq ` 2πHN3X2pτ, σq ,

X̂2pτ, σ ` 2πq “ X̂2pτ, σq ´ 2πHN3X1pτ, σq ,

X3pτ, σ ` 2πq “ X3pτ, σq ` 2πN3 . (C.15)

For X1, X2, this is in agreement with (2.15), up to constant shifts such as winding, a point
we will come back to. In addition we find that the dual coordinates transform non-trivially.

Closed string boundary conditions for the twisted torus

Here the monodromy corresponds to a constant shift of the complex structure: we read from
(C.3) that τpY 3pτ, σ ` 2πqq “ τpY 3pτ, σqq ´ 2πHN3. The monodromy transformation A is
then given as in (C.6), and the corresponding Ã is given as in (C.8). We deduce from the
latter the matrix g given in (C.13), leading to the following closed string boundary conditions

Y 1pτ, σ ` 2πq “ Y 1pτ, σq ` 2πHN3Y 2pτ, σq ,

Y 2pτ, σ ` 2πq “ Y 2pτ, σq ,

Ŷ 1pτ, σ ` 2πq “ Ŷ 1pτ, σq ,

Ŷ 2pτ, σ ` 2πq “ Ŷ 2pτ, σq ´ 2πHN3Ŷ 1pτ, σq ,

Y 3pτ, σ ` 2πq “ Y 3pτ, σq ` 2πN3 . (C.16)

This is again in agreement with (2.25) and (2.26), up to constant shifts such as winding.

Closed string boundary conditions for the non-geometric background

As already discussed, we have here a parabolic monodromy in ρ: we read from (C.4) that

ρpZ3pτ, σ ` 2πqq “ ρpZ3pτ, σqq
1 ` 2πHN3 ρpZ3pτ, σqq . (C.17)

To obtain the corresponding matrix g, one can notice that this monodromy is actually the
composition of an elliptic inversion, a constant shift by ´2πHN3, and again an elliptic in-
version. Therefore, the g to consider here is given by g “ igi g´2πHN3 igi, as one can obtain
using (C.14) and the discussion around there. The result is the transpose of g2πHN3 ; it is
therefore very close to the one used for the torus with H-flux. This matrix finally leads to

Z1pτ, σ ` 2πq “ Z1pτ, σq ` 2πHN3Ẑ2pτ, σq ,

Z2pτ, σ ` 2πq “ Z2pτ, σq ´ 2πHN3Ẑ1pτ, σq ,

Ẑ1pτ, σ ` 2πq “ Ẑ1pτ, σq ,

Ẑ2pτ, σ ` 2πq “ Ẑ2pτ, σq ,

Z3pτ, σ ` 2πq “ Z3pτ, σq ` 2πN3 . (C.18)
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This transformation is new, and should be understood, as before, up to constant shifts of the
coordinates. It is consistent with the classical expressions of Zµ that are derived using the
T-duality relations among coordinates. The non-trivial match is in particular with the Z2

boundary conditions given in (4.9).

It is worth noticing that this background is the only one for which the boundary conditions
of the standard coordinates mix with the dual coordinates. This entanglement is a sign of
non-geometry, but it is also reminiscent of the mixing of Neumann and Dirichlet boundary
conditions for the open string, leading in that context to non-commutativity. This analogy
is announcing the result of this paper, as we find closed string non-commutativity for this
background.

Final comments

We used here an argumentation based on preserving either the target space fields or the
above |Π| when going through monodromies. An alternative derivation of the closed string
boundary conditions can be made using the doubled formalism of [30] and requiring to preserve
an action. In both cases, we obtain the (same) expected boundary conditions, up to shifts
by constants such as winding. Here, the reason is clear, as we only consider a linear action
on the coordinates (C.12). The argument leading to this linear action was actually based on
the analogy with the τ -monodromies discussed around (C.8). However, there, it was rather
dX µ than X µ itself which was acted on linearly. Following this path then opens the door to
possible constant shifts of the coordinates, even though nothing fixes them in this procedure.

D Commutators of position zero modes

As discussed below (4.22), the classical integration constants z1,2 and z
1,2
H for the coordinates

Z1,2 lead, at the quantum level, to undetermined commutators present in the expression
(4.19) obtained for rZ1, Z2s. In this appendix, we provide arguments that fix those unknown
commutators to specific values. We find these arguments reasonable and consistent with the
study performed in this paper, although a priori other reasonings could as well be pursued.

To start with, one can note that the constants z1,2 and z
1,2
H are center of mass position

coefficients at zeroth and first order. As such, they can be understood as the T-dual coun-
terparts, along direction 2, of respectively y1,2 and y

1,2
H . Therefore, we propose that z1, resp.

z1
H , has the same H-order commutators as y1, resp. y1

H ; similarly, z2, resp. z2
H , has the same

H-order commutators as ỹ2, resp. ỹ2
H . This result about the H-order commutators is rather

close to the one we argued for at zeroth order (see above (4.16), as well as (3.17)). So we first
obtain for the undetermined commutators

”
z1

H , N2

ı
”

”
y1

H , N2

ı
“ 0 (D.1)

”
p2, z1

H

ı
`

”
p2

H , z1

ı
”

”
p2, y1

H

ı
`

”
p2

H , y1

ı
“ ´ i

2
y3 (D.2)

”
z1

H , α2

nǫ

ı
`

”
z1, γ2

nǫ

ı
”

”
y1

H , α2

nǫ

ı
`

”
y1, γ2

nǫ

ı
“ ´ 1

8n
α3

nǫ , @ǫ, @n ‰ 0 , (D.3)
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”
z1, z2

H

ı
`

”
z1

H , z2

ı
”

”
y1, ỹ2

H

ı
`

”
y1

H , ỹ2

ı
(D.4)

”
p1, z2

H

ı
`

”
p1

H , z2

ı
”

”
p1, ỹ2

H

ı
`

”
p1

H , ỹ2

ı
(D.5)

”
N1, z2

H

ı
”

”
N1, ỹ2

H

ı
(D.6)

”
α1

nǫ, z2

H

ı
`

”
γ1

nǫ, z2

ı
”

”
α1

nǫ, ỹ2

H

ı
`

”
γ1

nǫ, ỹ2

ı
. (D.7)

The value of the first three lines is simply determined, by using (3.45), (3.43), and (3.44). On
the contrary, the others remain undetermined. This is because the T-duality is here along
X 2: the information along direction 1 is unchanged and can be used directly, while changes
occur along direction 2 (in particular here trading y2

pHq for ỹ2

pHq, leaving us with unknown

commutators).

So we need information for the four commutators along this T-dualised direction. A first
natural consideration is the left/right decomposition. The H-order constants always enter
the homogeneous part of the expressions of the coordinates (see the first lines of (4.7) and
(4.8), or of (3.9)). Therefore, one can consider as for the zeroth order (3.6) a left/right
decomposition.22 A simple assumption to be made is, as for the free string, that left/left
and right/right commutators are equal while left/right vanish (see for instance (3.32)). If
we use this on the first undetermined commutator (D.4), it simply vanishes. This is some-
how expected: at zeroth order, center of mass positions commute, and it looks reasonable to
get the same here, as in (3.45). We now turn to another undetermined commutator, (D.7).
Using the same decomposition within (3.44), one fixes its value to (D.18). The remaining
two unknown commutators can unfortunately not be determined using these arguments. One
reason for that is the absence of winding at OpHq as discussed below (3.22), which makes
the left/right decomposition of p1

H a bit ad-hoc. Therefore, we now present a second reasoning.

As the missing information is related to the T-duality along X 2, we propose to compare
this situation with an analogous one, that is, the other T-duality considered in this paper.
For the T-duality along X 1, resp. along X 2, one starts from X1, resp. Y 2, to go to Y 1, resp.
Z2. The starting coordinates X1 and Y 2 have similar boundary conditions given by a simple
winding, while their T-dual counterparts Y 1 and Z2 have more involved boundary conditions,
as can be seen in (2.25) and (4.9), or also (C.16) and (C.18). The essential part of Y 1, resp.
Z2, boundary conditions, is a shift at H-order, by Y 2

0 , resp. ´Ỹ 1
0 . These shifts are also

the essential part of each T-duality transformation: indeed, one can see from the T-duality
relations between coordinates (2.29) and (2.30) that the terms with explicit H dependence
correspond precisely to these same shifts. So when comparing, at H-order, the two T-dualities
performed in this paper, and looking at the various coordinates involved, we find an analogy
between the two pairs X1

H , Y 2
0 and Y 2

H , ´Ỹ 1
0 . This is reminiscent of the idea that the order of

the two T-dualities should not matter.

The relation between the two pairs is even more striking when looking at the explicit
expressions for X1

H in (3.14) and Y 2
H in (3.9). These two mode expansions are clearly mapped

one to the other under the exchange of their H-order constants, together with the exchange
of Y 2

0
and ´Ỹ 1

0
(or Ỹ 2

0
and ´Y 1

0
) and equivalently of their zeroth order coefficients. This adds

credit to the idea that the two pairs contain the same (physical) information. Therefore, we

22Such a decomposition was already mentioned for the first order in (3.11) and (4.10).
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propose that “physics remain unchanged” under the map

Y 2

H Ø X1

H , Y 1

0 Ø ´Ỹ 2

0 , (D.8)

or equivalently the map of their modes, for instance y2
H Ø x1

H . Let us extend the latter
mildly towards ỹ2

H Ø x̃1
H . We now give meaning to the above statement by saying that a

commutator preserves its value when going through this map. In other words, commutators
involving the following modes keep the same value under the exchanges

y1 Ø ´ỹ2

ỹ2
H Ø y1

H p1 Ø ´N2

p2
H Ø p1

HX N1 Ø ´p2

γ2
mǫ Ø γ1

Xmǫ α1
mǫ Ø ´ǫ α2

mǫ @ǫ , @m P Z
˚ .

(D.9)

We should have written ỹ2
H Ø x̃1

H but we also trade the commutators involving x̃1
H for those

involving y1
H (same argument as z2

H and ỹ2
H).

Let us now give an example: from this map, we find the following equality

rỹ2, p1

HXs ` rỹ2

H , N1s “ ´ry1, p2

H s ´ ry1

H , p2s , (D.10)

where the RHS turns out to be known from (3.43). Using the latter together with (3.21), the
T-duality constraint fixing p1

HX , one gets from (D.10)

rỹ2

H , N1s “ iπ

2
N3 , (D.11)

that gives a value to one of the undetermined commutators.
We turn to the other commutators. Using the T-duality constraints also fixes p1

H in (3.22)
and γ1

Xmǫ in (3.19) and (3.20), and one gets
”
p1

H , ỹ2

ı
“ 0 ,

”
γ1

nǫ, ỹ2

ı
“ ǫ

”
γ1

Xnǫ, ỹ2

ı
` ǫ

1

4n
α3

nǫ , (D.12)

that appear in two of the four unknown commutators we started with. Using these results,
and then the map, one obtains the equalities

”
p1, ỹ2

H

ı
`

”
p1

H , ỹ2

ı
“

”
y1

H , N2

ı
(D.13)

”
α1

nǫ, ỹ2

H

ı
`

”
γ1

nǫ, ỹ2

ı
“ ǫ

”
y1

H , α2

nǫ

ı
` ǫ

”
y1, γ2

nǫ

ı
` ǫ

1

4n
α3

nǫ , @ǫ, @n ‰ 0 . (D.14)

Using (3.44) and (3.45) finally gives values to the above, and so fixes two more commutators.
Note that (D.7) was already fixed by the left/right decomposition, and we recover here pre-
cisely the same value. Finally, the commutator (D.4) is not fixed by this map; it is simply
mapped to itself. We need the above arguments to show that it vanishes.

Let us summarize the values obtained from these arguments for the four undetermined
commutators: ”

z1, z2

H

ı
`

”
z1

H , z2

ı
“ 0 (D.15)

”
p1, z2

H

ı
`

”
p1

H , z2

ı
“ 0 (D.16)

”
N1, z2

H

ı
“ ´ iπ

2
N3 (D.17)

”
α1

nǫ, z2

H

ı
`

”
γ1

nǫ, z2

ı
“ ǫ

1

8n
α3

nǫ , @ǫ, @n ‰ 0 . (D.18)

Finally, using these and (D.1) - (D.3) reduces the commutator of interest (4.19) to (4.23).
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