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The connection of maximally supersymmetric Yang-Mills theory to the (2,0) theory in six dimensions

has raised the possibility that it might be perturbatively ultraviolet finite in five dimensions. We test this

hypothesis by computing the coefficient of the first potential ultraviolet divergence of planar (large Nc)

maximally supersymmetric Yang-Mills theory in D ¼ 5, which occurs at six loops. We show that the

coefficient is nonvanishing. Furthermore, the numerical value of the divergence falls very close to an

approximate exponential formula based on the coefficients of the divergences through five loops. This

formula predicts the approximate values of the ultraviolet divergence at loop orders L > 6 in the critical

dimension D ¼ 4þ 6=L. To obtain the six-loop divergence we first construct the planar six-loop four-

point amplitude integrand using generalized unitarity. The ultraviolet divergence follows from a set of

vacuum integrals, which are obtained by expanding the integrand in the external momenta. The vacuum

integrals are integrated via sector decomposition, using a modified version of the FIESTA program.
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I. INTRODUCTION

Recent years have seen impressive progress in comput-
ing scattering amplitudes in general gauge and gravity
theories (see, for example, the recent reviews [1]). The
progress has been especially great for maximally super-
symmetric Yang-Mills theory (MSYM), a theory with 16
supercharges whoseD ¼ 4 version isN ¼ 4 super-Yang-
Mills theory. One application has been to study the ultra-
violet (UV) properties of both gauge and gravity theories.
The all-loop ultraviolet finiteness of N ¼ 4 super-Yang-
Mills theory in D ¼ 4 was established in the 1980s [2]. In
dimensions D> 4, explicit unitarity-based amplitude
computations in MSYM in the 1990s [3,4] showed that
its degree of convergence was a bit better than had been
anticipated. The results suggested that the correct finite-
ness bound for MSYM in D dimensions at L loops is

D< 4þ 6

L
ðL � 2Þ: (1.1)

This bound is consistent with all-loop ultraviolet finiteness
in D ¼ 4. It corresponds to a counterterm of the form
D2F4, where F stands for the Yang-Mills field strength

andD for a gauge covariant derivative. The bound (1.1) has
been confirmed to all loop orders [5] using harmonic
superspace [6]. The case L ¼ 1 is an exception; at one
loop the first divergence is in D ¼ 8, not D ¼ 10 [7].
Interestingly, maximal N ¼ 8 supergravity follows pre-
cisely the same finiteness bound, at least through four loops
[8–10].
An important remaining question is whether the bound is

saturated or not, that is, whether the coefficient of the
potential logarithmic divergence in the critical dimension
D ¼ 4þ 6=L is nonzero or not, for each loop order. On the
one hand, if the theory contains some unknown or hidden
symmetry, then the coefficient in D ¼ 4þ 6=L could van-
ish, leading to a higher critical dimension than expected at
some loop order. That is, at a loop order affected by the
symmetry, the lowest dimension with an ultraviolet diver-
gence would be surprisingly high. On the other hand, if the
bound is saturated, it proves that no additional hidden
symmetries exist that alter the degree of divergence—at
least through the loop orders explored.
The only known reliable means for answering such a

question is to explicitly evaluate the ultraviolet divergence
of an appropriate on-shell multiloop scattering amplitude
in the expected critical dimension. Such a computation can
be performed either within the large-Nc, or planar, limit of
the theory with gauge group SUðNcÞ, or for a general gauge
group including all subleading terms in the 1=Nc expan-
sion. We know from these computations [4,8,9,11–13] that
the bound (1.1) is indeed saturated through at least five
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loops. Interestingly, certain subleading-in-Nc terms (e.g.,
double-trace terms) do have an improved behavior at three
loops and beyond [10,11,14]. In this paper, we will only
consider the leading-color (planar) terms.

If the bound (1.1) is saturated, then Eq. (1.1) implies that
in D ¼ 5 a divergence should first appear at six loops. A
primary purpose of this paper is to compute the coefficient
of this divergence. The case of D ¼ 5 is especially inter-
esting because this theory has a UV completion, the (2,0)
theory in D ¼ 6. The (2,0) theory has no Lagrangian
description; rather, its existence follows from arguments
in string theory and M theory [15]. This connection sug-
gests that UV divergences in D ¼ 5 could give us infor-
mation about the (2,0) theory [16]. Of course, a low-energy
effective theory usually has UV divergences, and by itself
this connection does not lead to constraints. However, the
present example is somewhat unique in that the (2,0)
theory has neither a dimensionless coupling constant nor
a preferred scale, so that seemingly different D ¼ 5 quan-
tities turn out to be related nonperturbatively. For example,
the Kaluza-Klein modes in D ¼ 5, arising from the com-
pactification of the (2,0) theory on a circle, can also
be identified with solitons in the gauge theory [16–18]
(solutions corresponding to instantons in D ¼ 4).

In Ref. [16] these aspects were discussed in the context
of S-duality of theD ¼ 4N ¼ 4 super-Yang-Mills theory
obtained by compactification ofD ¼ 5MSYM on a circle,
which can also be thought of as compactification of the
(2,0) theory on a two-torus. In this construction S-duality
has a geometric origin as an exchange of the two sides of
the torus. This argument can be reexpressed in D ¼ 5
terms, and UV divergences in D ¼ 5 can potentially vio-
late theD ¼ 4 S-duality. An alternative argument suggest-
ing finiteness [18] is based on the soliton-Kaluza-Klein
correspondence for the compactified (2,0) theory in the
phase where the gauge symmetry is broken by separating
the multiple branes used in its construction. Although these
arguments do not prove that there are no UV divergences,
they do motivate the question. In the present paper we
definitively answer the question, by computing the numeri-
cal coefficient of the potential divergence in planar MSYM
at six loops.

We find that the bound (1.1) is indeed saturated for L ¼
6 and D ¼ 5; that is, the divergence has a nonzero coeffi-
cient. Somewhat surprisingly, we also find that, through at
least six loops, the numerical values of the leading-color
planar critical-dimension divergences can be fit accurately
to a simple exponential Ansatz. Although we do not under-
stand the origin of this simple functional form, it does have
useful consequences: It gives us additional confidence that
we have correctly computed the six-loop divergence and
that it is nonzero. Moreover, by extrapolating to higher-
loop orders it allows us to predict the approximate numeri-
cal values of the divergences for L � 7 in their critical
dimensions. This result suggests that even outside of four

dimensions, MSYM has a surprisingly simple structure,
reflected in the simple pattern of ultraviolet divergences.
Until recently, a direct evaluation of the six-loop ultra-

violet properties of MSYM would have been out of reach.
However, a combination of advances has made it possible.
Many breakthroughs in understanding the structure of
integrands for multiloop amplitudes now allow for a rather
straightforward construction of the integrand for the six-
loop four-point amplitude in planar MSYM [1]. In addition
to the integrand construction presented here, two recent
papers give the same integrands in D ¼ 4 [19,20], albeit
presented somewhat differently. Our construction is also
valid for loop momenta spanning the full five dimensions.
Well-developed techniques for extracting UV divergences
from amplitudes [8,13,21,22] then allow us to express the
six-loop divergence in terms of a relatively small number
of vacuum integrals. Furthermore, a set of integral consis-
tency relations [23], related to integration by parts identi-
ties [24], allows us to reduce the number of integrals
further. It also provides for nontrivial cross-checks on
numerical evaluations of the integrals and an independent
means for estimating numerical integration uncertainty.
The final integrals obtained, after imposing the consis-

tency relations, are nevertheless quite challenging to
evaluate analytically. Instead, we make use of the major
advances in numerical integration techniques. A long-
standing challenge of numerically evaluating Euclidean
Feynman integrals has been addressed by a computational
technique called sector decomposition [25], implemented
in several software packages [26–28] including the FIESTA

package [29] used here. To our knowledge, the sector
decomposition technique has not previously been applied
at such a high loop order. However, when applied to this
problem it leads successfully to integrals that can be eval-
uated on a moderate size (1000 node) cluster in a few days.
The remainder of this paper is organized as follows.

In Sec. II we outline the derivation of the integrand.
Section III describes the procedure for extracting the UV
divergence from the amplitude in terms of a set of vacuum
integrals. Section IV explains the sector decomposition
method, and Sec. V describes details of the numerical
evaluation. In Sec. VI we give our conclusions and com-
ment on the feasibility of evaluating the seven-loop inte-
grals that might be required to check whether the
coefficient of the first potential counterterm of N ¼ 8
supergravity vanishes.

II. CONSTRUCTING THE INTEGRAND

Our study of the UV properties of the planar MSYM
amplitude inD ¼ 5 begins by constructing the integrand of
the six-loop four-point amplitude. Because we need the
integrand in five dimensions, we must ensure that our
construction is valid for loop momenta inhabiting five
spacetime dimensions. (We can always take the external
momenta to be four dimensional and assign helicities to the
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external gluons if desired.) The five-dimensional validity
of the integrand is accomplished by verifying unitarity cuts
in higher dimensions, which we have done on a large class
of cuts. In addition, to extract the UV divergences, we
prefer a local form for the integrand, in which the only
denominator factors are standard Feynman propagators. To
find the desired representation, we use generalized unitar-
ity, a particularly effective general purpose refinement of
the unitarity method [30]. (For recent reviews of this
method see Refs. [1].) Our form for the integrand differs

somewhat from recent ones based on four-dimensional
constructions [19,20]. However, we have confirmed ana-
lytic agreement in any dimension with the form in Ref. [20]
(which is also known to agree with that in Ref. [19]).
We will focus on the leading-color, planar contribution

to the six-loop amplitude in SUðNcÞ gauge theory, which
has the same color structure as the tree amplitude, up to
overall factors of the number of colors, Nc. The color-
decomposed form of the planar contribution to the L-loop
four-point amplitude is

AðLÞ
4 ¼ g2½g2Nc�L

X
�2S3

TrðTa�ð1ÞTa�ð2ÞTa�ð3ÞTa�ð4Þ ÞAðLÞ
4 ð�ð1Þ; �ð2Þ; �ð3Þ; �ð4ÞÞ; (2.1)

where AðLÞ
4 is an L-loop color-ordered partial amplitude.

The sum runs over noncyclic permutations, �, of the
external legs. In this expression we have suppressed mo-
mentum and helicity labels, leaving only the indices iden-
tifying the external legs. This decomposition holds for any
set of external particles from the full gauge supermultiplet.

We will not describe our construction of the six-loop
amplitude in any detail; it is similar to the construction
of the five-loop planar amplitude given in Ref. [12].
Integrands of planar amplitudes in MSYM are relatively

simple to obtain because dual conformal symmetry se-
verely restricts their form [12,31–34]. Although dimen-
sional regularization breaks dual conformal invariance, it
does so mildly at the level of the integrand. Indeed, the
integrands of loop amplitudes in planar MSYM are known
to have the same simple properties under dual conformal
transformation in dimensions D � 6 (and likely in all
dimensions D � 10) as they have in four dimensions
[35–37]. The only breaking of dual conformal invariance
comes from the integration measure. This allows us to use

FIG. 1. Graphs 1 through 35 for the planar six-loop four-point amplitude.
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dual conformal symmetry to guide the construction of the
integrand, even outside of four dimensions.

We write the Ansatz for the six-loop planar amplitude as

Að6Þ
4 ð1; 2; 3; 4Þ ¼ i6stAtree

4 ð1; 2; 3; 4Þ
Z Y10

l¼5

dDpl

ð2�ÞD I ; (2.2)

where Atree
4 ð1; 2; 3; 4Þ is the color-ordered tree amplitude

and the Mandelstam invariants are s ¼ ðk1 þ k2Þ2 and
t ¼ ðk2 þ k3Þ2. For bookkeeping purposes we organize
the integrand in terms of graphs with only cubic vertices.
We incorporate any contact (four-point) interactions by
including numerator terms that can potentially cancel
propagators. Thus there is no loss of generality in using
cubic graphs. We decompose the integrand I as

I ¼ X
D4

X68
i¼1

Ii
Si

¼ X
D4

X68
i¼1

1

Si

NiQ
23
�i¼5 p

2
�i

: (2.3)

The sum runs over a set of distinct planar cubic graphs,
which contribute in all eight possible arrangements gen-
erated by the dihedral group D4 (corresponding to symme-
tries of a square with corners labeled by the four external
momenta). The dimension of the symmetry group leaving

each diagram invariant is Si. At six loops, there are 68
nonvanishing topologically distinct graphs, shown in
Figs. 1 and 2. The product in the denominator of
Eq. (2.3) runs over the 19 internal Feynman propagators
of each labeled graph. The numerators Ni of each integral
are polynomials,

Ni ¼
X
j

aijMij; (2.4)

where the monomials Mij depend only on Lorentz invari-

ants constructed from the dual (loop) momenta for each
diagram, and the aij are numerical coefficients (rational

numbers) to be determined from various constraints.
As a first step, we require the monomials to have the

proper weight under dual conformal transformations. To
expose the dual conformal properties we use the standard
[31] dual variables xi � xj ¼ xij, with

x41 ¼ k1; x12 ¼ k2; x23 ¼ k3; x34 ¼ k4; (2.5)

where ki are the external momenta. As discussed in detail
in Ref. [12], a practical way of expressing the internal
momenta of a diagram in terms of dual variables is to
use an (Lþ 1)-particle cut, which divides the L-loop am-
plitude into two tree amplitudes connected by (Lþ 1) cut

FIG. 2. Graphs 36 through 68 for the planar six-loop four-point amplitude.
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legs. At six loops, we consider a seven-particle cut in the
s ¼ ðk1 þ k2Þ2 channel. The seven cut legs carry momenta
p5; p6; . . . ; p11. The six dual loop momenta x5; x6; . . . ; x10
are then defined by

x45 ¼ p5; x56 ¼ p6; x67 ¼ p7;

x78 ¼ p8; x89 ¼ p9; x9;10 ¼ p10:
(2.6)

The key dual conformal properties follow from the
behavior of the integrand under coordinate inversion,
which maps

x�i ! x
�
i

x2i
; x2ij !

x2ij

x2i x
2
j

: (2.7)

In four dimensions, dual conformal invariance requires that
each term in the integrand scales as [31]

Ii !
�Y4
j¼1

x2j

��Y10
l¼5

ðx2l Þ4
�
Ii: (2.8)

The integrands of planar MSYM in D dimensions have
been shown to transform in exactly the same fashion to all
loop orders, at least for D � 6 [36,37]. This property is
sufficient for our purposes, since we are mainly interested
in the integrand in D ¼ 5.

The (Lþ 1)-particle cuts can also be used to generate
the complete list of graphs needed at six loops. One
considers all possible sewings of two tree-level cubic
graphs that appear in these cuts [12]. (We modify the
procedure slightly compared to Ref. [12] by including
only diagrams with cubic vertices.) In principle, there are
dual conformal graphs with four- or higher-point vertices
that are not generated by the product of tree graphs of the

(Lþ 1)-particle cuts; however, all such potential contri-
butions, including those not detectable in the (Lþ 1)-
particle cuts, can be assigned to graphs with only cubic
vertices by multiplying and dividing by appropriate
propagators. The construction of the potential numerators
of each graph is then accomplished conveniently using
the dual-graph representation, which exposes the dual
conformal properties more simply.
Given a dual graph in the sewing, we construct the

possible monomials Mij as products of dual-momentum

invariants x2ij. We keep only those Mij terms with the dual

conformal scaling dictated by Eq. (2.8). To determine
the rational-number coefficients aij we use generalized

unitarity. A large number of coefficients are easy to identify,
essentially by inspection, because the corresponding
unitarity cuts are so simple. In particular, contributions
with either a two-particle cut or a box subdiagram can be
written down immediately, following the discussion in
Refs. [3,11].
In addition, many of the coefficients aij vanish. All but

one of the vanishings can be identified using the observa-
tion of Ref. [33] that when the external momenta are
taken off shell the integrals must be infrared finite in four
dimensions. The sole integral with a vanishing coefficient
which cannot be identified in this way is the integral
displayed in Fig. 12 of Ref. [12]. It consists of two identical
three-loop three-point integrals, containing only box sub-
diagrams, and connected to each other by one common
external leg.
The unitarity cuts include a sum over states in the

supermultiplet for each cut leg. For generic cuts, the state
sums are straightforward to implement numerically in
four or six dimensions [36,38,39]. We have evaluated all
four-dimensional cuts that decompose the amplitude into a
sum of products of three-, four- or five-point amplitudes, as
well as a variety of cuts involving six-point amplitudes.
These cuts suffice to uniquely determine all the aij. The

two-particle cut [3] and ‘‘box cut’’ [11] are valid in D
dimensions; hence all contributions to the integrand that
are visible in such cuts are valid in any number of dimen-
sions. In addition, a rather nontrivial cut of our expression,
shown in Fig. 3, was computed previously [36] using the
six-dimensional spinor-helicity formalism of Ref. [40] and

FIG. 3. The six-loop cut evaluated in D ¼ 6 in Ref. [36].

FIG. 4. A few sample graphs with labels corresponding to the labels in Eqs. (2.9) and (2.10) and in the Supplemental Material [43].
The external momenta are outgoing.
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superspace of Ref. [41]. Thus this cut is valid for D � 6.
This provides a highly nontrivial confirmation that the
integrands are valid in D ¼ 5.

We have performed a variety of consistency checks on
the integrand. The unitarity cuts offer highly nontrivial
self-consistency checks, because the same monomial Mij

can be visible in multiple cuts. As already mentioned we
compared our integrand result against that of Ref. [20]. As

a further nontrivial check we confirmed that the unphysical
singularities described in Ref. [42] all cancel.
Some of the numeratorsNi are quite simple. For example,

for the graphs labeled (1) and (2) in Fig. 4, they are just

N1 ¼ s5; N2 ¼ s4ðp22 � k3Þ2: (2.9)

Other numerators are more complex. For example, the
numerator of graph (62) with the labels in Fig. 4 is

N62 ¼ 1

2
stp2

5p
4
9 þ tðk1 þ p21Þ2ðk2 � p18Þ2p2

9p
2
17 � tp2

17p
2
20ðk1 þ p21Þ2ðk3 þ p13Þ2 � sp2

5p
2
9ðk1 þ p17Þ2ðk3 þ p23Þ2

� sp2
17p

2
20ðk1 þ p17Þ2ðk3 þ p23Þ2 � stp2

9ðk1 þ p21Þ2ðp20 � p9Þ2 þ tðk1 þ p21Þ4ðk3 þ p13Þ2ðp20 � p9Þ2
þ sðk1 þ p17Þ2ðk1 þ p21Þ2ðk3 þ p23Þ2ðp20 � p9Þ2: (2.10)

In these expressions we have chosen labels that line up
with the ones in the Supplemental Material [43]. The
symmetry factors of these graphs are S1 ¼ 4, S2 ¼ 2 and
S62 ¼ 1. The complete sets of diagrams, numerators Ni,
and symmetry factors Si are included in the Supplementary
Material [43].

III. FROM THE AMPLITUDE
TO VACUUM DIAGRAMS

Because the UV divergences arise from integration
regions in which the loop momenta are parametrically
much larger than the external momenta, extracting the UV
divergences is a much simpler task than integrating the
complete amplitude. We follow the same strategy as in our
previous papers [8–10,23], based on Taylor expanding the
integrands in small external momenta and then integrating
the resulting vacuum integrals [21,22]. The present case is
relatively straightforward to analyze in the sense that the six-
loop amplitude contains no subdivergences in D ¼ 5, and
because the expected overall divergence is manifestly loga-
rithmic. However, the high loop order makes the loop
integration for the vacuum integrals highly nontrivial.

A. Obtaining the vacuum diagrams

We consider the individual integrands Ii appearing in
Eq. (2.3) in the limit of small external momenta kj, j ¼ 1,

2, 3, 4. We let kj ! "kj, and then expand in the small

parameter ", keeping only the leading order. This reduces
each Ii to a sum over six distinct vacuum integrands,

Iið"kj;plÞ!"2
X

x2fa;b;c;d;e;fg
ðsAi;xþ tBi;xÞV ðxÞðplÞþOð"3Þ;

(3.1)

where Ai;x and Bi;x are rational numbers determined by the

expansion. (We will not list these coefficients separately

for each diagram.) After the above vacuum integrandsV ðxÞ
are integrated over the six loop momenta p5; p6; . . . ; p10 in
D ¼ 5� 2�, with the measure

Z Y10
l¼5

d5�2�pl

ð2�Þ5 ; (3.2)

we obtain six vacuum integrals, VðaÞ; VðbÞ; . . . ; VðfÞ, shown
in Fig. 5. These integrals have numerator factors which are
indicated to the left of each graph, and either one or two
doubled propagators, whose location is indicated by a dot.

The integrals VðxÞ contain no subdivergences; each integral
has a single overall UV divergence in D ¼ 5 when all

FIG. 5 (color online). The six distinct vacuum diagrams that
appear in Eqs. (3.3) and (3.4). Each dot indicates that the
corresponding propagator should be squared (doubled) in the
integrand. The five ‘‘tensor’’ integrals have numerator factors
that are indicated by the prefactors. The numerator factors are
built from momentum invariants involving a subset of the loop
momenta, labeled by l1, l2, l3, l4.
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six loop momenta become large. Hence the integrals have
only simple poles in �.

Collecting the contributions from the 68 distinct inte-
grals in the six-loop amplitude (2.2), we obtain the follow-
ing UV divergence:

Að6Þ
4 jD¼5;div ¼ 6stuAtree

4 ð1; 2; 3; 4ÞðVðaÞ þ VðbÞ þ 2VðcÞ

þ 4VðdÞ þ 2VðeÞ � 2VðfÞÞ; (3.3)

where u ¼ ðk1 þ k3Þ2. This simple expression for the
divergence appears to be nonzero at first glance.

However, we should expect that these six integrals are
not independent, so there may be cancellations among
them. While all six integrals are positive definite after

Wick rotation, VðfÞ enters with a coefficient of the opposite
sign from the others. Thus no conclusion can be reached as
to whether this expression vanishes or not without a careful
analysis.
We begin the analysis by collecting all integrals under

one common integration. By multiplying and dividing by
propagators, all contributions can be brought to the form
of the single vacuum graph displayed in Fig. 6. Then by
appropriately relabeling each term from the original pi

to another set of loop momenta, all contributions can be
rearranged to differ in only a single one-loop subintegral,
indicated by the shaded region in Fig. 6. The momenta
l1, l2, l3, l4 are carried by the indicated one-loop subinteg-
ral. The momenta m1, m2, m3, m4 are the four momenta
external to the one-loop box subintegral. In addition, we
need two other independent loop momenta, which we take
to be q1 and q2, as indicated in Fig. 6. Of these momenta,
we take l1, m2, m3, m4, q1, q2 to be the six independent
ones. In order to make the analysis easier, we may symme-
trize the contributions over the automorphisms of the
vacuum integral.
After appropriate relabelings, we can express the sum

over all vacuum integrals as a single integral,

V � VðaÞ þ VðbÞ þ 2VðcÞ þ 4VðdÞ þ 2VðeÞ � 2VðfÞ

¼
Z d5�2�l1

ð2�Þ5
d5�2�m1

ð2�Þ5
d5�2�m2

ð2�Þ5
d5�2�m3

ð2�Þ5
d5�2�q1
ð2�Þ5

d5�2�q2
ð2�Þ5

Nvac

l21l
2
2l

2
3l

2
4m

2
1m

2
2m

2
3m

2
4

� 1

q21q
2
2ðq1 þ q2Þ2ðq1 �m4Þ2ðq1 �m4 �m1Þ2ðq2 �m2 �m3Þ2ðq2 �m3Þ2

; (3.4)

where � is the dimensional-regularization parameter and the vacuum ‘‘numerator’’ is

Nvac ¼ ðl1 þ l3Þ2
�ðl1 þ l3Þ2

l21l
2
3

þ ðl2 þ l4Þ2
l22l

2
4

þ ðl2 þ l4Þ2
�

1

m2
1m

2
2

þ 1

m2
3m

2
4

�
þ

�
l21

l24m
2
1

þ l21
l22m

2
2

þ l23
l22m

2
3

þ l23
l24m

2
4

�

þ 1

2

�
l24

l21m
2
1

þ l24
l23m

2
4

þ l22
l21m

2
2

þ l22
l23m

2
3

��
�

�
l21
l23
þ l23

l21

�
; (3.5)

using the momentum labels in Fig. 6; that is, l2 ¼ l1 �m2,
l3 ¼ m2 þm3 � l1, l4 ¼ �m1 � l1 and m4 ¼ �m1 �
m2 �m3. By a slight abuse of convention, we call this a
numerator even though it is nonlocal. The numerator de-
pends only on the momenta internal and external to the
one-loop box subdiagram indicated by the shaded region in
Fig. 6.

Because of the minus sign in the last term—corresponding

to�2VðfÞ in Eq. (3.3)—it is easy to see that this integrand is

not positive definite, even after Wick rotation. For ex-

ample, for l1 ¼ �l3 all terms but the last one vanish,

making the integrand negative; and in the region where

m2
4 (which is positive) is much smaller than all other

momentum invariants, the terms with 1=m2
4 factors will

dominate, making the integrand positive. Thus, even after
combining all contributions into a single integrand, there
does not appear to be a simple way to determine the
positivity, or vanishing, of the integral.

B. Simplifying the vacuum integrals
via consistency relations

To simplify the expression further we need to identify
relations between the different vacuum integrals. The inte-
gral identities that we need are related to integration-by-parts

FIG. 6. The canonical vacuum integral. All contributions can
be expressed in terms of this diagram. The differences between
each contribution can be assigned to the one-loop subintegral
indicated by the shaded region.
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identities [24], although they are only valid for the leading
1=� UV pole in the critical dimension, D ¼ 5� 2�. These
consistency relations [11] are obtained by demanding
that different loop-momentum parametrizations of the
integrals lead to the same final results. Using these rela-
tions we can both simplify the UV divergence and give
important cross-checks of the numerical evaluation. The
latter use is particularly important, because the relations
give independent estimates of the numerical uncertainties.
The integral consistency relations also offer a potential
path to finding a positive-definite expression for the
divergence.

We now sketch a derivation of the consistency relations.
For each of the 68 graphs describing the amplitude, we
have simple relations from the shift invariance of the
integrals,

0 ¼ @

@q�m

Z Y6
l¼1

dDpl

ð2�ÞD Ii½ ~Ni�ðkj; pl þ qlÞ; (3.6)

for each qm 2 fq1; . . . ; q6g, and Ii, for i ¼ 1; . . . ; 68, are
the integrands of the distinct graphs. The ~Ni are general
numerator polynomials in the momentum invariants of
the graphs. These polynomials are chosen to generate
useful identities and are not the numerators Ni of the
amplitude. A judicious choice of a large set of ~Ni will
lead to a large set of linear relations for various vacuum
integrals, which will include (but will not be limited to) the

desired integrals VðxÞ. Below we describe such a judicious
choice of numerators.

The identity (3.6) follows because the ql momentum
dependence of the integrands is completely removed by a
change of variables in the measure of Eq. (3.6). In fact,
Eq. (3.6) is simply a statement that the integrals are repar-
ametrization invariant under constant shifts.

Next we expand the integrands in small external mo-
menta, kj ! "kj, with " a small parameter. In doing so, it

is convenient to treat the integrands as belonging to equiva-
lence classes controlled by the reparametrization freedom,

Ii½ ~Ni�ð"kj; pl þ qlÞ � Ii½ ~Ni�ð"kj; plÞ: (3.7)

Expanding the two sides of Eq. (3.7) in " would not yield
any nontrivial equations, only trivial reparametrization
relations for vacuum integrals. However by combining
the reparametrization freedom and the small momentum
expansion, that is, by letting ql ¼ "

P
jcljkj, we get non-

trivial relations between different vacuum integrals,

Ii½ ~Ni�
�
"kj; pl þ "

X
j

cljkj

�
� Ii½ ~Ni�ð"kj; plÞ; (3.8)

where clj is an arbitrary integer-valued 6� 3 matrix, and

where different choices will generate different relations
between vacuum integrals. The expansions in " of the
two different integrands will differ considerably. But by
the reparametrization freedom, the two sides must be

equivalent as integrands, or equal after integration.
Therefore the various vacuum integrals that arise from
integrating the coefficients of each element of clj in

Eq. (3.8) must satisfy nontrivial consistency relations.
It is important to make judicious choices for the integral

numerators ~Ni used to generate useful consistency rela-
tions. For example, using the original Ni appearing in the
integrand of the amplitude is not a good choice, because
their divergences are manifestly logarithmic inD¼5�2�.
The UV divergence of a logarithmically divergent integral
is given by the leading term in ". This term is always
insensitive to the shift in the loop momenta ql, and so the
available consistency relations become trivial. The first
nontrivial relations are obtained using numerators ~Ni con-
taining one additional power of a loop momentum, which
give linearly divergent integrals in D ¼ 5� 2�. The rele-
vant vacuum integral relations are obtained from the next-
to-leading term in ", which will differ on both sides of
Eq. (3.7). Numerators ~Ni that give rise to quadratic diver-
gences are also useful for extracting integral relations.
However, numerators with an even higher degree are less
helpful, since after taking derivatives with respect to " they
give rise to vacuum diagrams with three or more doubled
propagators. These are outside the class of integrals that we
are interested in; the vacuum diagrams in Fig. 5 have at
most two doubled propagators.
Furthermore, one should not choose ~Ni that give rise to

subdivergences in D ¼ 5� 2�, because then the consis-
tency relations may be contaminated by relations that
are only valid for overlapping leading 1=�n UV poles
with n > 1. Specifically, for integration in D ¼ 5� 2�
dimensions, UV subdivergences are possible in principle
for two- and four-loop subdiagrams. Any ~Ni generating
such a subdivergence should be eliminated from the set of
choices, because it will not produce any useful identities.
Generating a sufficient set of consistency relations then

comes down to varying the ~Ni polynomials for an appro-
priately large function space, without exceeding available
computational resources. This includes varying the matrix
clj that controls the reparametrization of the integrand, and

then, as explained, expanding the integrals in small exter-
nal momenta and demanding that the expansion is consis-
tent for different choices of clj.

After generating about 1000 independent consistency
relations, we found a much simpler three-term expression
for the UV divergence of the planar six-loop four-point
amplitude. We then generated an additional 7000 consis-
tency relations, and no further improvement was found.
Thus a search for identities beyond the ones we found
would probably be unfruitful, though we have not proven
that they do not exist.
Using the derived consistency relations, the five tensor

integrals VðaÞ; . . . ; VðeÞ can be reduced into eight scalar
integrals with no loop momentum in the numerator, plus
one relatively simple integral with only two powers of loop

ZVI BERN et al. PHYSICAL REVIEW D 87, 025018 (2013)

025018-8



momenta in the numerator. One of the scalar integrals is

VðfÞ from Fig. 5. The eight new integrals are shown in
Figs. 7 and 8. The most useful of the derived consistency
relations are

VðaÞ ¼ 2VðfÞ þ 2VðgÞ � 4VðiÞ þ 2VðkÞ � 2VðlÞ;

VðbÞ ¼ VðfÞ þ 3VðgÞ � 4VðiÞ þ 2VðkÞ � 2VðlÞ;

VðcÞ ¼ 7

2
VðfÞ � 1

2
VðhÞ þ VðjÞ � 2VðmÞ þ VðnÞ;

VðdÞ ¼ 1

2
VðfÞ þ 2VðiÞ � VðkÞ þ VðlÞ;

VðeÞ ¼ �VðjÞ þ 2VðmÞ � VðnÞ:

(3.9)

After applying the integral identities (3.9) to Eq. (3.3), we
obtain the following simplified form for the UV divergence,

Að6Þ
4 jD¼5;div ¼ 6stuAtree

4 ð1; 2; 3; 4Þð10VðfÞ þ 5VðgÞ � VðhÞÞ:
(3.10)

Unfortunately, the coefficient of vacuum integral VðhÞ has a
relative negative sign, so this simplified form is also not
positive definite. One may wonder if there exists a different

choice of basis of vacuum integrals that allows the diver-
gence to be expressed in a positive-definite form. While
this possibility cannot be excluded by our analysis, we
have not found such a representation, and it is quite likely
that Eq. (3.10) is the simplest integral basis decomposition.
In addition to the needed relations, and as a cross-check

of the numerical evaluation in Sec. V, we offer one very
simple integral identity between three scalar integrals

VðoÞ ¼ 1

2
VðfÞ þ VðiÞ; (3.11)

where VðoÞ is shown in Fig. 9.

IV. REVIEW OF SECTOR DECOMPOSITION

Given that even the simplified form (3.10) still leaves
open the question of whether the amplitude diverges in
D ¼ 5, and because analytic techniques are not yet power-
ful enough to cope with generic six-loop integrals, we have
resorted to a numerical evaluation of the relevant vacuum
integrals using the method of sector decomposition. In this
section we review this method, focusing on the salient
features needed in our calculation.
If the amplitude under consideration is UV divergent,

numerical evaluation with even a modest (say 5%) accu-
racy will suffice to prove it beyond any doubt. Indeed,
here we shall provide such a numerical proof for MSYM
in D ¼ 5, settling the question of the potential finiteness
of this theory. Even had it turned out finite, numerical
analysis can provide important evidence in favor of this
hypothesis. We are interested in the leading-logarithmic
divergence of an integral with no subdivergences. After
Feynman parametrization of the 15 propagators and inte-
grating over the loop momentum, the overall divergence
appears as a coefficient of a convergent 14-dimensional
parametric integral. Equation (3.3) or (3.10) is fairly simple
and it might seem to be an easy job to estimate it by
Monte Carlo methods. If we estimate the integral as an
average over N uniformly distributed samples, we might
imagine that the statistical uncertainty of such an estimate

would be �=
ffiffiffiffi
N

p
, where � is the standard deviation of

the integrand [�2 � R
dDxðfðxÞ � �fÞ2 with �f the average

value]. An accuracy of 1% would seem easily attainable.

FIG. 7 (color online). Two simpler vacuum integrals that
appear in the UV divergence after using integral identities.
The third integral that enters the divergence is Fig. 5(f).

FIG. 8 (color online). Six scalar vacuum integrals that appear
at intermediate steps in integral identities that yield a simplified
UV divergence.

FIG. 9 (color online). An extra scalar diagram used for check-
ing integral identities.
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However, the situation is more complex. The problem is
that Feynman integrals in general, including Eqs. (3.4) and
(3.10), are not sufficiently convergent because of endpoint
singularities. UV divergences in themselves are not a major
problem, and are usually dealt with by subtracting a sim-
pler integrand with the same divergent behavior. In the case
at hand, even this is not necessary because the coefficient
of the divergence is given by an (absolutely) convergent
integral. However, the square of this integrand is not inte-
grable. Because of this, the variance �2 will diverge, and
Monte Carlo estimation with the uniform measure has
uncontrolled errors. In practice, it does not work.

A. Sector decomposition overview

A straightforward way to deal with this problem is to
carry out Monte Carlo integration with a sampling measure
designed to overcome this problem. Let d�ðxÞ be the
sampling measure. Then we rewrite

I ¼
Z

dDxfðxÞ

¼
Z

d�ðxÞ
��������det

dD�ðxÞ
dDx

��������
�1

fðxÞ

�
Z

d�ðxÞFðxÞ; (4.1)

where FðxÞ combines the original function fðxÞ with a
change of measure factor. A particular case would be to
take a new set of variables y functionally related to x, and
d� to be uniform measure dDy, in which case this factor
would be the Jacobian for the change of variables. The
error estimate for a Monte Carlo integral with this sam-

pling measure is �F=
ffiffiffiffi
N

p
where �F is the new standard

deviation,

�2
F ¼

Z
d�ðxÞðFðxÞ � �FÞ2; (4.2)

where �F is the average value of F. By reducing the vari-
ance, one can improve the accuracy of the Monte Carlo. In
principle one could change variables to absorb all of the
variation of fðxÞ into the measure to make FðxÞ constant, in
which case the exact result would be obtained from a single
sample. Of course, in practice such a change of variables
would be prohibitively difficult.

For an integrand with powerlike singularities, such as

Z
dxx��1ð1þ fðxÞÞ; (4.3)

we could use the change of variables y ¼ x�=�, which
absorbs the singularity into the measure and does not
complicate the integrand much. The problem with apply-
ing this to a multi-dimensional Feynman integrand is that
it has many different powerlike singularities, arising from
the many orders in which one can take the different
parameters xi to zero.

The solution is to decompose the integration region into
subregions or ‘‘sectors,’’ each of which has at most one
singular behavior of this type. If we can do this, we can
apply the change of variable Eq. (4.3), or its multivariate
generalization, to regularize the integral in each sector.
While this approach was long used in formal proofs of
perturbative renormalizability [44–46], it seems to have
first been used in numerical integration by Binoth and
Heinrich [25]. Since then it has been implemented in
several computer packages for numerically evaluating
Feynman diagrams, starting with Bogner and Weinzierl
[26] and including Refs. [27–29]. Let us explain the basic
ideas, leaving the details specific to our computation to
Sec. V.
We begin with an elementary example (from Sec. 2 of

Ref. [47]), the two-dimensional integral

I ¼
Z 1

0
dx

Z 1

0
dy

x�y�

xþ ð1� xÞy : (4.4)

The form of the denominator makes the limit x, y ! 0 hard
to control. Although in this simple example we could
change variables to (say) x and w ¼ xþ ð1� xÞy, this
option will not be available for more complicated
integrands.
Rather, we split the integration region into two parts,

region 1 with x � y and region 2 with y � x. In region 1,
we can make the change of variables

x ¼ x0; y ¼ x0t0; (4.5)

turning the integration region into 0 � x0; t0 � 1.
Similarly, in region 2 we take

x ¼ y0t0; y ¼ y0; (4.6)

again turning the integration region into a square. The
integral becomes (suppressing the primes)

I¼
Z 1

0
dx

Z 1

0
dt

x�þ�t�

1þð1� xÞtþ
Z 1

0
dy

Z 1

0
dt

t�y�þ�

1þð1� yÞt :
(4.7)

Now the nature of the singularity is manifest in the leading
monomial terms, because the complicated denominator
goes to 1 in the singular region.
The same idea can be applied to a function of N varia-

bles, call these xi with i 2 ½1; N�. The integration region is
decomposed into N subregions labeled by a 2 ½1; N� and
defined by the inequality

xa � xi; i � a: (4.8)

In the ath sector we redefine

xi ¼ xax
0
i; a � i; (4.9)

to turn the subregion back into a unit cube. This will allow
pulling out an overall singular behavior controlled by
xa. Of course, the resulting integrand might still have a
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complicated singularity in the other variables. This must be
dealt with by iterating the procedure and dividing the
subregion into further subregions. Mathematically, this
operation is called ‘‘blowing up’’ the singularity.

In these subsequent subdivisions, one need not include
all N variables in the blowup; one can instead take a
subset of the variables and apply the same procedure.
These choices might be used to simplify the result, or
might even be needed in order for the procedure to termi-
nate. The hope is that by choosing an appropriate sequence
of these operations, one can find a finite set of subregions,
in each of which the integrand takes a simple form, as in
Eq. (4.7).

This procedure may be familiar to some readers from its
use in algebraic geometry and string compactification, and
the following remarks are addressed to them. In complex
algebraic geometry, one can blow up an arbitrary point p
in an N-dimensional space, replacing it with a CPN�1.
This is done by taking coordinates in which xiðpÞ ¼ 0 and
applying the same changes of variables; the ath subregion
corresponds to the coordinate patch on CPN�1 in which
we can take xa ¼ 0.

Suppose that the integrand is a rational function with
denominator DðxÞ. The singularity is then the set of all
points satisfying DðxÞ ¼ 0. Let us denote this singular set
as �. Since for a Feynman integrand the function DðxÞ is a
polynomial, the set � is by definition an algebraic variety,
meaning the set of solutions of a system of polynomial
equations. In fact it is a hypersurface, since we are setting a
single polynomial to zero. In this context, a natural thing to
try is to blow up the space CN containing �, to a variety
�: X ! CN so that ��1ð�Þ is nonsingular, meaning that it
is defined locally by a single equation f ¼ 0 with @f � 0.
If we can do this, then the singular behavior of the inte-
grand will simply be 1=f (or perhaps some power of this).
By taking f to be a local coordinate, we would accomplish
our goal of realizing the singular behavior in a particularly
simple form.

For present purposes, the main result of this mathemat-
ics is Hironaka’s theorem on resolution of singularities,
which states that any singularity of an algebraic variety
can be resolved (made nonsingular) by a succession of
blowups. Furthermore, there are algorithms for concretely
finding the resolution. Thus, we can use a blowup algo-
rithm to resolve the singular locus �, providing the multi-
parameter generalization of Eq. (4.7).

While in Ref. [26] this idea was used to give blowup
algorithms which are guaranteed to terminate, these algo-
rithms tend to produce a number of subregions which is
exponential in the number of variables—this is perhaps
natural as the number of orderings of N variables is N!.
This number of subregions would be computationally
infeasible for N ¼ 15. Bogner and Weinzierl [26] also
proposed a simpler heuristic algorithm which, while not
guaranteed to terminate, produces a simpler solution when

it does. Another heuristic algorithm was proposed by
Smirnov and Tentyukov [28], which we now describe.

B. Heuristic sector decomposition

We recall from textbooks (e.g., Ref. [48]) that the de-
nominator of the Feynman integrand for a vacuum integral
is the D=2 power of the Kirchoff polynomial of the graph,

U�ðxiÞ ¼
X
T

Y
i=2T

xi; (4.10)

where the sum is taken over the spanning trees T of the
graph �. We are interested in the limiting behavior of U
as combinations of the variables go to zero. This behavior
is encoded in its Newton polytope. Let deg be the degree
of a monomial, considered as a vector in ZN , so that

degxn11 xn22 . . . xnNN � ðn1; n2; . . . ; nNÞ: (4.11)

The Newton polytope ofU is the convex hull of the degrees
of each of its terms; in other words, it is the set of all points
in RN which can be obtained as linear combinations of
these degrees with non-negative coefficients.
We need to desingularize each limit which takes a subset

of the variables to zero. We now assume that U is a
polynomial with no constant term, so that every monomial
in U will go to zero for some such limits. However, many
of the monomials are subleading and do not control any
limit: if a monomialM1 is the product of another monomial
M2 with a monomial of non-negative degree, it is sublead-
ing. In terms of the degrees, this requires

degM1 � degM2 � 0; (4.12)

for every component.
We refer to the points degM1 which do not satisfy

Eq. (4.12) for any degM2 � degM1 as the ‘‘low points’’
of the polytope. If the polytope has a single low point, then
by factoring out the corresponding monomial, one obtains
a polynomial with a nonzero constant term.
If there are multiple low points, we need to do a blowup.

A blowup on a subset S of the variables subdivides the
current sector into jSj sectors. In the ath sector one applies
the change of variables (4.9). This change of variables
operates on the Newton polytope as

v ! vþ eað�S � ea; vÞ; (4.13)

where �S is the vector whose components are 1 for i 2 S
and 0 for i =2 S, and ðv;wÞ ¼ P

iviwi. We will then be able
to factor out a common monomial; in other words, we can
shift the entire polytope in a way that keeps it in the
upper quadrant. If the result includes the origin, we are
done with this sector; otherwise we apply the same proce-
dure recursively.
The next problem is to decide which subset of variables

to involve in the blowup. The goal is to eliminate as many
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low points as possible; however, it is better to leave the
variables which do not contribute to this goal out of the
blowup, in order to maximize the degree of the monomial
that can be factored out. A condition on the subset S which
favors this is to project the polytope onto the subspace VS

spanned by the ei for i 2 S, and require that the low points
of the projected polytope linearly span this subspace. The
heuristic algorithm is simply to choose, from the subsets
satisfying this condition, the subset S that has the largest
value of

P
i2Si.

This heuristic algorithm is too simple to desingularize
general polynomials, including examples that are given in
Ref. [26]. If applied to these examples, it will go into an
infinite loop.1 However, the heuristic algorithm works for
the class of polynomials in Eq. (4.10), that is, scalar vacuum
integrals with no doubled propagators. It also turns out to
work for vacuum diagrams with no IR divergences and
simple numerator factors, including the integrand (3.4).
As observed in Ref. [49], it works because it reproduces
the results of a canonical sector decomposition procedure,
which associates sectors with maximal forests [45,46,50].
While we leave the details for the references, a maximal
forest is a hierarchical decomposition of the graph into a set
of subgraphs satisfying certain conditions [each pair of
subgraphs ð	; 	0Þ must obey one of the relations 	 � 	0,
	0 � 	 or 	 \ 	0 ¼ ; and 	 [ 	0 can be disconnected by
removing a single vertex]. It can be shown that a maximal
forest for a diagram with L loops and E edges contains E
trivial subgraphs (single lines) and L nontrivial subgraphs,
and the associated sector involves L blowups each on dis-
tinct variables.

If the heuristic algorithm is reproducing this decompo-
sition, then since every sector involves a succession of L
blowups on distinct variables, the algorithm is guaranteed
to terminate with at mostN!=ðN � LÞ! sectors. ForN ¼ 15
and L ¼ 6 this is 3603600 which is not much larger than
the actual numbers we obtained. For N ¼ 18 and L ¼ 7 it
is about 1:6� 108.

V. NUMERICAL RESULTS AND
COMPUTATIONAL DETAILS

A. Numerical integration

There are several software packages for carrying out
sector decomposition and subtraction of divergences, and
for integrating the resulting expressions numerically
[27–29]. We used the package FIESTA 2 [29], written in a
combination of Mathematica [51] and Cþþ [52], and
which can take advantage of multiple processors. However,
a six-loop diagram is too complicated to evaluate directly.
For example, the sector decomposition (which is not very
parallelized) takes about a day per primary sector to run in

Mathematica on a modern computer, and produces a total
code for the integrands which takes up hundreds of giga-
bytes. Thus the computation must be split into smaller
parts to make it feasible.
To do so, we only need a small portion of the FIESTA 2

software, and we have extracted this portion and adapted it
to our purpose by hand. We did the sector decomposition
on a small (10 node) cluster, and then performed the
numerical integrations on a large (1000 node) cluster, using
the adaptive quasi-Monte Carlo integrator VEGAS [53].
An important element in FIESTA 2 is the CINTEGRATE

package (see Ref. [29], Appendix F), which accepts a
symbolic algebraic expression of the sort that can be
produced easily by Mathematica, and compiles it into
pseudocode that can be executed efficiently in C. Using
this package, we were able to break down the computation
by having Mathematica produce a file for each sector
containing its integrand, which could be passed to a
VEGAS integration program. The integrals are of course

completely independent, so this step is easy to parallelize.
This approach also allowed us to keep the partial results
for every sector, which helped in debugging and uncer-
tainty analysis. The main cost was the need for 1–2 TB of
disk storage, which is not large these days.
A rough estimate of the total running time can be

obtained by multiplying the number of sectors (about 106

here) by the time to integrate a sector, divided by the
number of nodes. With a regular (low variance) integrand,
the uncertainty as a function of the number N of samples

goes somewhere between N�1=2 for Monte Carlo and N�1

for quasi-Monte Carlo in low dimensions. VEGAS did not
need more than 50000 samples to achieve our requested
relative precision of 10�3 in any sector, and this took
2–3 seconds to do. Thus a million sector integration took
less than an hour on the cluster.
There were a number of reasons that this success was not

guaranteed from the start. Even once we knew that we had
of order 106 sectors, the next possible pitfall was that the
integral might be small due to cancellations between larger
results in individual sectors. The relative uncertainty of
course depends strongly on the relative signs of the inter-
mediate results; in the best case (a single sign) we might
hope to gain a further statistical 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsectors

p
, while in the

worst case the result might be comparable to the largest
statistical uncertainty in a single sector (which could of
course be improved by taking more samples) or even an
uncontrolled systematic uncertainty. In fact, it appears that,
at least in our computations, sector decomposition does lead
to significant systematic uncertainties, as wewill see below.
The actual situation is best judged by looking at the

partial results, which we graph for diagram VðgÞ in Fig. 10.
There are 1224600 sectors, all of which gave positive

contributions. The same is manifestly true for VðfÞ and

VðhÞ (since these integrands were positive), so there is no
problem with cancellations.

1The ‘‘Strategy X’’ of Ref. [26] and ‘‘Strategy S’’ of Ref. [29]
are somewhat more sophisticated and can handle these cases.
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Although a few sectors give anomalously large values,
the largest sector value is only about 40 times the average
sector value, while the largest uncertainty is about
180 times the overall standard deviation. One also sees
that the distribution of sector integrals is roughly exponen-
tial except at the ends. This point is made in a different way
in Fig. 11. In this plot the sectors are listed in decreasing
numerical order, with the graph showing the total contri-
bution of each subset which has an exponentially growing
number of sectors. Because the totals in each subset are
roughly constant, this shows that the sector contributions
decrease exponentially. Thus, while one cannot reduce the
calculation to evaluating a smaller number of dominant
sectors, there is structure which might be exploited to
speed up the computation. For example, if one simply fits
the distribution to an exponential and integrates that, one
gets within 20% of the actual total.

All this seems (at least naively) consistent with the
uncertainties being entirely statistical, in which case it

would be appropriate to add them in quadrature to get

the statistical uncertainty estimate for integral VðgÞ of 6�
10�4%. However, in previous use of sector decomposition,
it has been observed that a purely statistical combination
underestimates the true uncertainty. A more conservative
estimate would be to treat the uncertainties as 100%
correlated—what we will refer to as a ‘‘systematic’’ uncer-
tainty estimate. In this case, we should add the uncertainties

in every sector. For integral VðgÞ, this error is 0.29%.
In Table I, we collect our results for the various vacuum

integrals defined in Sec. III, along with uncertainties that
have been estimated by assuming 100% correlation among
sectors. These results can be used to confirm the consis-
tency relations (3.9); the degree of agreement is in turn a
cross-check of the integration uncertainties.
For example, consider the first equation in Eq. (3.9).

This relation is evaluated to the numerical values

1:3958 ’ 2� 0:7631þ 2� 0:8183� 4� 0:5967

þ 2� 1:1493� 2� 0:8391 ¼ 1:3964; (5.1)

which is certainly acceptable and consistent with the
systematic uncertainty hypothesis. The other consistency
relations in Eq. (3.9) work to a similar accuracy. Thus
the combination of sector decomposition with the VEGAS

adaptive numerical integration appears to introduce sys-
tematic uncertainty, in the sense that the error is correlated
between different sectors. Presumably this has to do with
the modeling of the integrand at the sector boundaries.
Taking the uncertainties as 100% correlated and con-

servatively adding them directly (instead of in quadrature),
the final result for the UV divergence is

FIG. 10 (color online). The sector integrals for diagram VðgÞ, in
order of increasing numerical value. The dark bottom (black)
line gives the sector value, normalized by dividing by the
average sector value. The top light (red) line gives the natural
logarithm of the normalized sector value.

TABLE I. The data used to numerically verify the integral
consistency relations, as a means of assessing uncertainties in
the numerical integration. The columns labeled by ‘‘Value’’ and
‘‘Uncertainty’’ are multiplied by �ð4�Þ15.
Integral Value Uncertainty ðValueÞ=VðhÞ

VðaÞ 1.3958 0.0043 5.05

VðbÞ 1.4522 0.0079 5.26

VðcÞ 1.3346 0.0069 4.83

VðdÞ 1.2643 0.0029 4.58

VðeÞ 1.1935 0.0026 4.32

VðfÞ 0.7631 0.0015 2.76

VðgÞ 0.8183 0.0024 2.96

VðhÞ 0.2762 0.0008 1

VðiÞ 0.5967 0.0012 2.16

VðjÞ 1.1490 0.0020 4.16

VðkÞ 1.1493 0.0019 4.16

VðlÞ 0.8391 0.0015 3.04

VðmÞ 1.8600 0.0028 6.74

VðnÞ 1.3755 0.0022 4.98

VðoÞ 0.9790 0.0017 3.55

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220

0.02

0.04

0.06

0.08

0.10

Total Contribution
Total Contribution from Sectors 2n to 2n 1

FIG. 11 (color online). The total contribution of sectors 2n

through 2nþ1, ranked in order of decreasing numerical value.
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Að6Þ
4 jD¼5;div¼�X�6ð10VðfÞþ5VðgÞ�VðhÞÞ

¼�1

�

X
ð4�Þ156½10�ð0:7631	0:0015Þ

þ5�ð0:8183	0:0024Þ�ð0:2762	0:0008Þ�

¼�1

�

X
ð4�Þ15 ð68:68	0:17Þ; (5.2)

where

X ¼ �stuAtree
4 ð1; 2; 3; 4Þ: (5.3)

It is clear from this result that the coefficient of the UV
divergence is nonzero, well within the integration uncer-
tainty. This proves that MSYM is perturbatively ultraviolet
divergent in D ¼ 5.

B. Extrapolating in loop order

Maximally supersymmetric Yang-Mills four-point
amplitudes have a smooth analytic behavior as a function
of dimension, through at least six loops. As seen from their
explicit forms the only dependence on the space-time
dimension is in the loop momentum integration measure.
Might this property lead somehow to a simple functional
form describing the numerical values of the divergences in
the critical dimensions, as a function of the number of
loops L? To check this hypothesis, we plot the known
values of the divergences in Fig. 12 represented by the
dots. In doing so we extract some simple overall factors,
defining the numerical constant �L by

AðLÞ
4 jD¼4þ6=L;div ¼ 1

�

ð�1ÞL�1X
ð4�Þ2Lþ3

�L; (5.4)

where X is defined in Eq. (5.3).
The L ¼ 1 value is not plotted because it does not obey

the critical dimension bound given in Eq. (1.1), and its
divergence in D ¼ 8 differs kinematically from Eq. (5.4)
by a factor of 1=u:

Að1Þ
4 jD¼8;div ¼ 1

�

X
ð4�Þ4

1

6

1

u
: (5.5)

The values of the divergences in D ¼ 4þ 6=L from two
through five loops have been given previously [4,9,10,13].
Correcting a couple of overall signs, they are

�2 ¼ �

20
; �3 ¼ 1

3
;

�4 ¼ 6

�
512

5
�

�
3

4

�
4 � 2048

105
�

�
3

4

�
3
�

�
1

2

�
�

�
1

4

��
’ 1:553;

�5 ’ 9:537; (5.6)

where the expressions through L ¼ 4 are exact. The L ¼ 5
expression is approximate, but it is accurate to the digits
given.

The linear behavior beyond L ¼ 2 in the upper panel
of Fig. 12 makes it clear that the coefficients of the diver-
gences have an approximately exponential behavior. This
observation motivates a simple Ansatz for the approximate
form of the divergences at any loop order L � 2,

�L ’ b1c
Lþa1=L
1 : (5.7)

The solid curve in the upper panel of Fig. 12 is based on
Eq. (5.7) with the parameters

a1 ¼ 3:99; b1 ¼ 1:74� 10�5; c1 ¼ 9:77: (5.8)

Interestingly, a nearly equally good fit is given by the
following analytic form, which contains remarkably sim-
ple constants,

�L ’ ð�2ÞLþ4=L�e�=2 : (5.9)

Since we do not know the precise functional form, for the
purposes of extrapolating to higher-loop orders, it is useful
to compare this to a different Ansatz,

�L ’ a2 þ b2c
L
2 ; (5.10)

where again a2, b2 and c2 are parameters. The dashed curve
in Fig. 12 corresponds to Eq. (5.10) with the parameters

a2¼0:179; b2¼4:52�10�4; c2¼7:30: (5.11)

Before extrapolating to higher loops, an interesting
exercise is to use Eqs. (5.7) and (5.10) to see how well

0.5

1.0

5.0

10.0

50.0

L

2 3 4 5 6
0.985

0.990

0.995

1.000

1.005

1.010

1.015

L loops

L
fi

t
L

FIG. 12 (color online). The dots indicate the numerical coef-
ficients in Eq. (5.6) of the UV divergences in the critical
dimensions. The solid (blue) line is the result of fitting the
parametric form in Eq. (5.7) to the displayed results for L ¼ 2,
3, 4, 5, 6. The dashed (purple) line is a fit to the parametric form
in Eq. (5.10). The lower panel shows that the relative error
between the points and the fit in Eq. (5.7) is within 1%.
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they predict (or rather postdict) the obtained UV divergen-
ces for L ¼ 5, 6. Because the Ansätze involves three
parameters, we need to use the values for L ¼ 2, 3, 4 to
fix the function. For the Ansatz in Eq. (5.7) we obtain

a1 ¼ 4:06; b1 ¼ 1:34� 10�5; c1 ¼ 10:2: (5.12)

Plugging this solution into Eq. (5.10) gives good predic-
tions for the L ¼ 5, 6 cases,

�5 ’ 9:75; �6 ’ 72:6: (5.13)

Similarly, for the Ansatz in Eq. (5.10), we obtain

a2 ¼ 0:127; b2 ¼ 6:22�10�4; c2 ¼ 6:92; (5.14)

and

�5 ’ 9:997; �6 ’ 68:4: (5.15)

Presumably, the surprisingly good agreement between
these approximate values and the calculated ones in
Eqs. (5.2) and (5.6) is somewhat accidental. Nevertheless
it does illustrate the remarkably good predictive power of
this simple extrapolation.

Using the fit parameters based on explicit results through
six loops, we can easily predict approximate values for
higher loops. For example, through L ¼ 9 from the Ansatz
(5.7) with the parameters in (5.8) we have

�7 ’ 542; �8 ’ 4500; �9 ’ 38800; (5.16)

while the Ansatz (5.10) with the parameters in (5.11) gives

�7 ’ 500; �8 ’ 3650; �9 ’ 26600: (5.17)

The small numerical integration uncertainty from our
L ¼ 6 result feeds into this fit, propagating a few percent
spread in the estimates. Of course, the functional forms
may be too naive, but the two different fits give an indica-
tion of the spread in predictions for such extrapolations.

Another interesting numerical observation from
Refs. [10,13] is that for an SUðNcÞ gauge group, the ratio
of the 1=N2

c-suppressed subleading-color contributions to
the leading color ones is fairly constant for L ¼ 3, 4, 5 and
takes a value of about 45. This observation immediately
gives us a prediction for the value of the divergence for the
fully color-dressed amplitude (including nonplanar contri-
butions),

Að6Þ
4 jdiv ’ 1

�

1

ð4�Þ15 g
14stAtree

4 N4
cð68:68N2

c þ 3100Þ
� ½sðTr1324 þ Tr1423Þ þ tðTr1243 þ Tr1342Þ
þ uðTr1234 þ Tr1432Þ�; (5.18)

where Tr1234 � Tr½Ta1Ta2Ta3Ta4� and we assume that only
the leading-color and 1=N2

c-suppressed single-trace terms
contribute, as is the case for L ¼ 3, 4, 5.

It is interesting to note that, at least through four loops,
the divergences of N ¼ 8 supergravity are in the same
critical dimension Dc ¼ 4þ 6=L, and they are propor-
tional to the same linear combination of vacuum integrals
as the 1=N2

c-suppressed terms of MSYM [10,54]. If this
link between gravity and gauge theories were to persist to
all loop orders, then the critical-dimension agreement
alone would imply the four-dimensional ultraviolet finite-
ness of the theory. It would be very interesting to directly
check these ultraviolet divergence patterns in both gauge
and gravity theories at as high a loop order as possible, in
order to see if they could give insight into the UV proper-
ties of N ¼ 8 supergravity, and into the precise values of
the ultraviolet divergences in MSYM in D ¼ 4þ 6=L, to
all loop orders.

VI. CONCLUSIONS AND OUTLOOK

We have shown that planar MSYM diverges in D ¼ 5 at
six loops, in accordance with expectations from previous
explicit computations and supersymmetry arguments. This
result raises various questions about its relation to the (2,0)
theory as discussed in Ref. [16]. Because the (2,0) theory
is superconformal, the D ¼ 5 MSYM UV cutoff must be
related to the gauge coupling, and combining this relation
with the S-duality of the theory compactified to D ¼ 4
should lead to strong constraints. Probably the simplest
next step is to work out the S-dual extension of the D ¼ 5
two-loop amplitude.
Through five loops, the planar MSYM four-point inte-

grand has a manifestly nonzero behavior in the terms that
control the UV divergence in the expected critical dimen-
sion Dc ¼ 4þ 6=L. Thus it is clear, without performing
any loop integrals, that the amplitudes diverge in the
critical dimension. At six loops, we were unable to find an
integral representation in which all contributions are of the
same sign. Therefore we had to explicitly evaluate non-
trivial integrals in order to answer the question of whether
MSYM diverges in D ¼ 5. At six loops, practical analytic
techniques are not available for generic integrals, so we
resorted to numerical methods. In particular, we used the
sector decomposition method as implemented in a modi-
fied version of the FIESTA program.
Our results show that, at least through six loops, the

values of the ultraviolet divergences in the critical dimen-
sion of the planar amplitude approximately follow a simple
exponential Ansatz. Indeed, extrapolating the results from
two, three, and four loops using this Ansatz matches the
calculated values at five and six loops remarkably well.
The fact that our calculated six-loop value closely matches
this extrapolation gives us additional confidence that we
have computed the six-loop divergence correctly. It also
allows us to extrapolate the value of the divergences in the
critical dimension to even higher loops. Moreover, as also
noted in Refs. [11,13], the ratios of the numerical values of
the 1=N2

c-suppressed terms to the leading-color terms are
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approximately constant for L ¼ 3, 4, 5. Assuming that this
approximate constancy holds as well for L ¼ 6 gives us a
definite prediction for the value of the subleading-color
contributions to the divergence in D ¼ 5. While the origin
of the exponential behavior is still unclear, it does suggest
that it might be possible to understand the ultraviolet
divergences of MSYM in the critical dimension to all
loop orders.

The same integration techniques described in this paper
may be helpful for resolving other problems. An outstand-
ing question that could be resolved by computation of a
higher-loop divergence is whether N ¼ 8 and other
supergravity theories might be perturbatively ultraviolet
finite. (For recent reviews see Ref. [55].) The current
consensus for N ¼ 8 supergravity is that a D ¼ 4 poten-
tial counterterm valid under all known symmetries exists
at seven loops [56,57]. (A recent optimistic opinion for
all orders finiteness may be found in Ref. [58], while a
pessimistic one may be found in Ref. [59].) The same
potential counterterm could be studied in D ¼ 24=5 at
five loops, which should be well within reach of the types
of integration techniques described here, once the super-
gravity integrand is constructed.

Intriguingly, through at least four loops, the explicit
values of the N ¼ 8 supergravity divergences (in the
same critical dimension as MSYM) are proportional to
the same linear combination of vacuum integrals as enter
the subleading-color divergence of N ¼ 4 theory at the
same loop order. Moreover, half-maximal supergravity
appears to be better behaved at three loops [60] than had
been anticipated [57]. These results emphasize the need for
further explicit computations at high loop orders, in order
to help unravel the ultraviolet properties of supergravity
theories. Our results demonstrate that evaluations of ultra-
violet divergences are feasible through at least six loops.
Due to the close relation between gravity and gauge-theory
loop amplitudes [61], the results presented here also pro-
vide a concrete initial step towards determining the critical
dimension of N ¼ 8 supergravity at six loops.

As yet, there are no explicit forms of the N ¼ 8
supergravity integrands beyond four loops, although
recent progress in the nonplanar sector of MSYM at five
loops [13] suggests that the four-point five-loop amplitude
of N ¼ 8 supergravity is within reach. In any case, our
success at six loops with the sector decomposition method
suggests that, although difficult, an evaluation of the
integrals likely to occur at seven loops could be feasible.
How hard would a numerical evaluation at seven loops be,
along the lines discussed here? As we discussed, a rea-
sonable guess for the number of sectors of a seven-loop
integral is 1:6� 108. If an integral takes 2 seconds, then a
1000-core cluster can evaluate these integrals in about
3 days. This is perhaps a bit slow as we might have
hundreds of graphs and a more complex integrand, but
with further optimization and a larger cluster, even this

computation should come within reach. It may also be
possible to achieve further gains based on converting the
vacuum integrals to propagator integrals and factorizing
them into products of lower-loop integrals [21], as has
been applied recently in maximally supersymmetric theo-
ries at four and five loops [10,13]. There are also other
methods for attacking this problem, such as the powerful
DRA method [62], which offers much higher precision
than can be obtained by sector decomposition, provided
that an appropriate large system of linear equations can be
solved symbolically.
In summary, in this paper we showed that maximally

supersymmetric Yang-Mills theory diverges at six loops in
D ¼ 5, settling the question of whether the link to the (2,0)
theory might imply an improved UV behavior. We showed
that, even at loop orders as high as six, and possibly higher,
we can directly determine the UV properties of supersym-
metric gauge and gravity theories. We also uncovered a
simple approximate exponential pattern for the values of
the divergences in the critical dimension where they first
occur. This pattern may provide clues toward unraveling
the all-loop-order UV structure. It is not obvious how to
reconcile the appearance of a six-loop divergence inD ¼ 5
MSYM with the finiteness of its UV completion, the (2,0)
theory in D ¼ 6. Presumably, the divergence must be cut
off by additional degrees of freedom in the UV theory. As
discussed in Refs. [16,18], there are already candidates for
these degrees of freedom as nonperturbative states in the
D ¼ 5 theory, so that it may be possible to understand this
in D ¼ 5 terms. Perhaps the simplest conjecture is that
S-dual extensions of theD ¼ 5 amplitudes (as discussed in
Ref. [16]) are finite to all orders.
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combination of vacuum integrals 10VðfÞ þ 5VðgÞ � VðhÞ,
can be shown to be nonzero quite easily, once we establish

the inequality VðfÞ > VðhÞ. (VðfÞ, VðgÞ, and VðhÞ are all man-

ifestly positive.) The inequality VðfÞ > VðhÞ follows from

the symmetric representation of the VðfÞ integrand given in

Eqs. (3.4) and (3.5), as the VðhÞ integrand multiplied by
1=2� ðl21=l23 þ l23=l

2
1Þ. This factor can be rewritten as

1þ 1=2� ðl21 � l23Þ2=ðl21l23Þ. The first term, ‘1’, integrates

to VðhÞ, and the second term is positive definite, so that

VðfÞ >VðhÞ.
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