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s = 7 TeV is presented based on a dataset of 1.0 fb−1 collected by the LHCb detec-

tor. Candidates for Z → ττ decays are identified through reconstructed final states with

two muons, a muon and an electron, a muon and a hadron, or an electron and a hadron.

The production cross-section for Z bosons, with invariant mass between 60 and 120 GeV/c2,

which decay to τ leptons with transverse momenta greater than 20 GeV/c and pseudora-

pidities between 2.0 and 4.5, is measured to be σpp→Z→ττ = 71.4± 3.5± 2.8± 2.5 pb; the

first uncertainty is statistical, the second is systematic, and the third is due to the uncer-

tainty on the integrated luminosity. The ratio of the cross-sections for Z → ττ to Z → µµ

is determined to be 0.93 ± 0.09, where the uncertainty is the combination of statistical,

systematic, and luminosity uncertainties of the two measurements.
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1 Introduction

The measurement of the production cross-section for Z bosons1 in proton-proton (pp) col-

lisions constitutes an important verification of Standard Model predictions. Since lepton

universality in Z decays has been tested to better than 1% at LEP [1], any deviation ob-

served at the LHC would be evidence for additional physics effects producing final state

leptons. In particular, τ -lepton pairs can be important signatures for supersymmetry, extra

gauge bosons, or extra dimensions [2–4]. The LHCb experiment has previously measured

the cross-section for Z → µµ [5] with both leptons having transverse momentum (pT)

above 20 GeV/c and an invariant mass between 60 and 120 GeV/c2. Here a complementary

measurement in the decay mode Z → ττ is presented. This measurement extends the

Z → ττ cross-section measurements from the central pseudorapidity range covered by AT-

LAS (|η| < 2.4) [6] and CMS (|η| < 2.3) [7] into the forward region covered by the LHCb

experiment (2 < η < 4.5).

1Here, the Z is used to indicate production from Z bosons, photons, and their interference.
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2 Detector and datasets

The LHCb detector [8] is a single-arm forward spectrometer designed for the study of

particles containing b or c quarks. The detector includes a high precision tracking sys-

tem consisting of a silicon-strip vertex detector (VELO) surrounding the pp interaction

region, a large-area silicon-strip detector (TT) located upstream of a dipole magnet with a

bending power of about 4 Tm, and three stations of silicon-strip detectors (IT) and straw

drift tubes (OT) placed downstream. The combined tracking system has a momentum

resolution ∆p/p that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and an impact

parameter resolution of 20 µm for tracks with high pT.

Charged hadrons are identified using two ring-imaging Cherenkov detectors. Pho-

ton, electron and hadron candidates are identified by a calorimeter system consisting of

scintillating-pad (SPD) and pre-shower detectors (PRS), an electromagnetic calorimeter

(ECAL) and a hadronic calorimeter (HCAL). Muons are identified by a system composed

of alternating layers of iron and multiwire proportional chambers. The trigger consists of

a hardware stage, based on information from the calorimeter and muon systems, followed

by a software stage that applies a full event reconstruction. The hardware stage imposes

a global event requirement (GEC) on the hit multiplicities of most sub-detectors used in

the pattern recognition algorithms to avoid overloading of the software trigger by high

occupancy events.

This analysis uses data, corresponding to an integrated luminosity of 1028± 36 pb−1,

taken at a centre-of-mass energy of 7 TeV. The absolute luminosity scale was measured

periodically throughout the data taking period using Van der Meer scans [9] where the beam

profile is determined by moving the beams transversely across one another. A beam-gas

imaging method was also used where the beam profile is determined through reconstructing

beam-gas interaction vertices near the beam crossing point [10]. Both methods provide

similar results and the integrated luminosity is determined from the average of the two,

with an estimated systematic uncertainty of 3.5% [11]. The primary systematic uncertainty

of 2.7% is due to the beam current measurement, shared between the two methods.

Simulated data samples are used to develop the event selection, determine efficiencies,

and estimate systematic uncertainties. Each sample was generated using an LHCb config-

uration [12] of Pythia 6.4 [13] with the CTEQ6L1 leading-order PDF set [14] and passed

through a Geant4 [15, 16] based simulation of the LHCb detector [17]. Trigger emulation

and full event reconstruction were performed using the LHCb reconstruction software [18].

Additional samples, without detector simulation or event reconstruction, are used to study

the signal acceptance and were generated using Pythia 8.1.55 [19], Herwig++ 2.5.1 [20],

and Herwig++ with the Powheg method [21].

3 Event selection

The signatures for Z → ττ decays considered in this analysis are two oppositely-charged

tracks, consistent with an electron, muon, or hadron hypothesis, having large impact pa-

rameters with respect to the primary vertex of the event.
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Tracks are reconstructed in the VELO and extrapolated to the IT/OT sub-detectors;

any TT sub-detector hits consistent with the track are added and a full track fit is per-

formed. Only tracks with fit probabilities greater than 0.001 are considered.

Tracks are extrapolated to the calorimeters and matched with calorimeter clusters.

Electron candidates are required to have a PRS energy greater than 0.05 GeV, a ratio of

ECAL energy to candidate momentum, E/pc, greater than 0.1, and a ratio of HCAL energy

to candidate momentum less than 0.05. Any electron candidate momentum is corrected

using bremsstrahlung photon recovery [22]. Since the ECAL is designed to register parti-

cles from b-hadron decays, calorimeter cells with transverse energy above 10 GeV saturate

the electronics, and lead to degradation in the electron energy resolution.

Hadron candidates are identified by requiring the ratio of HCAL energy to track mo-

mentum to be greater than 0.05. Due to the limited HCAL acceptance, the candidate track

is required to have a pseudorapidity of 2.25 ≤ η ≤ 3.75.

Muon candidates are identified by extrapolating tracks to the muon system down-

stream of the calorimeters and matching them with compatible hits. Muon candidates are

required to have a hit in each of the four stations and consequently will have traversed over

20 hadronic interaction lengths of material.

The data have been collected using two triggers: a trigger which selects muon can-

didates with a pT greater than 10 GeV/c; and a trigger which selects electron candidates

with pT greater than 15 GeV/c.

The analysis is divided into five streams, labelled τµτµ, τµτe, τeτµ, τµτh, and τeτh,

defined such that the streams are exclusive. The first τ lepton decay product candidate is

required to have pT > 20 GeV/c and the second is required to have pT > 5 GeV/c. The

following additional kinematic and particle identification requirements are specific to each

analysis stream:

• τµτµ requires two oppositely-charged muons where at least one triggered the event.

The muon with the larger pT is considered as the first τ lepton decay product can-

didate.

• τµτe requires a muon that triggered the event and an oppositely-charged electron.

• τeτµ requires an electron and an oppositely-charged muon with pT < 20 GeV/c. Either

lepton can trigger the event.

• τµτh requires a muon that triggered the event and an oppositely-charged hadron.

• τeτh requires an electron that triggered the event and an oppositely-charged hadron.

In pp collisions the cross-section for hadronic QCD processes is very large. These

events can pass the above requirements either due to semileptonic c- or b-hadron decays or

through the misidentification of hadrons as leptons.

Signal decays, coming from an on-shell Z, tend to have back-to-back isolated tracks in

the transverse plane with a higher invariant mass than tracks in QCD events. The abso-

lute difference in azimuthal angle of the two τ lepton decay product candidates, |∆Φ|, is

required to be greater than 2.7 radians and their invariant mass is required to be greater

than 20 GeV/c2.
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Tracks in QCD events also tend to be associated with jet activity, in contrast to signal

events where they are isolated. An isolation variable, IpT , is defined as the transverse com-

ponent of the vectorial sum of all track momenta that satisfy
√

∆φ2 + ∆η2 < 0.5, where

∆φ and ∆η are the differences in φ and η between the τ lepton decay product candidate

and the track. The track of the τ lepton decay product candidate is excluded from the

sum. Both τ lepton decay product candidates are required to have IpT < 2 GeV/c for the

τµτµ, τµτe, and τeτµ analysis streams and IpT < 1 GeV/c for τµτh and τeτh due to the larger

QCD backgrounds.

The lifetime of the τ lepton is used to separate signal from prompt backgrounds. The

signed impact parameter for a track is defined as the magnitude of the track vector of

closest approach to the primary vertex signed by the z-component of the cross product

between this vector and the track momentum. The impact parameter significance, IPS,

is then defined as the absolute sum of the signed impact parameters of the two τ lepton

decay product candidates, divided by their combined uncertainty. The IPS is required to

be greater than 9 for the τµτµ, τµτh, and τeτh analysis streams while no IPS requirement

is placed on the τµτe or τeτµ streams.

In the τµτµ analysis stream an additional background component arises from Z → µµ

events. This produces two muons with similar pT, most of which also have an invariant

mass close to the Z mass. In contrast, signal events tend to have unbalanced pT and a lower

invariant mass due to unreconstructed energy from neutrinos and neutral hadrons. The pT

asymmetry, ApT , is defined as the absolute difference between the pT of the two candidates

divided by their sum. For the τµτµ analysis stream the ApT is required to be greater than

0.3 and the di-muon invariant mass must lie outside the range 80 < Mµµ < 100 GeV/c2.

4 Background estimation

The invariant mass distributions for the selected Z → ττ candidates, the simulated signal,

and the estimated backgrounds for the five analysis streams are shown in figure 1, where

no candidates are observed with a mass above 120 GeV/c2. Five types of background have

been considered: generic QCD; electroweak, where a high pT lepton is produced by a W

or Z boson and the second candidate τ lepton decay product is misidentified from the

underlying event; tt̄, where two hard leptons are produced from top decays; WW , where

each W decays to a lepton; and Z → `` for the τµτµ, τµτh, and τeτh streams, where for the

τµτh stream a single muon is misidentified as a hadron and for the τeτh stream an electron

is misidentified. The tt̄ and WW backgrounds are estimated using simulation and found

to be small for all final states.

The QCD and electroweak backgrounds are estimated from data. A signal-depleted

control sample is created by applying all selection criteria but requiring that the τ lepton

decay product candidates have the same-sign (SS) charge. The QCD and electroweak back-

ground events in this sample, NSS
QCD and NSS

EWK, are obtained by fitting template shapes

to the distribution of the difference between the pT of the first and second τ lepton decay

product candidates. The template shape for the electroweak background is taken from

simulation. To determine the shape of the QCD contribution, the isolation requirement is
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Figure 1. Invariant mass distributions for the (a) τµτµ, (b) τµτe, (c) τeτµ, (d) τµτh, and (e) τeτh
candidates with the excluded mass range indicated for τµτµ. The Z → ττ simulation (solid red)

is normalised to the number of signal events. The QCD (horizontal green), electroweak (vertical

blue), and Z (solid cyan) backgrounds are estimated from data. The tt̄ (vertical orange) and WW

(horizontal magenta) backgrounds are estimated from simulation and generally not visible.
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reversed such that IpT > 10 GeV/c. The number of candidates for each background category

in the signal sample is then calculated as NQCD = fQCDN
SS
QCD and NEWK = fEWKN

SS
EWK,

where fQCD and fEWK are the ratio of opposite-sign to same-sign events for QCD and elec-

troweak events respectively. Both fQCD and fEWK are determined as the ratio of opposite-

sign to same-sign events satisfying the template requirements. The uncertainties on the

QCD and electroweak backgrounds are estimated by combining the statistical uncertainty

on the fraction with the uncertainties from the fit used to determine NSS
QCD and NSS

EWK.

The number of Z → µµ background events for the τµτµ stream is obtained by applying

all selection criteria except for the 80 < Mµµ < 100 GeV/c2 requirement. This produces a

sample with a clear peak around the Z mass as shown in figure a. A template for Z → µµ

events is obtained from data by applying the event selection, but requiring prompt events

with IPS < 1. The template is normalised to the number of events within the τµτµ sample

with IPS > 9 and within the invariant mass range 80 < Mµµ < 100 GeV/c2. The Z → µµ

background is the number of events in the normalised template outside this mass range.

The uncertainty on this background is estimated from the statistical uncertainty on the

normalisation factor.

The Z → µµ process also contributes a small background to the τµτh stream when

one of the muons is misidentified as a hadron. This is evaluated by applying the τµτh
selection but requiring a second identified muon rather than a hadron, and scaling this by

the probability for a muon to be misidentified as a hadron. The latter is found from a

sample of Z → µµ events that have been selected by requiring a single well defined muon

and a second isolated track, which give an invariant mass between 80 and 100 GeV/c2;

(0.06± 0.01)% of these tracks pass the hadron identification requirement.

Similarly, a small Z → ee background can contribute to the τeτh stream when one of

the electrons is misidentified as a hadron. This is evaluated by applying the τeτh selection

but requiring a second identified electron rather than a hadron, and scaling this by the

probability for an electron to be misidentified as a hadron. The electron mis-identification

is found from simulated Z → ee events to be (0.63± 0.02)%.

5 Cross-section measurement

The pp → Z → ττ cross-section is calculated within the kinematic region 60 < Mττ <

120 GeV/c2, 2.0 ≤ ητ ≤ 4.5, and pτT > 20 GeV/c using

σpp→Z→ττ =

∑N
i=1 1/εirec −

∑
j N

j
bkg〈1/εrec〉j

L · A · B · εsel
(5.1)

where N is the number of observed candidates and N j
bkg is the estimated background from

source j. The integrated luminosity is given by L , A is an acceptance and final state

radiation correction factor, B is the branching fraction for the τ -lepton pair to decay to

the final state, and εsel is the selection efficiency. A summary of these values for each final

state is given in table 1. The reconstruction efficiency, εrec, is calculated using simulation

or data for each event, assuming that it is signal, and depends on the momentum and
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Stream A B [%] εsel Nbkg N

τµτµ 0.405± 0.006 3.031± 0.014 0.138± 0.006 41.6± 8.5 124

τµτe 0.248± 0.004 6.208± 0.020 0.517± 0.012 129.7± 4.9 421

τeτµ 0.152± 0.002 6.208± 0.020 0.344± 0.016 56.6± 3.3 155

τµτh 0.182± 0.002 16.933± 0.056 0.135± 0.004 53.3± 0.8 189

τeτh 0.180± 0.002 17.341± 0.057 0.082± 0.004 36.6± 0.9 101

Table 1. Acceptance factors, branching fractions, selection efficiencies, numbers of background

and observed events for each Z → ττ analysis stream.

pseudorapidity of the τ lepton decay product candidates. 〈1/εrec〉j indicates the average

value of 1/εrec for background source j.

The integrated luminosity of the datasets for the τµτµ, τµτe, and τµτh samples is

1028± 36 pb−1, while the τeτµ and τeτh final state datasets have an integrated luminosity

of 955± 33 pb−1.

5.1 Acceptances and branching fractions

The acceptance factor, A, is used to correct the kinematics of each analysis stream to the

kinematic region 60 < Mττ < 120 GeV/c2, 2.0 ≤ ητ ≤ 4.5, and pτT > 20 GeV/c. This region

corresponds to the detector fiducial acceptance and allows a comparison with the LHCb

Z → µµ measurement [5]. The acceptance factor is taken from simulation and is defined

as the number of Z → ττ events where the generated τ lepton decay products fulfil the

kinematic requirements described in section 3, divided by the number of Z → ττ events

where the generated τ leptons lie within the kinematic region defined above.

For each final state the acceptance factors are calculated at leading-order using fully

modelled hadronic decay currents and spin correlated τ lepton decays with final state ra-

diation in Pythia 8 and Herwig++, and at next-to-leading-order using the Powheg

method implemented in Herwig++. For Pythia 8 the CTEQ5L leading-order PDF

set [23] was used, while for Herwig++ the MSTW08 PDF set [24] was used. The mean

of the maximum and minimum values from the three generators is taken as the acceptance

factor and is given in table 1. The uncertainty is taken as half the difference between the

maximum and minimum values.

The branching fractions are calculated using the world averages [25] and are given in

table 1. The τ lepton to single charged-hadron branching fraction is the sum of all τ lep-

ton decays containing a single charged hadron. The final states presented in this analysis

account for 44% of all expected Z → ττ decays.

5.2 Selection efficiency

The event selection efficiency, εsel, is the product of the efficiencies described below. Each

efficiency is determined from either data, or simulation which has been calibrated using

data. The resulting εsel for each stream is given in table 1.
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The kinematic efficiency, εkin, is obtained from simulation and is the number of events

fulfilling the kinematic requirements of section 3 at both the simulated and reconstructed

level divided by the number of events passing the requirements at the simulated level. The

efficiency is consistent with unity for the τµτµ and τµτh analysis streams. For streams in-

volving electrons, εkin is significantly lower due to the saturation of the ECAL. This results

in electrons being reconstructed with lower momenta than their true momenta due to in-

complete bremsstrahlung recovery. In the τµτe, τeτµ, and τeτh streams, εkin is (99.3±1.0)%,

(66.8± 1.9)%, and (67.0± 1.3)% respectively. The uncertainties come from the statistical

uncertainty of the Z → ττ simulation and the calibration of the electron momentum scale

which has been obtained by comparing the pT spectrum of Z → ee events in data and

simulation [26].

The efficiency of the isolation requirement, εIpT , for each analysis stream is taken from

Z → ττ simulation, and calibrated to data by multiplying εIpT by the ratio of the efficiency

obtained in Z → µµ data to Z → τµτµ simulation. The systematic uncertainty on εIpT is

estimated as the difference between the efficiencies obtained from Z → µµ simulation and

Z → τµτµ simulation.

The efficiency of the impact parameter significance requirement, εIPS, is evaluated from

Z → ττ simulation. A comparison of the IPS distributions in Z → µµ events from data

and simulation show that the impact parameter resolution is underestimated by (12± 1)%

in simulation, and so the simulated Z → ττ events are corrected by this factor. The

systematic uncertainty on εIPS is determined by re-calculating the efficiency in Z → ττ

simulation with the scale factor varied by its uncertainty.

The efficiency of the azimuthal angle separation requirement, ε|∆Φ|, and pT asymmetry

efficiency requirement, εApT
, are evaluated from simulation. The systematic uncertainty

on each is taken as the difference in the evaluation of these efficiencies in Z → µµ data

and simulation, combined in quadrature with the statistical uncertainty from the Z → ττ

simulation.

5.3 Reconstruction efficiency

The reconstruction efficiency, εrec, is the product of the GEC, trigger, and tracking and

identification efficiencies for both τ lepton decay product candidates. The tracking effi-

ciency is the probability for reconstructing the track and the identification efficiency is

the probability for the track to be identified by the relevant sub-detectors. All efficiencies

determined from data have been checked against simulation and found to agree within the

percent level.

The GEC efficiency, εGEC, is a correction for the loss due to the rejection by the

hardware trigger of events with an SPD multiplicity of greater than 600 hits. For muon

triggered events, the efficiency has been evaluated to be (95.5± 0.1)% from Z → µµ data

events using a hardware di-muon trigger with a relaxed SPD requirement of 900 hits. For

electron trigger events, the efficiency is estimated to be (95.1±0.1)% by comparing the hit

multiplicities in Z → µµ and Z → ee events.

The muon and electron trigger efficiencies, εtrg, are evaluated in bins of momentum

using a tag-and-probe method on Z → `` data events, which have been selected requiring
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two reconstructed and identified muon or electron candidates with an invariant mass con-

sistent with that of the Z. In the events the triggered lepton is taken as the tag lepton,

and the other as the probe lepton. The event topologies for Z → `` and Z → ττ events

are nearly identical except for the momenta of the final state particles and so the trigger

efficiency is calculated only as a function of the probe momentum below 500 GeV/c. The

trigger efficiency is the fraction of events where the probe has also triggered, and varies as

a function of probe momentum between 75% and 80% for the muon trigger and between

62% and 75% for the electron trigger. The trigger efficiency uncertainty for each bin in

momenta is taken as the statistical uncertainty.

The tracking efficiency, εtrk, is also evaluated for muons using a tag-and-probe method

on the Z → µµ data. The tag must satisfy all the muon reconstruction and identification

requirements. The probe is reconstructed from a track segment in the muon chambers that

has been associated to a hit in the TT sub-detector, which is not required in the track

reconstruction. Events with a tag and probe mass consistent with the on-shell Z mass are

used. The tracking efficiency is evaluated as the number of events with a reconstructed

probe track over the total number of events. For lower pT tracks, masses consistent with

the J/ψ are used.

The J/ψ → µµ topology differs from the Z → ττ topology in both pseudorapidity

and momentum, and so the J/ψ muon tracking efficiencies are evaluated in bins of both

variables. The muon tracking efficiency is found to vary between 85% and 93%. The un-

certainty on the tracking efficiency is given by the statistical precision and the knowledge

of the purity of the sample of J/ψ → µµ candidates. The purity is estimated by fitting

the di-muon invariant mass distribution of the J/ψ → µµ candidates with a Crystal Ball

function [27] to describe the signal shape and a linear background. An alternative estimate

is obtained by fitting only the linear background on either side of the di-muon resonance.

The difference in the efficiency evaluated using the two purity methods is taken as the

systematic uncertainty.

All particles pass through approximately 20% of a hadronic interaction length of ma-

terial prior to the final tracking station. Early showering of hadrons reduces the hadron

tracking efficiency compared to the muon tracking efficiency. An additional correction

factor to the muon tracking efficiency of (84.3 ± 1.5)% for hadrons is applied which has

been estimated using the full detector simulation, where the uncertainty on this correction

corresponds to an uncertainty of 10% in the material budget [28].

The electron tracking efficiency uses a tag-and-probe method on Z → ee data events.

The tag must satisfy all the electron reconstruction and identification requirements and

the probe is selected as the highest energy ECAL cluster in the event not associated with

the tag. The purity of the sample is found, from simulation, to depend on the pT of the

tag. The dependence of the purity is fitted with signal and background templates obtained

from same-sign and opposite-sign events from data. No momentum information is available

for the probe, so the tag-and-probe technique only provides an overall tracking efficiency

for the electrons, which is measured to be (83± 3)%. The momentum dependence is taken

from Z → ee and Z → ττ simulation. The electron tracking efficiency uncertainty is taken

from the fit uncertainty added in quadrature to the statistical uncertainty.
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The identification efficiency, εid, is measured for muons with the tag-and-probe method

for the Z → µµ data, using a reconstructed track as the probe lepton and evaluated as

a function of the probe momentum. For low momenta the efficiency is evaluated using a

J/ψ → µµ sample as a function of both probe pseudorapidity and momentum. The muon

identification efficiency is found to vary between 93% and 99% in pseudorapidity and mo-

mentum. The muon εid uncertainty is evaluated with the same method used for the muon

εtrk uncertainty.

The electron identification efficiency is measured as a function of probe momentum

using the tag-and-probe method on Z → ee data and simulation events. The isolation

requirement introduces a bias of 1%−4% in data and reconstructed simulation and so sim-

ulation without the isolation criteria is used instead. The electron identification efficiency

is found to vary between 85% and 96%, with an uncertainty in each bin estimated as the

difference in the biased efficiencies from data and simulation.

The hadron identification efficiency is determined using events triggered on a single

VELO track. The highest pT track in each minimum bias event is assumed to be a hadron,

as verified by simulation. The hadron identification efficiency is taken as the fraction of

tracks fulfilling the hadron identification requirements. Although the minimum bias topol-

ogy differs significantly from the Z → ττ topology, an efficiency dependence is observed

only in pseudorapidity and so the efficiency is evaluated as a function of pseudorapidity

and found to vary between 92% and 95%. The uncertainty for each bin of pseudorapid-

ity is estimated as the statistical uncertainty of the bin. A summary of the systematic

uncertainties is given in table 2.

6 Results

The cross-sections for each analysis stream are determined using eq. (5.1), the values given

in table 1, and the systematic uncertainties presented in table 2. The results are

σpp→Z→ττ (τµτµ) = 77.4± 10.4± 8.6± 2.7 pb

σpp→Z→ττ (τµτe) = 75.2± 5.4± 4.1± 2.6 pb

σpp→Z→ττ (τeτµ) = 64.2± 8.2± 4.9± 2.2 pb

σpp→Z→ττ (τµτh) = 68.3± 7.0± 2.6± 2.4 pb

σpp→Z→ττ (τeτh) = 77.9± 12.2± 6.1± 2.7 pb

where the first uncertainty is statistical, the second uncertainty is systematic, and the third

is due to the uncertainty on the integrated luminosity.

A global fit is performed using a best linear unbiased estimator [29] including correla-

tions between the final states, and a combined result of

σpp→Z→ττ = 71.4± 3.5± 2.8± 2.5 pb

is obtained, with a χ2 per degree of freedom of 0.43. The statistical uncertainties are

assumed to be uncorrelated as each analysis stream contains mutually exclusive datasets.

The luminosity and any shared selection or reconstruction efficiencies are assumed to be

fully correlated.
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Stream
∆σpp→Z→ττ [%]

τµτµ τµτe τeτµ τµτh τeτh

A 1.48 1.61 1.32 1.10 1.11

B 0.46 0.32 0.32 0.32 0.33

Nbkg

NQCD 4.33 0.80 3.08 0.40 0.92

NEWK 4.22 1.54 1.52 0.40 0.72

Ntt̄ 0.02 0.08 0.12 0.00 0.58

NWW 0.02 0.14 0.13 0.09 0.08

NZ 8.00 − − 0.22 0.23

Total Nbkg 10.03 1.75 3.44 0.61 1.32

εrec

εGEC 0.10 0.10 0.10 0.10 0.10

εtrg 0.88 0.71 2.29 0.72 4.30

εtrk
(1) 0.71 0.74 3.67 0.79 3.67

εtrk
(2) 0.34 3.67 0.61 1.76 1.68

εid
(1) 0.38 0.28 1.72 0.29 1.73

εid
(2) 0.78 0.18 0.56 0.03 0.09

Total εrec 1.47 4.21 4.73 2.08 6.15

εsel

εkin − 1.04 2.89 − 1.91

εIpT 1.79 1.91 3.19 1.65 2.75

ε|∆Φ| 1.08 1.03 1.86 0.60 0.97

εIPS 2.70 − − 1.92 2.85

εApT
2.03 − − − −

Total εsel 3.97 2.41 4.69 2.60 4.50

Total systematic 11.13 5.41 7.56 3.88 7.88

Table 2. Systematic uncertainties expressed as a percentage of the cross-section for each Z → ττ

analysis stream. Contributions from acceptance A, branching fractions B, number of background

events Nbkg, reconstruction efficiencies εrec, and selection efficiencies εsel are listed. The superscripts

on εtrk
(i) and εid

(i) indicate the first or second τ lepton decay product candidate. The percentage

uncertainties on the cross-section for Nbkg are quoted for each individual background, as well as

the total background. The efficiency uncertainties are split in a similar fashion.

A graphical summary of the individual final state measurements, the combined mea-

surement, the Z → µµ measurement of ref. [5], and a theory prediction is shown in figure 2.

The theory calculation uses Dynnlo [30] with the MSTW08 next-to-next-leading-order

(NNLO) PDF set [24], and is found to be 74.3+1.9
−2.1 pb.
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τµτµ

τµτe

τeτµ

τµτh

τeτh

ττ

µµ

σpp→Z→`` [pb]

55 60 65 70 75 80 85 90

LHCb

√
s = 7 TeV

Dynnlo

MSTW08 @NNLO

pT > 20 GeV/c

2.0 < η < 4.5

60 < M < 120 GeV/c2

Figure 2. Measured cross-sections for the Z decaying to the final states τµτµ, τµτe, τeτµ, τµτh,

and τeτh (open points) compared with theory (yellow band) and the combined Z → ττ and

LHCb Z → µµ measurements (closed points) where pT and η are the transverse momentum and

pseudorapidity of the leptons, and M is the di-lepton invariant mass. The inner error bars represent

statistical uncertainty while the outer error bars represent combined statistical, systematic, and

luminosity uncertainties. The central theory value is given by the light yellow line while the

associated uncertainty by the orange band.

The ratio of the combined cross-section to the LHCb Z → µµ cross-section measure-

ment [5] is found to be
σpp→Z→ττ
σpp→Z→µµ

= 0.93± 0.09

where the uncertainty is the combined statistical, systematic, and luminosity uncertainties

from both measured cross-sections, which are assumed to be uncorrelated.

7 Conclusions

Measurements of inclusive Z → ττ production in pp collisions at
√
s = 7 TeV in final states

containing two muons, a muon and an electron, a muon and a hadron, and an electron and

a hadron have been performed using a dataset corresponding to an integrated luminosity

of 1028± 36 pb−1. The cross-sections for the individual states have been measured in the

forward region of 2.0 ≤ ητ ≤ 4.5 with pτT > 20 GeV/c and 60 < Mττ < 120 GeV/c2,
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and a combined result calculated. The results have been compared to Standard Model

NNLO theory predictions and with the LHCb Z → µµ cross-section measurement. The

individual measurements, the combined result, the Z → µµ cross-section, and the theory

prediction are all in good agreement. The ratio of the Z → µµ cross-section to the Z → ττ

cross-section is found to be consistent with lepton universality.
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