
LH
C

b-
PR

O
C

-2
00

4-
02

1
30

/0
9/

20
04

LHCb-2004-089

October 15, 2004

PYTHON-BASED PHYSICS ANALYSIS ENVIRONMENT FOR LHCb

I. Belyaev, LAPP, Annecy-le-Vieux, France
M. Frank, P. Mato, CERN, Geneva, Switzerland

G. Barrand, LAL, Orsay, France
A. Tsaregorodtsev, U. Marseille II, Marseille, France

E. de Oliveira, CBPF, Rio de Janeiro, Brasil

Abstract

BENDER is thePYTHON based physics analysis applica-
tion for LHCb. It combines the best features of the underly-
ing GAUDI software architecture with the flexibility of the
PYTHON scripting language and provides end-users with a
friendly physics analysis oriented environment.

INTRODUCTION

The objective is to provide LHCb [1] physicists with a
friendly environment for doing physics analysis on recon-
structed event objects (ESD) as well as physics analysis ob-
jects (AOD) and event tags, and to be able obtain the best
physics results. The main driving qualities for this new
physics analysis environment,BENDER, have been:

• Rapid Application Development (RAD) paradigm.
This is to enable physicists to try out new analysis
ideas by developing fast prototypes.

• Interactivity. The possibility to (re)define the algo-
rithms, parameters and configuration in the process
of code development from the interactive program
prompt.

• ReadabilityandCompactness. The end-user physics
analysis code should be understandable by colleagues,
unambiguously matching the physical description and
with minimal pollution from technical details.

• Completeness. This is the usability of the environment
for developing real analysis.

• Integratibility. Ease of integration with third party
products, in particular the software widely used within
HEP community (e.g. for visualization and statistical
analysis).

BENDER is based onGAUDI [2, 3, 4] event-processing
software framework. Components in the GAUDI frame-
work implement a number of abstract interfaces (pure
abstract classes inC++) for interaction with otherCom-
ponents. Among the major generic categories ofcom-
ponents one findsAlgorithms, Services andTools. Ser-
vices andTools are categories of components which of-
fer services directly or indirectly needed byAlgorithms.
The GAUDI framework is used for building all LHCb

event data processing applications:GAUSS [5] for simula-
tion, BOOLE for digitization, BRUNEL for reconstruction,
PANORAMIX [6] for visualization and event display and
DAV INCI [7] for physics analysis,

ARCHITECTURE AND FRAMEWORK

General Overview

BENDER is based on the genericPYTHON [8] bind-
ings for theGAUDI framework, calledGAUDI PYTHON,
and on a high-level C++ physics analysis toolkit called
LOK I [9]. LOK I in turn uses theTools andAlgoritms de-
veloped in C++ in the context of theDAV INCI framework.
The schematic relations between theDAV INCI andBEN-
DER frameworks are sketched in Figure 1.

DaVinci Application

LoKi

LHCb

Event Model

GaudiPython

Bender

L
C

G

D
ic

ti
o
n
a

ri
e

s

V
is

u
a

liz
a

ti
o
n

,
E

v
e

n
t

D
is

p
la

y
,

…

PyLCGDict

DaVinci Tools

Gaudi

Framework

Bender Application

C++ Python

Figure 1: The schematic relations between theDAV INCI

andBENDER frameworks

The interactivity ofBENDER is provided via the usage
of PYTHON, which is a high-level object oriented script-
ing language with support forC/C++ extensions. The RAD
paradigm is one of the most essential features ofPYTHON.
BENDER is mainly implemented as set ofPYTHON exten-
sion modules.

The usage ofPYTHON, AIDA [10] abstract interfaces
and standard LCG [11] reflection techniques [12] allows an
easy integration ofBENDER’s analysis environment with

third party products like the interactive event display and
visualization tools likePANORAMIX , ROOT[13] andHIP-
PODRAW [14].

C++ Analysis Toolkit

LOK I is aC++ toolkit for Physics Analysis that provides
a set of high level analysis utilities with physics oriented
semantics. The package has been inspired by the great
success of theKAL program, used for physics analysis by
the ARGUS collaboration, and thePATTERN [15] pack-
age, used by the HERA-B collaboration. The ideas from
GCOMBINER [16], LOKI [17] andCLHEP [18] libraries
are also used. The current functionality of the package in-
cludes

• Set of predefinedFunctorsand generic operations
• Selection and filtering of particles and vertices,
• Multi-particle combinatory loops
• Intuitive interface to histograms and N-Tuples, in par-

ticular it includes book-and-fill on demand idiom.
• Simple matching of reconstructed objects with Monte

Carlo truth information

The end-user code is not polluted by technical details and
a clear separation between physics analysis code and tech-
nical details is achieved as illustrated in Figure 2.

From a formal point of view the physicist inherits his
analysis algorithm from the base classLoKi::Algo and
implements the virtual methodLoKi::Algo::analyse.

The majority of complicated physics analysis idioms can
be expressed by only one line ofLOK I code. It has been
demonstrated that usage ofLOK I results in a drastic reduc-
tion of the number of lines of code. In order to make the
end-user code even more compact, the concepts ofPatterns
and implicit loops in the spirit ofSTL algorithms have been
introduced, e.g. the explicit loops from the example in Fig-
ure 2 could be substituted by the following implicit loop:

pattern ("D0" , "K- pi+" , "D0" ,
ADMASS("D0") < 30 * MeV , VCHI2 < 4);

plot (M - M1 , loop("D0 pi+") ,
"DM for D*+" , 130 , 180);

LOK I-based analysis code is further enhanced by the
concept oflocality, in which the entities are declared and
defined only at the place they are used. The “book-on-
demand” treatment of histograms and N-Tuples illustrates
this important concept.

There are no rawC++ pointer manipulations and ex-
plicit memory management inLOK I-based physics analy-
sis code. This fact together with the suppression of explicit
and tedious loops makes the code more error-safe and easy
to debug.

The implementation ofLOK I heavily exploits the mod-
ern technique of generic template meta-programming [17,
19]. In general,LOK I code is very efficient due to the tem-
plated nature and the fact that most of the code is in-lined.
The kernel components ofLOK I are loosely coupled with
LHCb Event Model.

Python Binding

For the C++/PYTHON binding, the LCG reflection
technique [12] of dynamic binding developed by the
SEAL [20] project has been chosen. With this approach,
C++ objects are accessible fromPYTHON throughdictio-
naries.

Dictionariesare produced only for the majorGAUDI in-
terfaces (GAUDI PYTHON package) and basicLOK I classes
(BENDER package) as well as for LHCb Event Model
classes, which are needed for object persistency. The ex-
isting dictionariesfor CLHEP, AIDA andROOTclasses
are available through theSEAL andPI [21] projects.

Job and Application Configuration

To complete the analysis environment we need to pro-
vide easy ways to end-users to configure and set-up the run-
ning environment. This requires selecting the required ver-
sion of the software packages and to configure the analysis
application itself. The job configuration and environment
setup is performed using aPYTHON modulecmt.py that
interfaces to theCMT[22, 23] tool. A typical set of job
configuration lines is:

>>> import cmt
>>> cmt.project(’Bender’ , ’v4r0’)
>>> cmt.use(package = ’Ex/BenderExample’)
>>> cmt.setup()

The application configuration, which implies in partic-
ular the scheduling ofAlgorithms and the configuration
of all Componentsis performed by thePYTHON module
gaudimodule.py from GAUDI PYTHON package:

>>> import gaudimodule
>>> g = gaudimodule.AppMgr()
>>> g.TopAlg += [’MyAlg1’ , ’MyAlg2’]
>>> g.OutputLevel = Info
>>> g.run(100)

Physics Analysis Components

For development of the basic physics analysis algorithms
in PYTHON it is sufficient to have access to LHCb Event
Model classes, genericGAUDI services, physics analysis
Tools andAlgorithms from theDAV INCI framework. Such
an approach requires a direct manipulation of Event Model
objects, multiple nested loops, calling the analysisTools
directly, etc. This mode will inevitably add a significant
PYTHON-related CPU penalty.

The above approach is available forBENDER, but the
heart of theBENDER framework, thebendermodule.py
is built as aPYTHON extention module around theDic-
tionaries constructed for classes and utilities fromLOK I

Toolkit. The bulk of actual computation is performed in
C++ by LOK I utilities, therefore one gets only a minimal
penalty from usage ofPYTHON.

Almost all functionality, offered inC++ by LOK I is avail-
able inPYTHON via thebendermodule. Where possible,

#include "LoKi/LoKi.h"
LOKI_ALGORITM(Dstar)
{
select ("K-" , "K-" == ID && PT > 1 * GeV) ;
select ("pi+" , "pi+" == ID && P > 3 * GeV) ;

Cut masscut = abs(DMASS ("D0")) < 30 * MeV ;
for (Loop D0 = loop ("K- pi+" , "D0") ; D0 ; ++D0)
{

if (VCHI2 (D0) < 4 && masscut (D0)) { D0 -> save ("D0") ; }
}
for (Loop Dst = loop ("D0 pi+") ; Dst ; ++Dst)
{

plot ((M (Dst) - M1 (Dst)) / MeV , "DM for D*+" , 130 , 180) ;
}
return StatusCode::SUCCESS ;

};

Figure 2: Simple example of analysis code for the “selection” ofD∗+ → D0π+, followed byD0 → K−π+ using the
LOK I Toolkit.

the PYTHON semantics with keyword arguments is added
in addition to the semantics of positional argument, avail-
able from theDictionaries. Similar to the case ofLOK I, a
physicist inherits his analysis algorithm from the base class
Algo and implements the methodAlgo::analyse. The
normal services are available to the physicist algorithm.
For example one can use N-Tuples in the following way:

tup = self.nTuple(title=’My D*+ N-Tuple’)
tup.column(name=’M’ , value = M (Dst))
tup.column(name=’M1’ , value = M1(Dst))
tup.column(name=’P’ , value = P (Dst))
tup.column(name=’PT’ , value = PT(Dst))
tup.write()

The complete example is presented in Figure 3.
One can compare theC++ code, written usingLOK I

Toolkit with similar PYTHON code, based onBENDER.
One sees that the semantics ofLOK I andBENDERare very
similar and conversion is possible. For example, for the de-
velopment of the algorithm and tuning of selection cuts one
can useBENDER with the subsequent conversion toLoKi
code after convergence of the iterative development cycle.

The hybrid approach, calledLOK IHYBRID has also
been developed, which allows us to useBENDERcode frag-
ments (e.g. selectioncuts) from theC++ algorithm with no
PYTHON-related CPU run-time overhead.

Visualization

Histograms filled inBENDER can be visualized through
their abstractAIDA interface in the same interactiveBEN-
DER session.

A few external tools have been made available in the
current version of Bender for visualization ofAIDA his-
tograms:rootPlotter andhippoPlotter from LCG/PI

project (visualization is performed using theROOT and
HIPPODRAW engines) andOnXSvc from PANORAMIX (us-
ing OPENSCIENTISTS [24, 25] engine). Also the visual-
ization of histograms using thePyROOT extension module
from nativeROOTis possible. This approach exploits the
fact that the internal transient representation of histograms
in GAUDI uses thePI implementation ofAIDA interfaces
based onROOT.

Visualization of event and detector data is possible
throughPANORAMIX . It is worth to mention that all these
external packages act independently and can be freely in-
termixed within oneBENDER session.

A single common interface for simple visualizations has
been established:
>>> from benderXXXX import plotter
>>> plotter.plot(what)

where XXXX stands forROOT, PiRoot, PiHippo or
Panoramix and what could be anyROOT object (for
ROOT), AIDA histogram (for all plotters), object or col-
lection of objects from LHCb Event or Detector Model (for
PANORAMIX).

The possibility to useGNUPLOT [26] andPYX [27] for
visualization of histograms is currently under evaluation.

The interactive analysis of N-Tuples can be performed
by usingPyROOT if ROOT is chosen as N-Tuple persistency.
The possibility of N-Tuple analyses withinGaudiPython
usingHIPPODRAW has been demonstrated.

SUMMARY

BENDER is a powerful interactive environment for de-
velopment of physics analysis code.BENDER is part of the
official LHCb software and is released regularly in both
LHCb supported platformsLinux andWindows. The cur-

from bendermodule import *
class Dstar(Algo):

def analyse(self) :
self.select (tag = ’K-’ , cuts = (’K-’ == ID) & (PT > 1 * GeV))
self.select (tag = ’pi+’ , cuts = (’pi+’ == ID) & (P > 3 * GeV))

masscut = abs (DMASS(’D0’)) < 30 * MeV
for D0 in self.loop (formula = ’K- pi+’ , pid = ’D0’) :

if (VCHI2 (D0) < 4) & masscut (D0) : D0.save (’D0’)

for Dst in self.loop (formula = ’D0 pi+’)
self.plot (title = ’DM for D*+’ ,

value = (M (Dst) - M1 (Dst)) / MeV ,
low = 130 , hight = 180)

return SUCCESS

Figure 3: Same analysis as Figure 2 inPYTHON within theBENDER environment.

rent functionality provided inBENDER is sufficient for the
needs of realistic physics analysis. Current application ar-
eas forBENDER include the physics analysis of Data Chal-
lenge 2004 Monte Carlo data and the studies for High Level
Trigger.

ACKNOWLEDGEMENTS

It is a great pleasure to thank S. Barsuk, J. van Hunen,
S. Klous, P. Koppenburg, O. Leroy, G. Pakhlova, G. Raven,
N. Root, H. Ruiz, J. van Tilburg, B. Viaud and M. Zupan for
nice ideas,warm help and valuable feedback and H. Dijk-
stra, A. Golutvin, M. Merk and T. Ruf for the support, use-
ful discussions and constructive criticism.

REFERENCES

[1] S. Amato et al., “LHCb Technical Proposal”, CERN-
LHCC-98-004

[2] G. Barrandet al., “GAUDI : The Software Architecture and
Framework for building LHCb Data processing Applica-
tions”, Proceedings of CHEP’2000;

[3] M. Cattaneoet al., “Status of theGAUDI event processing
framework”, Proceedings of CHEP’2001

[4] http://cern.ch/Gaudi

[5] I. Belyaevet al., “Simulation Application for the LHCb Ex-
periment”, Proceedings of CHEP’2003

[6] G. Barrand, “PANORAMIX and LAJOCONDE. Interactive
environments for LHCb”, Proceedings of CHEP’2004

[7] http://cern.ch/lhcb-comp/Analysis

[8] http://www.python.org

[9] I.Belyaev, “LOK I: Smart & FriendlyC++ Physics Analysis
Toolkit”, LCHb-2004-023

[10] http://aida.freehep.org

[11] http://cern.ch/LCG

[12] W. Lavrijsenet al., “Reflection basedPYTHON-C++ bind-
ings”, Proceedings of CHEP’2004

[13] http://cern.ch/root

[14] P. Kunz, “The HippoDraw application and the HippoPlot
C++ Toolkit upon which it is built”, Proceedings of
CHEP’2001

[15] T. Glebe, “PATTERN - High Level Tools for Data Analysis”,
HERA-B-2002-002

[16] T. Glebe, “GCOMBINER 1.0”, HERA-B-2001-001

[17] A. Alexandrescu, “ModernC++ Design: Generic Program-
ming and Design Patterns Applied”, Addison-Wesley, 2001,
ISBN 0-201-70431-5

[18] http://cern.ch/wwwasd/lhc++/clhep

[19] http://www.boost.org

[20] http://cern.ch/seal

[21] http://cern.ch/pi

[22] C. Arnault, “CMT: a Software Configuration Management
Tool”, Proceedings of CHEP’2000

[23] http://www.cmtsite.org

[24] G. Barrand, “OPENSCIENTIST.Status of project”, Proceed-
ings of CHEP’2004

[25] http://lal.in2p3.fr/OpenScientist

[26] http://gnuplot-py.sourceforge.net

http://gnuplot.info

[27] http://pyx.sourceforge.net

