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1 Introduction

Precise knowledge of the jet energy resolution is of key im-
portance for the measurement of the cross-sections of inclusive
jets, dijets, multijets or vector bosons accompanied by jets [1–
4], top-quark cross-sections and mass measurements [5], and
searches involving resonances decaying to jets [6, 7]. The jet
energy resolution also has a direct impact on the determina-
tion of the missing transverse energy, which plays an impor-
tant role in many searches for new physics with jets in the fi-
nal state [8,9]. This article presents the determination with the
ATLAS detector [10,11] of the jet energy resolution in proton-
proton collisions at a centre-of-mass energy of

√
s= 7 TeV.

The data sample was collected during 2010 and corresponds to
35 pb−1 of integrated luminosity delivered by the Large Hadron
Collider (LHC) [12] at CERN.

The jet energy resolution is determined by exploiting the
transverse momentum balance in events containing jets with
large transverse momenta (pT). This article is structured as fol-
lows: Section2 describes theATLAS detector. Sections3, 4
and5 respectively introduce the Monte Carlo simulation, the
event and jet selection criteria, and the jet calibration methods.
The two techniques to estimate the jet energy resolution from
calorimeter observables, thedijet balance method[13] and the
bisector method[14], are discussed respectively in Sections6
and7. These methods rely on somewhat different assumptions,
which can be validated in data and are sensitive to different
sources of systematic uncertainty. As such, the use of thesetwo
independent in situ measurements of the jet energy resolution
is important to validate the Monte Carlo simulation. Section 8
presents the results obtained for data and simulation for the
default jet energy calibration scheme implemented inATLAS.
Section9 compares results of the Monte Carlo simulation in
situ methods to the resolutions obtained by comparing the jet
energy at calorimeter and particle level. This comparison will
be referred to as a closure test. Sources of systematic uncer-
tainty on the jet energy resolution estimated using the available
Monte Carlo simulations and collision data are discussed in
Section10. The results for other jet energy calibration schemes
are discussed in Sections11and12, and the conclusions can be
found in Section13.

2 The ATLAS detector

TheATLAS detector is a multi-purpose detector designed to
observe particles produced in high energy proton-proton col-
lisions. A detailed description can be found in Refs. [10, 11].
The Inner (tracking) Detector has complete azimuthal cover-
age and spans the pseudorapidity region|η |< 2.5 1. The Inner

1 The ATLAS reference system is a Cartesian right-handed coor-
dinate system, with the nominal collision point at the origin. The
anti-clockwise beam direction defines the positivez-axis, with the
x-axis pointing to the centre of the LHC ring. The angleφ defines
the direction in the plane transverse to the beam (x,y). The pseudora-
pidity is given byη = − ln tanθ

2 , where the polar angleθ is taken
with respect to the positivez direction. The rapidity is defined as
y= 0.5× ln[(E+ pz)/(E− pz)], whereE denotes the energy andpz is
the component of the momentum along thez-axis.

Detector consists of layers of silicon pixel, silicon microstrip
and transition radiation tracking detectors. These sub-detectors
are surrounded by a superconducting solenoid that producesa
uniform 2 T axial magnetic field.

The calorimeter system is composed of several sub-
detectors. A high-granularity liquid-argon (LAr) electromag-
netic sampling calorimeter covers the|η | < 3.2 range, and it
is split into a barrel (|η | < 1.475) and two end-caps (1.375<
|η | < 3.2). Lead absorber plates are used over its full cover-
age. The hadronic calorimetry in the barrel is provided by a
sampling calorimeter using steel as the absorber material and
scintillating tiles as active material in the range|η |< 1.7. This
tile hadronic calorimeter is separated into a large barrel and
two smaller extended barrel cylinders, one on either side of
the central barrel. In the end-caps, copper/LAr technologyis
used for the hadronic end-cap calorimeters (HEC), covering
the range 1.5 < |η | < 3.2. The copper-tungsten/LAr forward
calorimeters (FCal) provide both electromagnetic and hadronic
energy measurements, extending the coverage to|η |= 4.9.

The trigger system consists of a hardware-based Level 1
(L1) and a two-tier, software-based High Level Trigger (HLT).
The L1 jet trigger uses a sliding window algorithm with coarse-
granularity calorimeter towers. This is then refined using jets
reconstructed from calorimeter cells in the HLT.

3 Monte Carlo simulation

3.1 Event generators

Data are compared to Monte Carlo (MC) simulations of
jets with large transverse momentum produced via strong in-
teractions described by Quantum Chromodynamics (QCD) in
proton-proton collisions at a centre-of-mass energy of

√
s =

7 TeV. The jet energy resolution is derived from several sim-
ulation models in order to study its dependence on the event
generator, on the parton showering and hadronisation models,
and on tunes of other soft model parameters, such as those of
the undelying event. The event generators used for this analysis
are described below.

1. PYTHIA 6.4 MC10 tune: The event generator PYTHIA [15]
simulates non-diffractive proton-proton collisions using a
2 → 2 matrix element at the leading order (LO) of the
strong coupling constant to model the hard sub-process,
and usespT-ordered parton showers to model additional ra-
diation in the leading-logarithm approximation [16]. Mul-
tiple parton interactions [17], as well as fragmentation and
hadronization based on the Lund string model [18] are also
simulated. The parton distribution function (PDF) set used
is the modified leading-order MRST LO* set [19]. The pa-
rameters used to describe multiple parton interactions are
denoted as the ATLAS MC10 tune [20]. This generator and
tune are chosen as the baseline for the jet energy resolution
studies.

2. The PYTHIA PERUGIA2010 tune is an independent tune
of PYTHIA to hadron collider data with increased final-
state radiation to better reproduce the jet and hadronic event
shapes observed in LEP and Tevatron data [21]. Parameters
sensitive to the production of particles with strangeness and



ATLAS collaboration: Jet Energy Resolution with theATLAS detector 3

related to jet fragmentation have also been adjusted. It is the
tune favoured by ATLAS jet shape measurements [22].

3. The PYTHIA PARP90 modification is an independent sys-
tematic variation of PYTHIA . The variation has been car-
ried out by changing the parameter that controls the energy
dependence of the cut-off, deciding whether the events are
generated with the matrix element and parton-shower ap-
proach, or the soft underlying event [23].

4. PYTHIA 8 [24] is based on the event generator PYTHIA and
contains several modelling improvements, such as fully in-
terleavedpT-ordered evolution of multiparton interactions
and initial- and final-state radiation, and a richer mix of
underlying-event processes. Once fully tested and tuned, it
is expected to offer a complete replacement for version 6.4.

5. The HERWIG++ generator [25–28] uses a leading order
2→ 2 matrix element with angular-ordered parton showers
in the leading-logarithm approximation. Hadronization is
performed in the cluster model [29]. The underlying event
and soft inclusive interactions use hard and soft multiple
partonic interaction models [30]. The MRST LO* PDFs
[19] are used.

6. ALPGEN is a tree-level matrix element generator for hard
multi-parton processes (2→ n) in hadronic collisions [31].
It is interfaced to HERWIG to produce parton showers in
leading-logarithm approximation, which are matched to the
matrix element partons with the MLM matching scheme
[32]. HERWIG is used for hadronization and JIMMY [33]
is used to model soft multiple parton interactions. The LO
CTEQ6L1 PDFs [34] are used.

3.2 Simulation of the ATLAS detector

Detector simulation is performed with theATLAS simula-
tion framework [35] based on GEANT4 [36], which includes
a detailed description of the geometry and the material of
the detector. The set of processes that describe hadronic in-
teractions in the GEANT4 detector simulation are outlined in
Refs. [37,38]. The energy deposited by particles in the active
detector material is converted into detector signals to mimic the
detector read-out. Finally, the Monte Carlo generated events are
processed through the trigger simulation of the experimentand
are reconstructed and analysed with the same software that is
used for data.

3.3 Simulated pile-up samples

The nominal MC simulation does not include additional
proton-proton interactions (pile-up). In order to study its ef-
fect on the jet energy resolution, two additional MC samples
are used. The first one simulates additional proton-proton in-
teractions in the same bunch crossing (in-time pile-up) while
the second sample in addition simulates effects on calorimeter
cell energies from close-by bunches (out-of-time pile-up). The
average number of interactions per event is 1.7 (1.9) for the
in-time (in-time plus out-of-time) pile-up samples, whichis a
good representation of the 2010 data.

4 Event and jet selection

The status of each sub-detector and trigger, as well as re-
constructed physics objects inATLAS is continuously assessed
by inspection of a standard set of distributions, and data-quality
flags are recorded in a database for each luminosity block (of
about two minutes of data-taking). This analysis selects events
satisfying data-quality criteria for the Inner Detector and the
calorimeters, and for track, jet, and missing transverse energy
reconstruction [39].

For each event, the reconstructed primary vertex position is
required to be consistent with the beamspot, both transversely
and longitudinally, and to be reconstructed from at least five
tracks with transverse momentumptrack

T > 150 MeV associ-
ated with it. The primary vertex is defined as the one with the
highest associated sum of squared track transverse momenta
Σ(ptrack

T )2, where the sum runs over all tracks used in the ver-
tex fit. Events are selected by requiring a specific OR combi-
nation of inclusive single-jet and dijet calorimeter-based trig-
gers [40,41]. The combinations are chosen such that the trigger
efficiency for eachpT bin is greater than 99%. For the lowest
pT bin (30–40 GeV), this requirement is relaxed, allowing the
lowest-threshold calorimeter inclusive single-jet trigger to be
used with an efficiency above 95%.

Jets are reconstructed with the anti-kt jet algorithm [42] us-
ing the FastJet software [43] with radius parametersR = 0.4 or
R= 0.6, a four-momentum recombination scheme, and three-
dimensional calorimeter topological clusters [44] as inputs.
Topological clusters are built from calorimeter cells witha sig-
nal at least four times higher than the root-mean-square (RMS)
of the noise distribution (seed cells). Cells neighbouringthe
seed which have a signal to RMS-noise ratio≥ 2 are then iter-
atively added. Finally, all nearest neighbour cells are added to
the cluster without any threshold.

Jets from non-collision backgrounds (e.g. beam-gas events)
and instrumental noise are removed using the selection criteria
outlined in Ref. [39].

Jets are categorized according to their reconstructed rapid-
ity in four different regions to account for the differentlyinstru-
mented parts of the calorimeter:

– Central region (|y|< 0.8).
– Extended Tile Barrel (0.8≤ |y|< 1.2).
– Transition region (1.2≤ |y|< 2.1).
– End-Cap region (2.1≤ |y|< 2.8).

Events are selected only if the transverse momenta of the two
leading jets are above a jet reconstruction threshold of 7 GeV at
the electromagnetic scale (see Section5) and within|y| ≤ 2.8,
at least one of them being in the central region. The analysisis
restricted to|y| ≤ 2.8 because of the limited number of jets at
higher rapidities.

Monte Carlo simulated “particle jets” are defined as those
built using the same jet algorithm as described above, but using
instead as inputs the stable particles from the event generator
(with a lifetime longer than 10 ps), excluding muons and neu-
trinos.
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5 Jet energy calibration

Calorimeter jets are reconstructed from calorimeter energy
deposits measured at the electromagnetic scale (EM-scale), the
baseline signal scale for the energy deposited by electromag-
netic showers in the calorimeter. Their transverse momentum
is referred to aspEM−scale

T . For hadrons this leads to a jet energy
measurement that is typically 15–55% lower than the true en-
ergy, due mainly to the non-compensating nature of theATLAS

calorimeter [45]. The jet response is defined as the ratio of
calorimeter jetpT and particle jetpT, reconstructed with the
same algorithm, and matched inη −φ space (see Section9).

Fluctuations of the hadronic shower, in particular of its
electromagnetic content, as well as energy losses in the dead
material lead to a degraded resolution and jet energy measure-
ment compared to particles interacting only electromagneti-
cally. Several complementary jet calibration schemes withdif-
ferent levels of complexity and different sensitivity to system-
atic effects have been developed to understand the jet energy
measurements. The jet calibration is performed by applying
corrections derived from Monte Carlo simulations to restore
the jet response to unity. This is referred to as determiningthe
jet energy scale (JES).

The analysis presented in this article aims to determine the
jet energy resolution for jets reconstructed using variousJES
strategies. A simple calibration, referred to as the EM+JEScal-
ibration scheme, has been chosen for the 2010 data [39]. It al-
lows a direct evaluation of the systematic uncertainties from
single-hadron response measurements and is therefore suitable
for first physics analyses. More sophisticated calibrationtech-
niques to improve the jet resolution and reduce partonic flavour
response differences have also been developed. They are the
Local Cluster Weighting (LCW), the Global Cell Weighting
(GCW) and the Global Sequential (GS) methods [39]. In ad-
dition to these calorimeter calibration schemes, a Track-Based
Jet Correction (TBJC) has been derived to adjust the response
and reduce fluctuations on a jet-by-jet basis without changing
the average jet energy scale. These calibration techniquesare
briefly described below.

5.1 The EM+JES calibration

For the analysis of the first proton-proton collisions, a sim-
ple Monte Carlo simulation-based correction is applied as the
default to restore the hadronic energy scale on average. The
EM+JES calibration scheme applies corrections as a function
of the jet transverse momentum and pseudorapidity to jets re-
constructed at the electromagnetic scale. The main advantage
of this approach is that it allows the most direct evaluationof
the systematic uncertainties. The uncertainty on the absolute jet
energy scale was determined to be less than±2.5% in the cen-
tral calorimeter region (|y| < 0.8) and±14% in the most for-
ward region (3.2≤ |y| < 4.5) for jets with pT > 30 GeV [39].
These uncertainties were evaluated using test-beam results, sin-
gle hadron response in situ measurements, comparison with
jets built from tracks,pT balance in dijet andγ+jet events, es-
timations of pile-up energy deposits, and detailed Monte Carlo
comparisons.

5.2 The Local Cluster Weighting (LCW) calibration

The LCW calibration scheme uses properties of clusters to
calibrate them individuallyprior to jet finding and reconstruc-
tion. The calibration weights are determined from Monte Carlo
simulations of charged and neutral pions according to the clus-
ter topology measured in the calorimeter. The cluster properties
used are the energy density in the cells forming them, the frac-
tion of their energy deposited in the different calorimeterlay-
ers, the cluster isolation and its depth in the calorimeter.Cor-
rections are applied to the cluster energy to account for theen-
ergy deposited in the calorimeter but outside of clusters and en-
ergy deposited in material before and in between the calorime-
ters. Jets are formed from calibrated clusters, and a final correc-
tion is applied to the jet energy to account for jet-level effects.
The resulting jet energy calibration is denoted as LCW+JES.

5.3 The Global Cell Weighting (GCW) calibration

The GCW calibration scheme attempts to compensate for
the different calorimeter response to hadronic and electromag-
netic energy deposits at cell level. The hadronic signal is char-
acterized by low cell energy densities and, thus, a positive
weight is applied. The weights, which depend on the cell en-
ergy density and the calorimeter layer only, are determinedby
minimizing the jet resolution evaluated by comparing recon-
structed and particle jets in Monte Carlo simulation. They cor-
rect for several effects at once (calorimeter non-compensation,
dead material, etc.). A jet-level correction is applied to jets re-
constructed from weighted cells to account for global effects.
The resulting jet energy calibration is denoted as GCW+JES.

5.4 The Global Sequential (GS) calibration

The GS calibration scheme uses the longitudinal and trans-
verse structure of the jet calorimeter shower to compensatefor
fluctuations in the jet energy measurement. In this scheme the
jet energy response is first calibrated with the EM+JES cali-
bration. Subsequently, the jet properties are used to exploit the
topology of the energy deposits in the calorimeter to charac-
terize fluctuations in the hadronic shower development. These
corrections are applied such that the mean jet energy is leftun-
changed, and each correction is applied sequentially. Thiscali-
bration is designed to improve the jet energy resolution without
changing the average jet energy scale.

5.5 Track-based correction to the jet calibration

Regardless of the inputs, algorithms and calibration meth-
ods chosen for calorimeter jets, more information on the jet
topology can be obtained from reconstructed tracks associated
to the jet. Calibrated jets have an average energy response close
to unity. However, the energy of an individual jet can be over-
or underestimated depending on several factors, for example:
the ratio of the electromagnetic and hadronic components of
the jet; the fraction of energy lost in dead material, in either the
inner detector, the solenoid, the cryostat before the LAr, or the
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cryostat between the LAr and the TileCal. The reconstructed
tracks associated to the jet are sensitive to some of these ef-
fects and therefore can be used to correct the calibration ona
jet-by-jet basis.

In the method referred to as Track-Based Jet Correction
(TBJC) [45], the response is adjusted depending on the num-
ber of tracks associated with the jet. The jet energy response
is observed to decrease with jet track multiplicity mainly be-
cause the ratio of the electromagnetic to the hadronic compo-
nent decreases on average as the number of tracks increases.
In effect, a low charged-track multiplicity typically indicates a
predominance of neutral hadrons, in particularπ0s which yield
electromagnetic deposits in the calorimeter withR≃ 1. A large
number of charged particles, on the contrary, signals a more
dominant hadronic component, with a lower response due to
the non-compensating nature of the calorimeter (h/e< 1). The
TBJC method is designed to be applied as an option in addi-
tion to any JES calibration scheme, since it does not change
the overall response, to reduce the jet-to-jet energy fluctuations
and improve the resolution.

6 In situ jet resolution measurement using
the dijet balance method

Two methods are used in dijet events to measure in situ the
fractional jetpT resolution,σ(pT)/pT, which at fixed rapidity
is equivalent to the fractional jet energy resolution,σ(E)/E.
The first method, presented in this section, relies on the ap-
proximate scalar balance between the transverse momenta of
the two leading jets and measures the sensitivity of this balance
to the presence of extra jets directly from data. The second one,
presented in the next section, uses the projection of the vector
sum of the leading jets’ transverse momenta on the coordinate
system bisector of the azimuthal angle between the transverse
momentum vectors of the two jets. It takes advantage of the
very different sensitivities of each of these projections to the
underlying physics of the dijet system and to the jet energy res-
olution.

6.1 Measurement of resolution from asymmetry

The dijet balance method for the determination of the jet
pT resolution is based on momentum conservation in the trans-
verse plane. The asymmetry between the transverse momenta
of the two leading jetsA(pT,1, pT,2) is defined as

A(pT,1, pT,2)≡
pT,1− pT,2

pT,1+ pT,2
. (1)

wherepT,1 and pT,2 refer to the randomly ordered transverse
momenta of the two leading jets. The widthσ(A) of a Gaus-
sian fit toA(pT,1, pT,2) is used to characterize the asymmetry
distribution and determine the jetpT resolutions.

For events with exactly two particle jets that satisfy the hy-
pothesis of momentum balance in the transverse plane, and re-
quiring both jets to be in the same rapidity region, the relation
betweenσ(A) and the fractional jet resolution is given by

σ(A) =

√

σ2(pT,1)+σ2(pT,2)

〈pT,1+ pT,2〉
≃ 1√

2

σ(pT)

pT
, (2)

whereσ(pT,1) = σ(pT,2) = σ(pT), since both jets are in the
samey region.

If one of the two leading jets (j) is in the rapidity bin being
probed and the other one (i) in a referencey region, it can be
shown that the fractional jetpT resolution is given by

σ(pT)

pT

∣

∣

∣

( j)
=
√

4σ2(A(i, j))−2σ2(A(i)) , (3)

whereA(i, j) is measured in a topology with the two jets in dif-
ferent rapidity regions and where(i) ≡ (i, i) denotes both jets
in the samey region.

The back-to-back requirement is approximated by an az-
imuthal angle cut between the leading jets,∆φ( j1, j2) ≥ 2.8,
and a veto on the third jet momentum,pEM−scale

T,3 < 10GeV,
with no rapidity restriction. The resulting asymmetry distri-
bution is shown in Fig.1 for a p̄T ≡ (pT,1 + pT,2)/2 bin of
60GeV≤ p̄T < 80GeV, in the central region (|y|< 0.8). Rea-
sonable agreement in the bulk is observed between data and
Monte Carlo simulation.

)
T,2

+p
T,1

)/(p
T,2

-p
T,1

A = (p
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

dAdN  
N1
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1

A
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at

a 
/ M

C
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1
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1.4

ATLAS = 7 TeVsData 2010   

Monte Carlo (PYTHIA)  R = 0.6 jetstAnti-k
EM+JES calibration

 < 80 GeV
T

p ≤60 
|y| < 0.8

Fig. 1: Asymmetry distribution as defined in Equation (1) for
p̄T = 60−80 GeV and|y|< 0.8. Data (points with error bars)
and Monte Carlo simulation (histogram with shaded bands) are
overlaid, together with a Gaussian fit to the data. The lower
panel shows the ratio between data and MC simulation. The
errors shown are only statistical.

6.2 Soft radiation correction

Although requirements on the azimuthal angle between the
leading jets and on the third jet transverse momentum are de-
signed to enrich the purity of the back-to-back jet sample, it is
important to account for the presence of additional soft particle
jets not detected in the calorimeter.

In order to estimate the value of the asymmetry for a pure
particle dijet event,σ(pT)/pT ≡

√
2σ(A) is recomputed al-

lowing for the presence of an additional third jet in the sample
for a series ofpEM−scale

T,3 cut-off threshold values up to 20 GeV.
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The cut on the third jet is placed at the EM-scale to be inde-
pendent of calibration effects and to have a stable reference for
all calibration schemes. For eachpT bin, the jet energy resolu-
tions obtained with the differentpEM−scale

T,3 cuts are fitted with

a straight line and extrapolated topEM−scale
T,3 → 0, in order to

estimate the expected resolution for an ideal dijet topology

σ(pT)

pT

∣

∣

∣

∣

pEM−scale
T,3 → 0

.

The dependence of the jetpT resolution on the presence of a
third jet is illustrated in Fig.2. The linear fits and their extrapo-
lations for ap̄T bin of 60≤ p̄T < 80 GeV are shown. Note that
the resolutions become systematically broader as thepEM−scale

T,3
cut increases. This is a clear indication that the jet resolution
determined from two-jet topologies depends on the presenceof
additional radiation and on the underlying event.
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T
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 R = 0.6 jetstAnti-k
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M
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Fig. 2: Fractional jetpT resolutions, from Equation2, mea-
sured in events with 60≤ p̄T < 80 GeV and with third jet
with pT less thanpEM−scale

T,3 , as a function ofpEM−scale
T,3 , for data

(squares) and Monte Carlo simulation (circles). The solid lines
correspond to linear fits while the dashed lines show the ex-
trapolations topEM−scale

T,3 = 0. The lower panel shows the ratio
between data and MC simulation. The errors shown are only
statistical.

A soft radiation (SR) correction factor,Ksoft(p̄T), is ob-
tained from the ratio of the values of the linear fit at 0 GeV
and at 10 GeV:

Ksoft(p̄T) =

σ(pT)
pT

∣

∣

∣

pEM−scale
T,3 −→ 0 GeV

σ(pT)
pT

∣

∣

∣

pEM−scale
T,3 =10 GeV

. (4)

This multiplicative correction is applied to the resolutions
extracted from the dijet asymmetry forpEM−scale

T,3 < 10 GeV
events. The correction varies from 25% for events with ¯pT of
50 GeV down to 5% for ¯pT of 400 GeV. In order to limit the
statistical fluctuations,Ksoft(p̄T) is fit with a parameterization

of the formKsoft(p̄T) = a+ b/(log p̄T)
2, which was found to

describe the distribution well, within uncertainties. Thedif-
ferences in the resolution due to other parameterizations were
studied and treated as a systematic uncertainty, resultingin a
relative uncertainty of about 6% (see Section10).

6.3 Particle balance correction

The pT difference between the two calorimeter jets is not
solely due to resolution effects, but also to the balance between
the respective particle jets,

pcalo
T,2 − pcalo

T,1 = (pcalo
T,2 − ppart

T,2 )− (pcalo
T,1 − ppart

T,1 )+ (ppart
T,2 − ppart

T,1).

The measured difference (left side) is decomposed into res-
olution fluctuations (the first two terms on the right side) plus
a particle-level balance (PB) term that originates from out-of-
jet showering in the particle jets and from soft QCD effects.In
order to correct for this contribution, the particle-levelbalance
is estimated using the same technique (asymmetry plus soft ra-
diation correction) as for calorimeter jets. The contribution of
the dijet PB after the SR correction is subtracted in quadra-
ture from the in situ resolution for both data and Monte Carlo
simulation. The result of this procedure is shown for simulated
events in the central region in Fig.3. The relative size of the
particle-level balance correction with respect to the measured
resolutions varies between 2% and 10%.
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Fig. 3: Fractional jet resolution obtained in simulation using
the dijet balance method, shown as a function of ¯pT, both be-
fore (circles) and after the particle-balance (PB) correction (tri-
angles). Also shown is the dijet PB correction itself (squares)
and, in the lower panel, its relative size with respect to thefrac-
tional jet resolution. The errors shown are only statistical.
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7 In situ jet resolution measurement using
the bisector method

7.1 Bisector rationale

The bisector method [14] is based on a transverse balance
vector,~PT, defined as the vector sum of the momenta of the two
leading jets in dijet events. This vector is projected alongan
orthogonal coordinate system in the transverse plane, (ψ , η),
whereη is chosen in the direction that bisects the angle formed
by ~pT,1 and~pT,2, ∆φ12 = φ1−φ2. This is illustrated in Fig.4.

x

y

~pT,1

~pT,2~PT

∆φ12

∆φ12
2

ψ

η

PT,ψ

PT,η

Fig. 4: Variables used in the bisector method. Theη-axis cor-
responds to the azimuthal angular bisector of the dijet system
in the plane transverse to the beam, while theψ-axis is defined
as the one orthogonal to theη-axis.

For a perfectly balanced dijet event,~PT = 0. There are of
course a number of sources that give rise to significant fluc-
tuations around this value, and thus to a non-zero variance of
its ψ andη components, denotedσ2

ψ andσ2
η , respectively. At

particle level,~Ppart
T receives contributions mostly from initial-

state radiation. This effect is expected to be isotropic in the
(ψ ,η) plane, leading to similar fluctuations in both compo-
nents,σpart

ψ = σpart
η .

The validity of this assumption, which is at the root of the
bisector method, can be checked with Monte Carlo simulations
and with data. The precision with which it can be assessed
is considered as a systematic uncertainty (see Section7.2).
The ψ component has greater sensitivity to the energy reso-
lution becausePT,ψ is the difference between two large trans-
verse momentum components whilePT,η is the sum of two
small components. Effects such as contamination from 3-jet
events or final-state radiation not absorbed in the leading jets
by the clustering algorithm could give rise to aσpart

ψ > σpart
η . At

calorimeter level,σ2 calo
ψ is expected to be significantly larger

thanσ2 calo
η , mostly because of the jet energy resolution.

If both jets belong to the samey region, such that they have
the same average jet energy resolution, it can be shown that

σ(pT)

pT
=

√

σ2 calo
ψ −σ2 calo

η
√

2pT
√

〈|cos∆φ12|〉
. (5)

The resolution is thus expressed in terms of calorimeter observ-
ables only. The contribution from soft radiation and the under-
lying event is minimised by subtracting in quadratureση from
σψ .

If one of the leading jets (j) belongs to the rapidity region
being probed, and the other one (i) to a previously measured
referencey region, then

σ(pT)

pT

∣

∣

∣

( j)
=

√

σ2 calo
ψ −σ2 calo

η

p2
T 〈|cos∆φ12|〉

∣

∣

∣

(i, j)
− σ2(pT)

p2
T

∣

∣

∣

(i)
. (6)

The dispersionsσψ andση are extracted from Gaussian fits
to thePT,ψ andPT,η distributions in bins of ¯pT. There is no∆φ
cut imposed between the leading jets, but it is implicitly limited
by a pEM−scale

T,3 < 10 GeV requirement on the third jet, as dis-
cussed in the next section. Figure5 compares the distributions
of PT,ψ andPT,η between data and Monte Carlo simulation in
the momentum bin 60≤ p̄T < 80 GeV. The distributions agree
within statistical fluctuations. The resolutions obtainedfrom
the PT,ψ andPT,η components of the balance vector are sum-
marised in the central region as a function of ¯pT in Fig. 6. As
expected, the resolution on theη component does not vary with
the jet pT, while the resolution on theψ component degrades
as the jetpT increases.

7.2 Validation of the soft radiation isotropy with data

Figure7 shows the width of theψ andη components of~PT

as a function of thepEM−scale
T,3 cut, for anti-kt jets withR= 0.6.

The two leading jets are required to be in the same rapidity re-
gion,|y|< 0.8, while there is no rapidity restriction for the third
jet. As expected, both components increase due to the contri-
bution from soft radiation as thepT,3 cut is increased. Also
shown as a function of thepEM−scale

T,3 cut is the square-root of
the difference between their variances, which yields the frac-
tional momentum resolution when divided by 2〈p2

T〉〈cos∆φ〉.
It is observed that the increase of the soft radiation contri-

bution toσcalo
ψ andσcalo

η cancels in the squared difference and
that it remains almost constant, within statistical uncertainties,
up to pEM−scale

T,3 ≃ 20 GeV for p̄T between 160-260 GeV. The
same behaviour is observed for other ¯pT ranges. This cancella-
tion demonstrates that the isotropy assumption used for thebi-
sector method is valid over a wide range of choices ofpEM−scale

T,3
without the need for requiring an explicit∆φ cut between the
leading jets. The precision with which it can be ascertainedin
situ thatσpart

ψ = σpart
η is taken conservatively as a systematic

uncertainty on the method, of about 4− 5% at 50 GeV (see
Section10).

8 Performance for the EM+JES calibration

The performances of the dijet balance and bisector meth-
ods are compared for both data and Monte Carlo simulation as
a function of jetpT for jets reconstructed in the central region
with the anti-kt algorithm withR= 0.6 and using the EM+JES
calibration scheme. The results are shown in Fig.8. The resolu-
tions obtained from the two independent in situ methods are in
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Fig. 5: Distributions of thePT,ψ (top) andPT,η (bottom) compo-
nents of the balance vector~PT, for p̄T = 60−80 GeV. The data
(points with error bars) and Monte Carlo simulation (histogram
with shaded bands) are overlaid. The lower panel shows the ra-
tio between data and MC simulation. The errors shown are only
statistical.

good agreement with each other within the statistical uncertain-
ties. The agreement between data and Monte Carlo simulation
is also good with some deviations observed at lowpT.

The resolutions for the three jet rapidity bins with|y|> 0.8,
the Extended Tile Barrel, the Transition and the End-Cap re-
gions, are measured using Eqs.3 and6, taking the central re-
gion as the reference. The results for the bisector method are
shown in Fig.9. Within statistical errors the resolutions ob-
tained for data and Monte Carlo simulation are in agreement
within ±10% over most of thepT-range in the various regions.

Figure9 shows that dependences are well described by fits
to the standard functional form expected for calorimeter-based
resolutions, with three independent contributions, the effective
noise (N), stochastic (S) and constant (C) terms.

σ(pT)

pT
=

N
pT

⊕ S√
pT

⊕ C. (7)

TheN term is due to external noise contributions that are not (or
only weakly) dependent on the jetpT, and include the electron-
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Fig. 6: Standard deviations ofPT,ψ andPT,η , the components of
the balance vector, as a function of ¯pT. The lower panel shows
the ratio between data and MC simulation. The errors shown
are only statistical.
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ics and detector noise, and contributions from pile-up. It is ex-
pected to be significant in the low-pT region, below∼30 GeV.
The C term encompasses the fluctuations that are a constant
fraction of the jetpT, assumed at this early stage of data-taking
to be due to real signal lost in passive material (e.g. cryostats
and solenoid coil), to non-uniformities of response acrossthe
calorimeter, etc. It is expected to dominate the high-pT region,
above 400 GeV. For intermediate values of the jetpT, the sta-
tistical fluctuations, represented by theSterm, become the lim-
iting factor in the resolution. With the present data samplethat
covers a restrictedpT range, 30 GeV≤ pT < 500 GeV, there is
a high degree of correlation between the fitted parameters and it
is not possible to unequivocally disentangle their contributions.
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Fig. 8: Fractional jetpT resolution for the dijet balance and bi-
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relative difference between data and Monte Carlo results. The
dotted lines indicate a relative difference of±10%. Both meth-
ods are found to be in agreement within 10% between data and
Monte Carlo simulation. The errors shown are only statistical.

9 Closure test using Monte Carlo simulation

The Monte Carlo simulation expected resolution is de-
rived considering matched particle and calorimeter jets inthe
event, with no back-to-back geometry requirements. Match-
ing is done in η – φ space, and jets are associated if
∆R=

√

(∆η)2+(∆φ)2 < 0.3. The jet response is defined as
pcalo

T /ppart
T , in bins of ppart

T , wherepcalo
T and ppart

T correspond
to the transverse momentum of the reconstructed jet and its
matched particle jet, respectively. The jet response distribution
is modelled with a Gaussian fit, and its standard deviation is
defined as the truth jetpT resolution.

The Monte Carlo simulation truth jetpT resolution is com-
pared to the results obtained from the dijet balance and the
bisector in situ methods (applied to Monte Carlo simulation)
in Fig. 10. The agreement between the three sets of points is
within 10%. This result confirms the validity of the physicalas-
sumptions discussed in Sections6 and7 and the inference that
the observables derived for the in situ MC dijet balance and
bisector methods provide reliable estimates of the jet energy
resolution. The systematic uncertainties on these estimates are
of the order of 10% (15%) for jets withR= 0.6 (R= 0.4), and
are discussed in Section10.

10 Jet energy resolution uncertainties

10.1 Experimental uncertainties

The squares (circles) in Fig.11 show the experimental
relative systematic uncertainty in the dijet balance (bisector)
method as a function of ¯pT. The different contributions are dis-
cussed below. The shaded area corresponds to the larger of the
two systematic uncertainties for each ¯pT bin.

For the dijet balance method, systematic uncertainties take
into account the variation in resolution when applying different
∆φ cuts (varied from 2.6 to 3.0), resulting in a 2–3% effect for
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Fig. 9: Fractional jetpT resolution as a function of ¯pT for anti-
kt with R= 0.6 jets in the Extended Tile Barrel (top), Transi-
tion (center) and End-Cap (bottom) regions using the bisector
method. In the lower panel of each figure, the relative differ-
ence between the data and the MC simulation results is shown.
The dotted lines indicate a relative difference of±10%. The
errors shown are only statistical.

pT = 30–60 GeV, and when varying the soft radiation correc-
tion modelling, which contributes up to 6% atpT ≈ 30 GeV.
For the bisector method, the relative systematic uncertainty is
about 4–5%, and is derived from the precision with which the
assumption thatσpart

ψ = σpart
η when varying thepEM−scale

T,3 cut
can be verified.

The contribution from the JES uncertainties [39] is 1–2%,
determined by re-calculating the jet resolutions after varying
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jet pT resolution and the results obtained from the bisector and
dijet balance in situ methods (applied to Monte Carlo simu-
lation) for the EM+JES calibration, as a function of ¯pT. The
lower panel of the figure shows the relative difference, obtained
from the fits, between the in situ methods and Monte Carlo
truth results. The dotted lines indicate a relative difference of
±10%. The errors shown are only statistical.

the JES within its uncertainty in a fully correlated way. The
resolution has also been studied in simulated events with added
pile-up events (i.e. additional interactions as explainedin Sec-
tion 3.3), as compared to events with one hard interaction only.
The sensitivity of the resolution to pile-up is found to be less
than 1% for an average number of vertices per event of 1.9.

In summary, the overall relative uncertainty from the in situ
methods decreases from about 7% atpT =30 GeV down to
4% at pT = 500 GeV. Figure11 also shows in dashed lines
the absolute value of the relative difference between the two in
situ methods, for both data and Monte Carlo simulation. They
are found to be in agreement within 4% up to 500 GeV, and
consistent with these systematic uncertainties.
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Fig. 11: The experimental systematic uncertainty on the dijet
balance (squares) and bisector (circles) methods as a function
of p̄T, for jets with |y| < 0.8. The absolute value of the rela-
tive difference between the two methods in eachpT bin is also
shown for data and for Monte Carlo simulation (dashed lines).

10.2 Uncertainties due to the event modelling in the
Monte Carlo generators

The expected jetpT resolution is calculated for other Monte
Carlo simulations in order to assess its dependence on different
generator models (ALPGEN and HERWIG++), PYTHIA tunes
(PERUGIA2010), and other systematic variations (PARP90; see
Sec.3.1). Differences between the nominal Monte Carlo simu-
lation and PYTHIA 8 [24] have also been considered. These ef-
fects, displayed in Fig.12, never exceed 4%. Although they are
not relevant for the in situ measurements of the jet energy res-
olution themselves, physics analyses sensitive to the expected
resolution have to consider a systematic uncertainty from event
modelling estimated from the sum in quadrature of the differ-
ent cases considered here. This is shown by the shaded area in
Fig. 12and found to be at most 5%.
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Fig. 12: Systematic uncertainty due to event modelling in
Monte Carlo generators on the expected jet energy resolution as
a function ofpT, for jets with |y|< 0.8. The reference is taken
from PYTHIA MC10 and other event generators are shown
as solid triangles (HERWIG++) and open circles (ALPGEN).
Solid squares (PYTHIA PERUGIA2010) and inverted triangles
(PYTHIA PARP90) summarize differences coming from differ-
ent tunes and cut-off parameters, respectively. Open squares
compare the nominal simulation with PYTHIA 8.

10.3 Uncertainties on the measured resolutions

The uncertainties in the measured resolutions are dominated
by the systematic uncertainties, which are shown in Table1
as a percentage of the resolution for the four rapidity regions
and the two jet sizes considered, and for characteristic ranges,
low (∼ 50 GeV), medium (∼ 150 GeV) and high (∼ 400 GeV)
pT. The results are similar for the four calibration schemes.
The dominant sources of systematic uncertainty are the closure
and the data/MC agreement. The closure uncertainty (see Sec-
tion 9), defined as the precision with which in simulation the
resolution determined using the in situ method reproduces the
truth jet resolution, is larger forR= 0.4 than forR= 0.6, de-
creases withpT, and is basically independent of the rapidity.
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Jet Rapidity Total systematic uncertainty
radius range Low pT Med pT High pT

R= 0.6
0≤ |y|< 0.8 12% 10% 11%

0.8≤ |y|< 1.2 12% 10% 13%
1.2≤ |y|< 2.1 14% 12% 14%
2.1≤ |y|< 2.8 15% 13% 18%

R= 0.4
0≤ |y|< 0.8 17% 15% 11%

0.8≤ |y|< 1.2 20% 18% 14%
1.2≤ |y|< 2.1 20% 18% 14%
2.1≤ |y|< 2.8 20% 18% 18%

Table 1: Relative systematic uncertainties at low (∼ 50 GeV),
medium (∼ 150 GeV) and high (∼ 400 GeV)pT, for the four
rapidity regions and the two jet radii studied. The uncertainties
are similar for the four calibration schemes.

The data/MC agreement uncertainty is observed to be indepen-
dent ofR, larger at low and highpT than at mediumpT, and to
grow with rapidity because of the increasingly limited statisti-
cal accuracy with which checks can be performed to assess it.
Other systematic uncertainties are significantly smaller.They
include the validity of the soft radiation hypothesis, the jet en-
ergy scale uncertainty and the dependence on the number of
pile-up interactions. The uncertainty due to event modelling is

not included, as it does not contribute to the in situ measure-
ment itself.

The systematic uncertainties in Table1 for jets withR= 0.4
are dominated by the contribution from the closure test. They
decrease withpT and are constant for the highest three rapidity
bins. They are also consistently larger than for theR= 0.6 case.
The systematic uncertainties for jets withR= 0.6 receive com-
parable contributions from closure and data/MC agreement.
They tend to increase with rapidity and are slightly lower in
the mediumpT range. The uncertainty increases at highpT for
the end-cap, 2.1≤ |y|< 2.8, because of the limited number of
events in this region.

11 Jet energy resolution for other
calibration schemes

The resolution performance for anti-kt jets with R= 0.6
reconstructed from calorimeter topological clusters for the Lo-
cal Cluster Weighting (LCW+JES), the Global Cell Weight-
ing (GCW+JES) and the Global Sequential (GS) calibration
strategies (using the bisector method) is presented in Fig.13
for the Central, Extended Tile Barrel, Transition and End-Cap
regions. The top part shows the resolutions determined from
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Fig. 13: Fractional jetpT resolutions as a function of ¯pT for anti-kt jets withR= 0.6 with |y|< 0.8 (top left), 0.8≤ |y|< 1.2 (top
right), 1.2≤ |y|< 2.1 (bottom left) and 2.1≤ |y|< 2.8 (bottom right), using the bisector in situ method, for fourjet calibration
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lower panels show the relative difference between data and Monte Carlo simulation results. The dotted lines indicate relative
differences of±10%. The errors shown are only statistical.
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data, whereas the bottom part compares data and Monte Carlo
simulation results. The relative improvement in resolution with
respect to the EM+JES calibrated jets is comparable for the
three more sophisticated calibration techniques. It ranges from
10% at lowpT up to 40% at highpT for all four rapidity re-
gions.

Figure14displays the resolutions for the two in situ meth-
ods applied to data and Monte Carlo simulation for|y| < 0.8
(left plots). It can be observed that the results from the two
methods agree, within uncertainties. The Monte Carlo simula-

tion reproduces the data within 10%. The figures on the right
show the results of a study of the closure for each case, where
the truth resolution is compared to that obtained from the insitu
methods applied to Monte Carlo simulation data. The agree-
ment is within 10%. Overall, comparable agreement in reso-
lution is observed in data and Monte Carlo simulation for the
EM+JES, LCW+JES, GCW+JES and GS calibration schemes,
with similar systematic uncertainties in the resolutions deter-
mined using in situ methods.
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Fig. 14: Fractional jetpT resolutions as a function of ¯pT for anti-kt jets withR= 0.6 for the Local Cluster Weighting (LCW+JES),
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12 Improvement in jet energy resolution
using tracks

The addition of tracking information to the calorimeter-
based energy measurement is expected to compensate for the
jet-by-jet fluctuations and improve the jet energy resolution
(see Section5.5). The performance of the Track-Based Jet Cor-
rection method (TBJC) is studied by applying it to both the
EM+JES and LCW+ JES calibration schemes, in the central
region. The measured resolution for anti-kt jets with R= 0.6
(R= 0.4) is presented as a function of the average jet trans-
verse momentum in the top (bottom) plot of Fig.15.

The relative improvement in resolution due to the addition
of tracking information is larger at lowpT and more impor-
tant for the EM+JES calibration scheme. It ranges from 22%
(10%) at low pT to 15% (5%) at highpT for the EM+JES
(LCW+JES) calibration. ForpT < 70 GeV, jets calibrated with
the EM+JES+TBJC scheme show a similar performance to
those calibrated with the LCW+JES+TBJC scheme. Overall,
jets with LCW+JES+TBJC show the best fractional energy res-
olution over the fullpT range.
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Fig. 15: Top: Fractional jetpT resolutions as a function ¯pT,
measured in data for anti-kt jets with R= 0.6 (top) andR=
0.4 (bottom) and for four jet calibration schemes: EM+JES,
EM+JES+TBJC, LCW+JES and LCW+JES+TBJC. The lower
panel of the figure shows the relative improvement for the
EM+JES+TBJC, LCW+JES and LCW+JES+TBJC calibra-
tions with respect to the EM+JES jet calibration scheme, used
as reference (dotted line). The errors shown are only statistical.

13 Summary

The jet energy resolution for various JES calibration schemes
has been measured using two in situ methods with a data sam-
ple corresponding to an integrated luminosity of 35 pb−1 col-
lected in 2010 by theATLAS experiment at

√
s= 7 TeV.

The Monte Carlo simulation describes the jet energy res-
olution measured in data within 10% for jets withpT values
between 30 GeV and 500 GeV in the rapidity range|y|< 2.8.

The resolutions obtained applying the in situ techniques to
Monte Carlo simulation are in agreement within 10% with the
resolutions determined by comparing jets at calorimeter and
particle level. Overall, the results measured with the two in situ
methods have been found to be consistent within systematic
uncertainties.
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Ingenierı́a Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia,
Spain
167 Department of Physics, University of British Columbia, Vancouver BC, Canada
168 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
169 Department of Physics, University of Warwick, Coventry, United Kingdom
170 Waseda University, Tokyo, Japan
171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
172 Department of Physics, University of Wisconsin, Madison WI, United States of America
173 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
174 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
175 Department of Physics, Yale University, New Haven CT, United States of America
176 Yerevan Physics Institute, Yerevan, Armenia
177 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Novosibirsk State University, Novosibirsk, Russia



ATLAS collaboration: Jet Energy Resolution with theATLAS detector 25

g Also at Fermilab, Batavia IL, United States of America
h Also at Department of Physics, University of Coimbra, Coimbra, Portugal
i Also at Department of Physics, UASLP, San Luis Potosi, Mexico
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