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1 Introduction

The allowed scalar manifolds for the N = 2 five-dimensional supergravity coupled to nV −1

Abelian vector multiplets, parametrized by scalar fields ϕx (x = 1, . . . , nV − 1), can be

described as the (nV − 1)-dimensional cubic hypersurface 1
3!dijkλ̂

iλ̂j λ̂k = 1 of an ambient

space spanned by nV coordinates λ̂i = λ̂i(ϕx) (i = 1, . . . , nV ) [1]. The cubic nature of

this polynomial constraint is related to the presence of the Chern-Simons term dijkF
iF jAk

in the Lagrangian for the nV vector fields Ai
µ (µ = 0, 1, 2, 3, 4), with nV denoting the

total number of D = 5 vector potentials (including the D = 5 graviphoton). A complete

classification of the allowed homogeneous scalar manifolds was given in [2, 3], and many

interesting properties, especially when they are restricted to be a symmetric coset of the

Jordan family, were already analyzed in [1]. When this theory is dimensionally reduced

to four dimensions, it yields a particular class of N = 2 four-dimensional matter coupled

models with special Kähler target space geometries, which were studied in [3] under the

name “d-spaces”. There, the uplift between four and five dimensions was called “r-map”,

since it associates real scalars to the N = 2 four dimensional complex scalar fields belonging

to the nV D = 4 vector multiplets: zi = Xi/X0 = ai − i λi, with ai, λi real and with

the index 0 pertaining to the D = 4 graviphoton. The axions ai originate by Kaluza-

Klein (KK) reduction from the vector components Ai
4, and the λi = λ̂ie2φ are nV real

scalars parametrizing the D = 5 scalars φx and the KK scalar φ = g44. In this sense,

the r-map is similar to the c-map, relating the moduli spaces of special Kähler vector

multiplets to the quaternionic hypermultiplets scalar manifolds in N = 2 theories [3, 4]. In

superstring theories, the c-map relates IIA and IIB string theories compactified on the

same (2, 2) superconformal field theory at c = 9, while in a purely supergravity context, it

can simply be viewed as a consequence of dimensional reduction from 4 to 3 dimensions [4].

Actually, these N = 2 matter coupled theories, where the holomorphic prepotential takes

the cubic form

F (X) ≡ 1

3!
dijk

XiXjXk

X0
, (1.1)

were first studied in [5], where they were shown to lead to supergravity couplings with

flat potentials characterized by the completely symmetric rank-3 tensor dijk. They are

particularly relevant in connection with the large volume limit of Calabi-Yau compactifi-

cations of type IIA superstrings where the d-tensors are related to intersection forms of

the Calabi-Yau manifold.

Formally, the d-tensor appears in the expression for the curvature of any special Kähler

manifold [6]

Ri̄kl̄ = −gi̄gkl̄ − gil̄gk̄ + CikpC ̄l̄p̄g
pp̄ (1.2)

since in “special coordinates” the covariantly holomorphic quantity Cijk is given by Cijk =

eK(z,z̄)dijk, with K(z, z̄) denoting the Kähler potential.

Notice that a generic d-geometry of complex dimension nV is not necessarily a coset

space, but nevertheless it admits nV + 1 real isometries, corresponding to Peccei-Quinn

shifts of the nV axions, and to an overall rescaling of the prepotential [3].

This paper aims to study d-geometries in a framework broader than N = 2, considering

the r-map for N ≥ 2 extended supergravities along the lines of previous work on this 4D/5D
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relation in the context of black hole supergravity solutions and their attractors [7–9]. Due

to the structure of 5D spinors, these generalized d-geometries encompass all extended

supergravities with a number of supercharges multiple of 8, and thus an even number of

supersymmetries N = 2, 4, 6, 8.

dijk is an invariant tensor of the underlying classical duality group G5 of the D = 5

action [10], corresponding to the continuous version of the non-perturbative string sym-

metries G5(Z) of [11]. The dimensional reduction yields interesting relations between the

scalar manifolds and the isometries of the 5D and 4D theories: G5 is embedded into the

D = 4 electric-magnetic duality group G4, whose isometries are included in Sp(2nV +2,R)

(for generic N > 1, one has Sp(2n,R) for a theory with n vector potentials; for N = 2,

n = nV + 1). More precisely, one always has the chain of embeddings

G5 × SO(1, 1) ⊂ G4 ⊂ Sp(2nV + 2,R). (1.3)

Our main point is that the five-dimensional origin of all generalized d-geometries nat-

urally selects a particular branching of the D = 4 scalars, given by the axions aI , the

Kaluza-Klein scalar φ and the 5D scalars λx:

Φ =
{
aI , φ, λx

}
. (1.4)

WhenN > 2 these latter transform in a suitable representation ofH5, the maximal compact

subgroup of G5, which depends on N : for instance, in N = 8 there are 42 of them, sitting

in the rank-4 antisymmetric skew-traceless representation 42 of USp(8), and there are

27 axions.

Remarkably, only in N = 2 the number of axions exactly matches the number of

scalars plus 1, so that the two sets can be combined to give complex scalars. For this

case we will use a small index i rather than I, to emphasize its complex nature. We

will illustrate that the aI and φ give rise to a universal sector which is present in any

N = 2, 4, 6, 8 -extended supergravity in D = 4 endowed with generalized d-geometry for

the vector multiplet sigma model.

In the study and classification of BPS and non-BPS extremal black hole supergravity

solutions, the relation between 4D and 5D for cubic holomorphic prepotentials F (X) (1.1)

was used in [7] to relate the two N = 2 effective black hole potentials and to derive the 4D

attractors and Bekenstein-Hawking classical entropies from the 5D ones. The key idea was

to reformulate the 4D effective black hole potential in terms of 5D real special geometry

data, implementing the natural splitting (1.4) of the 4D scalar fields.

Some extra features arise in symmetric special geometries, where the d-symbols satisfy

the relation [1]

dr(pqdij)kd
rkl =

4

3
δl(pdqij), (1.5)

and one can define cubic , G5-invariant, and quartic, G4-invariant polynomials of electric

(q0, qi) and magnetic charges (p0, pi) by [12]:

I4
(
p0, pi, q0, qi

)
= −

(
p0q0 + piqi

)2
+ 4

[
q0I3 (p)− p0I3 (q) +

∂I3 (q)

∂qi

∂I3 (p)

∂pi

]
, (1.6)

I3(p) ≡ 1

3!
dijkp

ipjpk, I3(q) ≡
1

3!
dijkqiqjqk . (1.7)
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The simplest example of rank-3 symmetric d-geometry is provided in N = 2 by the stu

model [13, 14], with 3 complex scalar fields spanning the coset (SU(1, 1)/U(1))3, which

serves as the ubiquitous toy model in the context of black holes arising from superstring

and M -theory.

The generalization of N = 2 special geometry is achieved in terms of a generalized

symplectic formalism, established in [15], which enlarges the rich geometric structure of

special Kähler manifolds [3] to the other extended supergravities. In fact, an important

difference between N = 2 and N > 2 extended theories is that for N > 2 the scalar sigma

model is always given by a symmetric space G/H.

The formalism of [15] hinges on the definition of generalized sections (f ,h) of a flat

symplectic bundle [16], which relates to N > 2 the flat bundle underlying special Kähler

geometry [17]. Even inN = 2 the sections are fundamental, since they allow to describe also

theories where the holomorphic prepotential F (XΛ) does not exist [18, 19]. More precisely,

the sections VA = (fΛA , hΛA), with Λ = 0, . . . , nV and A = 0, a, are square complex matrices

defined in N = 2 supergravity by

(f ,h) = (LΛ, DāL
Λ
;MΛ, DāMΛ) , (1.8)

with (LΛ,MΛ) = eK/2(XΛ, FΛ), Da denoting the flat covariant derivative in the scalar

manifold: Da = eaiDi, gi̄ = eai e
b
̄δab and Di = ∂i +

1
2∂iK. They satisfy

hΛA = NΛΣf
Σ
A (1.9)

where NΛΣ(z) is the 4D complex vector kinetic matrix. The sections encode a generic

element L of the flat Sp(2nV + 2,R)-bundle over the D = 4 scalar manifold as [15]

(
A B

C D

)
−→

(
f

h

)
=

1√
2

(
A −iB

C −iD

)
, (1.10)

or the inverse transformation

L ≡
(
A B

C D

)
=

√
2

(
Re f −Im f

Reh −Imh

)
, (1.11)

with the symplectic property LTΩL = Ω =
(
0−1

1 0

)
yielding the conditions

i(f †h− h†f) = 11 , fTh− hT f = 0 . (1.12)

This paper studies in detail the properties of a certain parametrization (2.2), (2.13)

of four-dimensional generalized d-geometries, which reflects their five-dimensional origin,

yielding a lower-triangular structure (2.13) for the matrix L characterizing the flat sym-

plectic bundle sigma model which generalizes the one of N = 2 special Kähler d-geometry

to any for any N = 2, 4, 6, 8. This parametrization exploits nilpotent (of degree 4) trans-

lations [17, 20, 21] parametrized by axion scalars aI , and it acts on the same space where

the d-tensor is defined. The sigma model is parametrized by additional block diagonal

elements in the matrix L, one of them being a dilatation in terms of the KK radius φ, and
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by a symmetric matrix, which depends on the 5D data and is related to the kinetic term

of the 5D vector fields.

It should be stressed that the proposed basis turns out to be different from the standard

parametrization of N = 2 d-geometry (1.8), although it leads to the same 4D vector kinetic

matrix. We will emphasize that the two symplectic frames are in fact related by a unitary

transformation M that was introduced in [9], which only depends on the 5D data. The

unitary transformation M , that rotates the usual N = 2 complex basis of special geometry

into the basis where f is real and L is lower triangular, allows to make a precise connection

with the N = 2 stu model, viewed as a sub sector of the full N = 8 theory [15, 22, 23].

In the t3 model, this unitary transformation is numerical (cfr. appendix B), because the

relevant 5D uplifted theory is the pure N = 2, D = 5 supergravity.

Symmetric d-geometries can be related to Euclidean Jordan algebras of rank 3 [1, 24],

which were classified in [25]; in this case, the nilpotent axionic translations fit into a

Jordan algebra irreducible representation. The reduction to D = 4 yields a Freudenthal

triple system (see e.g. [12]).

Our results have interesting applications to non-BPS extremal black holes, that we

illustrate by making a precise and non trivial comparison between the methods of [22]

and [26] in the computation of the fake superpotential [27] for non-BPS solutions and

(p0, q0) charge configuration in the stu-truncation of N = 8 supergravity.

Beyond their interest in relation to supergravity structure and solutions, one may

hope that these general properties of N ≥ 2 d-geometries and the corresponding triangular

symplectic frame (with degree-4 nilpotent axionic translations) could play a role in un-

derstanding the symmetry structure of supergravity counterterms, in order to clarify the

issue of ultraviolet finiteness of N = 8 and other extended supergravity theories in D = 4

space-time dimensions [28].

The paper starts in section 2 with the universal decomposition for theD = 4 symplectic

element L in the proposed basis 1.4, where axion are singled out. Then, the relation

between L and the matrix M entering the black hole effective potential is elucidated

in section 3. Other geometrical identities in a 5-dimensionally covariant formalism are

presented in section 4. The simpler case of N = 4, D = 4 pure supergravity (with no

matter coupling) is discussed in section 5. For d-geometries based on symmetric spaces

G/H, the computation of the Vielbein and of the H-connection is carried out in section 6,

in particular focusing on N = 8 supergravity. Next, in section 7 the N = 2 axion basis is

related to the reformulation of special Kähler geometry as flatness condition of a symplectic

connection [17].

A detailed treatment of N = 2 d-geometries is then given in section 8, where we

elaborate on the results of [9] on the unitary matrix M rotating the axion basis to the

usual special coordinates one. Geometrical identities for M and the related matrix M̂ are

derived in section 9.

An application of the axion basis to the first order formalism for extremal black holes

is considered in section 10. After a preliminary analysis for the stu model in sections 10.1.1

and 10.1.2 , explicit computations for the t3 limit in the
(
p0, q0

)
(D0 − D6) charge con-

figuration are performed in sections 10.1.3, and the known fake non-BPS superpotential is
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retrieved in section 10.2. In table 1 we list the allowed Rank-3 Euclidean Jordan algebras

J3 and corresponding symmetric generalized d-geometries, characterized by a parameter q

related to the number of vector and scalar fields for each N = 2, 4, 6, 8.

Some appendices conclude the paper. In appendix A useful results on exponential

matrices are collected, while appendix B contains some explicit computations in the t3

model, displaying the matrix M . The purely imaginary nature of the Vielbein of the stu

model and its consistent embedding into the N = 8 theory are discussed in appendix C.

Finally, appendix D deals with the duality-invariant polynomial and the first order fake

superpotential in the D0−D6 configuration of the stu model with i3 = 0.

2 Universal decomposition for the D = 4 symplectic element in the

axion basis

We are interested in general features of all D = 4 Maxwell-Einstein (super)gravity theories

admitting an uplift to D = 5. The classification of the tensors dIJK associated to homo-

geneous Riemannian d-spaces was performed in [3]. For symmetric geometries, dIJK can

be characterized as the cubic norm of an associated rank-3 Jordan algebra1 [1, 25]. In this

case, the general properties are given in terms of a parameter q reported in table 1.

The number of D = 5 vectors is nV = 3q + 3, while the number of D = 4 2-form field

strengths and their duals is 6q + 8. Only in N = 2 theories, the number of 5D real scalars

is 3q+2, while the number of 4D complex scalars is 3q+3 (one for each 4D Abelian vector

multiplet). Quite generally, the relation between the number of vector and scalar fields in

theories derived from five dimensions is such that

# 4D scalars = # 5D scalars + # 5D vectors + 1

# 4D vectors = # 5D vectors + 1 = nV + 1 , (2.1)

where the nV axions arise from the total number of 5D vectors.

We will show that in these generalized d-geometries, the representation of the D = 4

axions aI is nilpotent of degree four and that, together with the Kaluza-Klein SO(1, 1)

radius parametrized by the real scalar φ, it provides a universal sector of the scalar manifold

of the D = 4 theory, regardless of its specific geometry. This reflects the property of special

Kähler d-geometries [3], of always having as minimal isometry of the scalar manifold the

nV axionic Peccei-Quinn translations and the SO(1, 1) overall rescaling.

To prove the above statement, we split the symplectic element L according to the

decomposition of the D = 4 scalars (1.4), and we demonstrate that2

L
(
aI , φ, E (λ)

)
= A(aI)D(φ)G(E) . (2.2)

In order to identify the various factors in (2.2), one must consider the definition (1.11) and

complement it with the results of [9], where the 4D/5D connection was used for N = 8

1With the exception of the non-Jordan symmetric sequence [29] of N = 2, D = 5 vector multiplets’

scalar manifolds SO(1,nV )
SO(nV )

.
2In the following we will switch the axion index from i into I, whenever our analysis holds for generic

N > 2 d-geometries.
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to determine the 28 × 28 symplectic sections (fΛA , hΛA) in a five-dimensionally covariant

symplectic frame, where the indices split as Λ = (0, I) and A = (0, a). They take the form:

fΛA =
1√
2

(
e−3φ 0

e−3φaI e−φ(a−1/2)Ia

)
; (2.3)

hΛA =
1√
2

(
−e−3φ d

6 − ie3φ −1
2e

−φdK(a−1/2)Ka + ieφaK(a1/2) a
K

1
2e

−3φdI e−φdIJ(a
−1/2)Ja − ieφ(a1/2) a

I

)
, (2.4)

with

d ≡ dIJKa
IaJak , dI ≡ dIJKa

Jak , dIJ ≡ dIJKa
K , (2.5)

and where

E (λ) ≡ (a−1/2) J
a = E J

a (2.6)

is the coset representative of the 5D scalar manifold G5/H5. Notice that in this basis the

section f is real and it takes a lower triangular form, and that the 5D scalars enter the

sections only through E(λ).

By generalizing this 5D/4D approach to the class of theories under consideration and

interpreting the indices Λ, A on the appropriate representations, we determine the generic

expression for each factor in (2.2).

The axionic generators

A(a) ≡ eT (a) , (2.7)

also appeared in [30] in the context of gauging of flat groups in 4D supergravity, and they

are given by the 2(nV + 1)× 2(nV + 1) block-matrix

T (a) =




0 0 0 0

aJ 0 0 0

0 0 0 −aI
0 dIJ 0 0


 . (2.8)

It is easily checked that T (a) is nilpotent of order four:

T 4(a) = 0 ⇒ A(a) = 11 + T (a) +
1

2
T 2(a) +

1

3!
T 3(a), (2.9)

which, by definition (2.7), yields

A(a) =




1 0 0 0

aJ 1 0 0

−1
6d −1

2dI 1 −aI
1
2dJ dIJ 0 1


 . (2.10)

As we will discuss in section 8, this is in agreement with the N = 2 interpretation of [21].

The 1-dimensional Abelian SO(1, 1) factor in (2.2) is given by

D(φ) =




e−3φ 0 0 0

0 e−φ 0 0

0 0 e3φ 0

0 0 0 eφ


 , (2.11)

– 7 –
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whereas the (2nV + 2)× (2nV + 2) matrix G is

G(λ) =




1 0 0 0

0 E 0 0

0 0 1 0

0 0 0 E−1


 . (2.12)

By matrix multiplication of (2.10)–(2.12) according to (2.2), one finds that the symplectic

matrix L (1.11) acquires the triangular form:

L(aI , φ, E (λ))=




e−3φ 0 0 0

aIe−3φ E I
a e

−φ 0 0

−1
6de

−3φ −1
2dKE

K
ae

−φ e3φ −aK(E−1)aKe
φ

1
2dIe

−3φ dIKE
K

a e−φ 0 (E−1)aIe
φ


 . (2.13)

We see that, in this particular basis, B = Im f = 0, since the f section is purely real:

f = Ref =
1√
2
A(aI , φ, E (λ)). (2.14)

On the other hand, one has

h =
1√
2
(C − iD) ⇒

Reh = 1√
2
C(aI , φ, E (λ) , dIJK)

Imh = − 1√
2
D(aI , φ, E (λ)) ,

along with the normalization

fT Imh =
1

2
. (2.15)

Notice that the C sub-block is the only one depending on dIJK .

Conversely, one can say that the formula (2.13) for the symplectic representative yields

an explicit expressions for the symplectic sections f and h which match eqs. (2.3) and (2.4).

To make the discussion concrete, let us consider N = 8 supergravity [31, 32], based

on the rank-3 Euclidean Jordan algebra JOs

3 over the split octonions; the D = 5 U -duality

group is G5 = E6(6) and dIJK is the invariant tensor of the fundamental irrep. 27 (I, J,K =

1, . . . , 27 = nV − 1, x = 1, . . . , 42, i = 1, . . . 70). The Sp(56,R) matrix L (1.11) is the coset

representative of the rank-7 symmetric D = 4 scalar manifold

G4

H4
=

E7(7)

SU(8)
, dimR = 70, (2.16)

where H4 is the maximal compact subgroup of E7(7). The 70 real D = 4 scalars zi sit in

the rank-4 self-dual antisymmetric irrep. 70 of SU(8).

The symplectic sections (2.3) and (2.4) are given in the particular symplectic frame

defined by the partial decomposition of L (2.13) in a solvable basis, which is covariant with

respect to H5 = USp(8), the local symmetry of the D = 5 uplifted theory. Furthermore,

E (λ) is the coset representative of the rank-6 symmetric D = 5 scalar manifold

G5

H5
=

E6(6)

USp(8)
, dimR = 42. (2.17)
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The 42 real D = 5 scalars λx form the rank-4 self-dual antisymmetric skew-traceless irrep.

42 of USp(8). Note that (2.6) is consistent with the well known fact that the N = 8,

D = 5 kinetic vector matrix (a−1) J
I is the square of the D = 5 coset representative [16].

The scalar decomposition (1.4) in this case becomes

SU(8) ⊃ USp(8);

70 = 42
λx

+ 27
aI

+ 1
φ
, (2.18)

where the axions aI form a representation of JOs

3 , because

E6(6) ⊃ USp(8);

27 = 27. (2.19)

3 Relation between M and L

We now consider a further consequence of the symplectic structure of generalized special

geometry [15], holding for every D = 4 Maxwell-Einstein supergravity even beyond d-

geometries. It can be useful in the present context and in view of applications to black

holes. The black hole effective potential for dyonic charges Q = (pΛ, qΛ) is given by [33]

VBH = −1

2
QtM(N )Q =< Q, VA >< Q, V

A
>= ZAZ

A
(3.1)

where the central charges ZA =< Q, VA > are defined by the symplectic product

ZA =< Q, VA >= QTΩVA = fΛAqΛ − hΛ Ap
Λ , (3.2)

in terms of the symplectic invariant metric

Ω =

(
0 −11

11 0

)
. (3.3)

The matrix M is given by

M =

(
11 −ReN
0 11

)(
ImN 0

0 (ImN )−1

)(
11 0

−ReN 11

)
≡ RTMDR ; (3.4)

R ≡
(

11 0

−ReN 11

)
; (3.5)

MD ≡
(
ImN 0

0 (ImN )−1

)
, (3.6)

where N = hf−1 is the D = 4 kinetic vector matrix.

In generalized special geometry [15] one introduces the Sp(2nV +2) Hermitian matrix

C ≡ 1

2
(M+ iΩ) ; C† = C, (3.7)
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whose symmetric and antisymmetric parts are given by (3.4) and Ω respectively. C is

related to the symplectic sections (f ,h) by:

C =

(
−hh† hf †

fh† −ff †

)
, (3.8)

and therefore its action on the vector VA is given by

1

2
(M+ iΩ)VA = iΩVA ⇔ MVA = iΩVA, (3.9)

expressing a twisted self-duality [34], recently used in [35].

Using the above relations, since both M and L are given in terms of the sections (f ,h),

one can see that they can be related by [36, 37]

M = −(LT )−1L−1 = −(LLT )−1; (3.10)

m
ML = −(LT )−1 = ΩLΩ, (3.11)

where the last step in (3.11) follows from the symplecticity of L itself. Notice that, since

also M is symplectic, (3.10) implies that M = −L̃L̃T , with L̃ ≡ ΩL.

To prove (3.10)–(3.11), one just notices that L (1.11) can be rewritten as (with ∗ here

denoting complex conjugation)

L =
1√
2
(B + B∗); (3.12)

B ≡
(

f if

h ih

)
=

(
f

h

)
(11, i11) , (3.13)

which, by (3.9) implies

ML = M 1√
2
(B + B∗) =

1√
2

(
−i(h− h∗) h+ h∗

i(f − f∗) −(f + f∗)

)
=

=

(
0 −11

11 0

)
L

(
0 −11

11 0

)
= ΩLΩ � (3.14)

By sandwiching (3.10) with the dyonic charge vector Q, one also obtains

VBH = −1

2
QtM(N )Q =

1

2
(L−1Q)T (L−1Q) =

1

2
ZT · Z (3.15)

where the real central charge vector Z satisfies

Z = L−1Q , (3.16)
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with the electric and magnetic real components of Z = (Z0
(m), Z

a
(m), Z

(e)
0 , Z

(e)
a )T given by

universal formulae in terms of 5D axion and dilation fields

Z
(e)
0 = e−3φ(q0 + qIa

I +
d

2
p0 − 1

2
pIdI) ,

Z
(e)
I = e−φ(qI +

1

2
p0dI − pJdIJ) ,

Z0
(m) = e3φp0 ,

ZI
(m) = eφ(pI − p0aI) , (3.17)

which were derived in [9] forN = 8, but that we can here interpret as valid for all generalized

d-geometries. The components with flat indices are obtained by

Z(e)
a = Z

(e)
I (a−1/2)Ia , Za

(m) = ZI
(m)(a

1/2)aI (3.18)

so that the complex central charge vector with flat indices is

ZA =

(
Z0

Za

)
=

1√
2

(
Z

(e)
0 + iZ0

(m)

Z
(e)
a + iZa

(m)

)
(3.19)

and the effective black hole potential is written as [9]

VBH = |Z0|2 + ZaZa . (3.20)

4 5D-covariant identities

In the 5D covariant formalism introduced in [9], it was found that the kinetic vector matrix

NΛΣ in N = 8, D = 4 supergravity can be decomposed as:

ReN =

(
d
3 −dI

2

−dJ
2 dIJ

)
, ImN =

(
−e6φ − e2φaIaJaIJ aIJa

J

aIJa
I −e2φaIJ

)
. (4.1)

In virtue of the discussion of section 2, these formulae hold for any d-geometry. Note

that ImN depends on the axions aI but not on dIJK , whereas ReN only depends on axions,

and only through dIJK . It is immediate to realize that this is a consequence of the solvable

decomposition (2.2) of L, as well as of the relation (3.10) between M and L. Indeed,

using (3.5), the matrix A (2.10) can be rewritten as

A =

(
11 0

ReN 11

)



1 0 0 0

aI 1 0 0

0 0 1 −aJ
0 0 0 1


 ≡ (R)−1AD(a

I) , (4.2)

thus yielding

L = (R)−1ADDG . (4.3)

Then, since DG is a diagonal matrix, (3.10) implies

M = −(LT )−1L−1 = −(R)T
[
(AT

D)
−1(DG)−1(DG)−1A−1

D

]
R . (4.4)
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Using (2.11), (2.12) and (4.2), one can check that

− (AT
D)

−1(DG)−1(DG)−1A−1
D =

(
ImN 0

0 ImN−1

)
. (4.5)

As mentioned, this explains the dependence of ImN on axions alone and not on the d-

tensor, and that of ReN on axions only through dIJK .

5 A related case: N = 4, D = 4 pure supergravity

Although pure 4D N = 4 supergravity cannot be obtained from five dimensions by Kaluza-

Klein reduction, which would always give rise to the coupling to matter multiplets, we

mention it here because of the recent related work of [38] and as a simple instance of the

splitting of scalar fields associated with (2.2). The vector kinetic matrix NΛΣ in this case

reads [39] (Λ,Σ = 1, . . . , 6)

NΛΣ = −SδΛΣ, (5.1)

where the axio-dilatonic complex scalar field S of the gravity multiplet, spanning the rank-1

symmetric coset G/H = SL(2,R)/SO(2), is defined as

S ≡ ieφ + a , (5.2)

yielding

ReNΛΣ = −aδΛΣ , ImN = −eφδΛΣ . (5.3)

A solvable basis can be defined also for this theory as in (5.1), and it is given by the

axio-dilatonic symplectic frame , where the relevant matrices read

M =

(
−eφ − a2e−φ −ae−φ

−a e−φ −e−φ

)
; (5.4)

L =

(
1 0

−a 0

)(
e−φ/2 0

0 eφ/2

)
=

(
e−φ/2 0

−a e−φ/2 eφ/2

)
, (5.5)

such that the coset representative L of SL(2,R)/SO(2) satisfies

L−1(a, φ) = L(−a,−φ) . (5.6)

In this case the axionic generator

A ≡ ∂

∂a

(
1 0

−a 0

)
=

(
0 0

−1 0

)
(5.7)

is nilpotent of order two rather than of order four, as for generic d-geometries:

A2 = 0. (5.8)

The different degree of nilpotency is due to the fact that this theory does not admit a

5D uplift and thus it is not a d-geometry in absence of matter coupling.
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6 Vielbein and H-connection in the axion basis

When the d-geometry is not only an homogeneous but a symmetric cosets G/H , the

Vielbein Pµ and H-connection ωµ in a solvable decomposition can be simply computed

from the (g⊖ h)-valued Maurer-Cartan 1-form L−1dL by standard methods

(L−1dL)s =
1

2

(
L−1dL+ (L−1dL)T

)
= Pµ ; (6.1)

(L−1dL)a =
1

2

(
L−1dL− (L−1dL)T

)
= ωµ , (6.2)

where subscripts “s” and “a” denote the symmetric and antisymmetric part, respectively.

The simplest example is provided by the axio-dilatonic coset G/H = SL(2,R)/SO(2)

treated above, whose coset representative is given by (5.5), with Maurer-Cartan 1-form

L−1dL =

(
−1

2dφ 0

−e−φda 1
2dφ

)
, (6.3)

leading to the Vielbein Pµ and U(1)-connection ωµ respectively given by

Pµ =

(
−1

2dφ −1
2e

−φda

−1
2e

−φda 1
2dφ

)
, ωµ =

(
0 1

2e
−φda

−1
2e

−φda 0

)
. (6.4)

In particular, one sees that the U(1) connection ωµ contains only the da differential. The

kinetic term for the nonlinear σ-model SL(2,R)/SO(2) therefore reads [39]

Tr
(
P TP

)
=

1

2

(
dφ2 + e−2φda2

)
. (6.5)

We now consider in particular N = 8 supergravity, where the Cartan decomposition

for the D = 4 scalar manifold (2.16) reads

g = h⊕ k; (6.6)

g = e7(7); h = su(8); k = 70 of su(8). (6.7)

According to (2.18)–(2.18), the following usp(8)-covariant branchings take place:

k : 70 = 1k + 42k + 27k; (6.8)

h : 63h = 36h + 27h (6.9)

The coset Vielbein Pµ is given by the non-compact generators

1k : D−1∂D;

42k : [G−1∂G]s;
27k :

[
(DG)−1∂T (a)(DG)

]
s
, (6.10)

while the compact ones give the SU(8)-connection ωµ

36h → [G−1∂G]a;
27h →

[
(DG)−1∂T (a)(DG)

]
a
. (6.11)

– 13 –



J
H
E
P
0
2
(
2
0
1
3
)
0
5
9

The Maurer-Cartan 1-form gets generally decomposed as

L−1∂L = (DG)−1∂T (a)(DG) +D−1∂D + G−1∂G . (6.12)

From the definitions (2.10), (2.11) and (2.12), one can compute

D−1∂D =




−3 0 0 0

0 −1 0 0

0 0 3 0

0 0 0 1


 dφ =

(
D−1∂D

)
s
; (6.13)

G−1∂G =




0 0 0 0

0 E−1dE 0 0

0 0 0 0

0 0 0 −E−1dE


 ; (6.14)

(DG)−1∂T (a)(DG) = e−2φ




0 0 0 0

(a1/2)aIda
I 0 0 0

0 0 0 −(a1/2)bIda
I

0 dIJK(a−1/2)Ja (a
−1/2)Kb da

I 0 0


 .

(6.15)

This implies that the Maurer-Cartan 1-form L−1∂L does not depend on the axions aI

explicitly, but only on their differential daI .

According to (6.1) and (6.2), the Vielbein Pµ and SU(8)-connection ωµ for the

coset (2.16) are the symmetric and anti-symmetric part of (6.12), respectively. In par-

ticular, the component 27k of Pµ and the component 27h of ωµ respectively read:

27k :
[
(DG)−1∂T (a)(DG)

]
s
=

=
1

2
e−2φ




0 (a1/2)bIda
I 0 0

(a1/2)aIda
I 0 0 dIJK(a−1/2)Ja (a

−1/2)Kb da
I

0 0 0 −(a1/2)bIda
I

0 dIJK(a−1/2)Ja (a
−1/2)Kb da

I −(a1/2)aIda
I 0


 ;

(6.16)

27h :
[
(DG)−1∂T (a)(DG)

]
a
=

=
1

2
e−2φ




0 −(a1/2)bIda
I 0 0

(a1/2)aIda
I 0 0 −dIJK(a−1/2)Ja (a

−1/2)Kb da
I

0 0 0 −(a1/2)bIda
I

0 dIJK(a−1/2)Ja (a
−1/2)Kb da

I (a1/2)aIda
I 0


 .

(6.17)

7 Flat connections and axion basis

As shown in [17] and further investigated in [21], the defining identities of N = 2 special

Kähler geometry can be viewed as the flatness condition of a non-holomorphic connection
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AI and can be encoded into a first-order matrix equation [21]

(∂i −Ai)U = 0 , (7.1)

where U is a non-holomorphic matrix (V,DiV,Dı̄V , V ) with V = (XΛ, FΛ). One can

further choose a gauge where Ai becomes holomorphic

Ai = 0 ⇒ Ai = Ai , ∂Ai = 0, (7.2)

such that (7.1) can be recast as follows:

(∂i − Ai)V = 0, (7.3)

with now an holomorphic solution matrix V containing V in the first row. In turn, the

holomorphic flat connection Ai can be decomposed as

Ai = Γi +Ci, (7.4)

where Γi is the diagonal part (which vanishes in special coordinates), and Ci generates an

Abelian subalgebra of sp(2n+ 2,R) that is nilpotent of order four:

CiCjCkCl = 0. (7.5)

The case of special Kähler d-geometry in the axion basis basis is analysed in appendix

C of [21]. In particular, by recalling (2.8), one can compute the axionic generators of the

solvable parametrization of the D = 4 scalar manifold treated above as

∂T (a)/∂ak =




0 0 0 0

δjk 0 0 0

0 0 0 −δik
0 dijk 0 0


 . (7.6)

Up to relabelling of rows and columns, (7.6) matches the expression of Ci (for n = 27)

given by (3.6) of [21].

For N = 2 special Kähler d-geometries (namely, for those special geometries admitting

an uplift to D = 5) in the axion basis, this highlights the relation between the solvable

parametrization of the D = 4 scalar manifold discussed in section 2 and the nilpotent

connection of the reformulation à la Strominger in the holomorphic gauge (7.2).

8 N = 2 special Kähler d-geometry, symplectic sections and the unitary

matrix M

In this section we are going to make contact with N = 2 special Kähler d-geometries [3]

in the symplectic frame defined by the cubic prepotential (1.1). We recall for convenience

some results of [7] and we build on them. It has already been remarked that N = 2 special

Kähler d-geometry differs from the higher N -extended theories in that the nV 5D axions ai

exactly combine with the 5D scalars λi = λi(λx, φ) in order to give complex 4D scalar fields
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Xi

X0 = zi ≡ ai − iλi, where XΛ = X0, Xi. Moreover, in N = 2 the central charge can be

readily computed from the cubic prepotential F (X) of eq. (1.1) by the usual formula (3.2)

Z = e
K(z,z̄)

2 (XΛqΛ − FΛp
Λ) (8.1)

For N = 2 cubic geometry one finds [7]

Z =
1√
8V

[q0 + qiz
i + p0f(z)− pifi(z)] ; (8.2)

DiZ =

(
∂i +

1

2
∂iK

)
Z =

1√
8V
[
q0∂iK + qj(δ

j
i + ∂iK zj) +

+p0 (fi(z) + ∂iK f(z))− pj(fij(z) + ∂iK fj(z))
]
, (8.3)

where

f(z) =
1

3!
dijkz

izjzk , fi(z) =
1

2
dijkz

jzk , fij(z) = dijkz
k , V =

1

3!
dijkλ

iλjλk = e6φ ,

(8.4)

with the (real) Kähler potential and its (purely imaginary) derivatives given by

K = − ln(8V) ; ∂iK = − i

4V dijkλ
jλk = −∂ı̄K . (8.5)

Notice that i is a curved index of the 5D U-duality groupG5, and Λ = (0, i). The connection

with the universal basis is given by introducing nV 5D scalars as λ̂i = e−2φλi so that they

satisfy dijkλ̂
iλ̂j λ̂k = 1. The nV complex 4D scalar components are then (ai, φ, λ̂i) . The

special Kähler metric is given by

gij =
1

4
(
1

4
κiκj − κij)V−2/3 =

1

4
V−2/3aij =

1

4
e−4φaij , (8.6)

κi = V−2/3dijkλ
jλk , κij = V−1/3dijkλ

k . (8.7)

One can assemble Z and Dı̄Z into a symplectic central charge vector Zα with a curved

lower index

Zα =

(
Z

Dı̄Z

)
≡ 〈Q, Vα〉 = QTΩVα = fΛαqΛ − hΛαp

Λ, (8.8)

Vα =

(
fΛα
hΛα

)
. (8.9)

Then, from Zα in (8.2) and (8.3) one can read off the components of Vα, which are

f ≡ fΛα = (fΛ0 , f
Λ
̄) =

1√
8V

(
1 ∂̄K

zi δ ı̄̄ + ∂̄K z̄ ı̄

)
; (8.10)

h ≡ hΛα = (hΛ0 , hΛ̄) =
1√
8V

(
−f(z) −f ̄(z̄)− ∂̄Kf(z̄)

fi(z) f̄ı̄ ̄(z̄) + ∂̄K f ı̄(z̄)

)
. (8.11)
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While it can be checked that

i(f †h− h†f)αβ = Gαβ =

(
1 0

0 gij

)
, (8.12)

we should better consider the normalized symplectic sections with flat tangent indices

A = (0, a), such that

i(f †h− h†f)AB = δAB. (8.13)

They are the components of ZA = (Z,DaZ), and they can be obtained by flattening the

curved indices i by the G5- Vielbein eai ,
3 so that the orthonormalized symplectic sections

fΛA and hΛA are given by

fΛA = fΛα(G
−1/2)αA , hΛA = hΛα(G

−1/2)αA . (8.14)

It was emphasized in [9] that the symplectic sections f and h of (generalized) special

geometry are defined only up to the action

f → f ′ ≡ fM , h → h′ ≡ hM ⇔ M = f−1f ′ = h−1h′, (8.15)

of a unitary matrix M , which preserves the form of the kinetic vector matrix N = hf−1

and the conditions (1.12) derived from symplectic invariance of L. Actually, the matrix M

found in [9] to connect N = 2 with N = 8 is exactly the necessary one to rotate the usual

basis of special geometry into the axion basis of any d-geometry. It can be written as

M =
1

2

(
1 (g−1/2) ̄ã∂̄K

−iV−1/3λi(a1/2) a
i

(
V−1/3δi̄ + iV−1/3λi∂̄K

)
(a1/2) a

i (g−1/2)jã

)
; (8.16)

MM † = 11, (8.17)

where

∂̄K = 2iλigi̄ ; (8.18)

gij =
1

4
V−2/3aij ; (8.19)

(g−1/2)̄a∂̄K = 2iλi(g1/2)biδab ; (8.20)

(g−1/2)ia = 2V1/3(a−1/2)ia . (8.21)

By further rescaling the D = 4 dilatons as

λi ≡ V1/3λ̂i,
1

6!
dijkλ̂

iλ̂j λ̂k = 1. (8.22)

the matrix M (8.16) can be recast as follows:

M =
1

2

(
1 iλ̂i(a1/2)biδab

−iλ̂i(a1/2) a
i 2δaã − λ̂iλ̂j(a1/2) a

i (a1/2) b
j δãb

)
. (8.23)

3Further below, in the explicit case of stu model, the Vielbein will be taken to be purely imaginary (cfr.

appendix C).
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Using (1.11), one can see that the action (8.15) of M induces the following transformation

of the coset representative L:

L → L′ = L

(
ReM −ImM

ImM ReM

)
≡ LY (ReM, ImM) , (8.24)

where the real symmetric and unitary matrix

Y =
1

2




1 0 0 −λ̂i(a1/2)biδab
0 2δab − λ̂iλ̂j(a1/2)ai (a

1/2)cjδbc λ̂
i(a1/2)ai 0

0 λ̂i(a1/2)biδab 1 0

−λ̂i(a1/2)ai 0 0 2δab − λ̂iλ̂j(a1/2)ai (a
1/2)cjδbc


 ;

(8.25)

Y∗ = Y† = YT = Y−1 ⇔ YY† = YYT = Y2 = 11, (8.26)

does not depend on the volume modulus V .
The symplecticity of L (and thus of L′) yields

L′TΩL′ = Ω → YTΩY = Ω , (8.27)

thus also Y is a symplectic matrix, as expected. Indeed, from its very definition (8.24), the

symplectic condition (8.27) becomes

ImM ReM +ReM ImM = 0 , ReM2 − ImM2 = 11 , (8.28)

which is identically satisfied since M is a unitary matrix, with ReMT = ReM , and

ImMT = − ImM (cfr. (8.16)–(8.17)).

The matrix Y (ReM, ImM) (8.24) provides a realization of the maximal symmetric

embedding [10]

U(28) ⊂ Sp(56,R). (8.29)

Indeed, since L is symplectic, one has checked that also Y is symplectic, but

given (8.26), this leads to

[Y,Ω] = 0 . (8.30)

An explicit computation of the matrices M (8.23) and Y (8.25) for the t3 limit of the

stu model is presented in appendix B.

9 Unitarity relations for M and induced relations on M̂

The residual freedom in the definition of the symplectic section was found in [9] to imply

that the symplectic vector ZA =
(
Z,DaZ

)T
of N = 2 special geometry, with a flat index

A = (0, ā), differs by a unitary transformation from the corresponding central charge vector

ZA = (Z0, Za)
T of the N = 8, D = 4 theory (3.19) in the E6(6)-covariant symplectic frame

(with a = 1, . . . , 27),

ZA = ZBM
B
A . (9.1)
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This is obvious from the fact that the N = 2 sections in (8.10) are not lower triangular,

as required in the axion basis in (2.3) where the the symplectic section f is real. Notice

that the E6(6) basis is related to the usual de Wit and Nicolai symplectic frame by a

symplectic transformation [8] . However, under a change of symplectic basis, that is a

duality transformation, the kinetic matrix transforms as NΛΣ → (C +DN )(A + BN )−1,

while the unitary transformation M leaves NΛΣ invariant.

M acts on the normalized sections, with a flat tangent index, as given by (8.15) (where

now prime refers to N = 8 sections and unprimed sections are the N = 2 ones in the axion

basis, discussed in section 8). On the other hand, one can define a matrix M̂ acting on

(un-normalized) sections with a curved lower index as

f̂ ′ = f̂M̂ , ĥ′ = ĥM̂ ⇔ M̂ = f̂−1f̂ ′ = ĥ−1ĥ′ , (9.2)

They can be obtained from (2.3) and (2.4) by multiplication with the appropriate

Vielbein, that is

f̂Λα = fΛA(A
1/2)Aα , ĥΛα = hΛA(A

1/2)Aα , (9.3)

with

A ≡




1 0 . . . 0

0

. . .

0

aIJ




(9.4)

where aIJ is the kinetic vector matrix of N = 8, D = 5 supergravity. In the E6(6)-frame of

4D N = 8 supergravity, the symplectic section with curved indices f̂ read [9]

f̂Λα =
1√
2

(
e−3φ 0

e−3φaJ e−φδJI

)
, (f̂−1) α

Λ =
√
2

(
e3φ 0

−eφaI eφδIJ

)
, (9.5)

where, in the symmetric gauge [8], Λ = 0, I and α = 0, I, where here I is a curved index

spanning the 27 of E6(6).

From (8.10), (9.5) and (9.3), one can compute the matrix [9]

M̂β
α = (f̂−1) β

Λ f̂ ′Λα =
1

2

(
1 ∂̄K

−iλiV−1/3 V−1/3δij + iV−1/3λi∂̄K

)
, (9.6)

which does not depend on the axion fields. Moreover, using (8.14), (9.3) and (8.15), the

relation between M̂ and M is given by

M̂ = f̂−1f̂ ′ = A−1/2f−1f ′G1/2 = A−1/2MG1/2 ⇔M = A1/2M̂G−1/2. (9.7)

The unitarity of M entails the following identities for M̂ , namely:

MM † = Id⇔ AM̂ G−1M̂ † = Id ; (9.8)

M †M = Id⇔ G−1 M̂ †AM̂ = Id . (9.9)
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10 Axion basis and the fake superpotential

In this section we show an interesting application of the axion basis to non-BPS extremal

black holes. The unitary transformation M that rotates the usual N = 2 basis of special

geometry ZA into the E6(6) basis ZA allows to make a precise connection with the N = 2

stu model, where the three complex scalar fields zi = {s , t , u} span the rank-3 coset space[
SU(1,1)
U(1)

]3
, with

f = stu , e−K = 8λ1λ2λ3 = 8V , (10.1)

viewed as a sub sector of the full N = 8 theory [15, 22, 23]. The aim is to illustrate the

computation of the fake superpotential for non-BPS solutions and (p0, q0) charge configu-

ration in the stu-truncation of N = 8 supergravity. This example was discussed from two

different viewpoints: in [22] the fake superpotential was computed for generic charges in

terms of duality invariants of the underlying special geometry, while in [26] Bossard, Michel

and Pioline (BMP) provided a procedure based on nilpotent orbits which lead to the fake

superpotential as solution of a sixth order polynomial.

The virtue of the axion basis is that, while showing the equivalence of the derivation

of [26] and [22], we can read out the fake superpotential from theN = 8 central charge in the

skew symmetric form. Here we start from the formula for the central charge derived in [9]

using 4D/5D special geometry relations, and we look for a suitable SU(8) transformation

that brings it to the form given by eq. (2.68) of [26]

ZCFG
AB

SU(8)−→ ZBMP
AB (10.2)

In particular, we study the effect of such a rotation with respect to the decomposition

28 → 1C + 27C, which is common to the central charge normal frame of both [9] and [26].

We identify this transformation in the t3-truncation where it depends only on one angle

χ, purely given in terms of duality invariant quantities. When this rotation is used to

match the central charge in [9] and that of [26], we consistently retrieve the non-BPS fake

superpotential for the N = 2 t3 model, within the (p0, q0) charge configuration in presence

of non zero axions. This is a non-trivial consistency check for the 4D/5D formalism based

on the matrices M̂ and M [9] detailed in previous sections.

The key point of this analysis is that the 28 components of the N = 8 central charge

matrix ZAB can be traded for the symplectic vectors ZA (with flat lower index) or Zα (with

a curved one) reflecting the splitting 28 = 1C + 27C of the axion basis. Since ZAB can

always be brought to the skew-diagonal form

ZAB =




z1 0 0 0

0 z2 0 0

0 0 z3 0

0 0 0 z4


⊗ ǫ , (10.3)

one has to relate the eigenvalues z1, z2, z3, z4 with the complex components of Zα =

(Z0, ZI) [9], with I = 1, 2, 3,

Z0 =
1√
2
(Z

(e)
0 + iZ0

(m)) ,

ZI =
1√
2
(Z

(e)
I + iaIJZ

J
(m)) . (10.4)
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In fact, in light of the previous discussion, eqs. (8.15) and (9.2) yield

(Z ,Dı̄Z̄) = (Z0, Zi)M̂ , (10.5)

where Z and DiZ in the l.h.s. are given by (8.2) and (8.3). Using (9.2), one finds

Z =
1

2
(Z0 − iλiZiV−1/3) ; (10.6)

Dı̄Z =
1

2
(∂ı̄KZ0 + V−1/3Zı̄ + iV−1/3λjZj∂ı̄K) . (10.7)

In order to find the skew eigenvalues z1, z2, z3, z4 in (10.3), one needs the inverse metric,

which in this case is factorized as

gss̄ = −(s− s̄)2 , gtt̄ = −(t− t̄)2 , guū = −(u− ū)2 , (10.8)

as well as the purely imaginary Vielbein (see appendix C)

(g−1/2)s̄1 = (s− s̄) , (g−1/2)t̄2 = (t− t̄) , (g−1/2)ū3 = (u− ū) , (10.9)

and the Kähler connection

∂ı̄K =

(
1

s− s̄
,

1

t− t̄
,

1

u− ū

)T

. (10.10)

Using (10.8)–(10.10) in (10.6)–(10.7), one obtains

Z =
1

2
(Z0 − iλ̂iZi) ; (10.11)

Ds̄Z̄ =
1

2

(
1

s− s̄
Z0 + V−1/3Z1 + iV−1/3λiZi

1

s− s̄

)
; (10.12)

Dt̄Z̄ =
1

2

(
1

t− t̄
Z0 + V−1/3Z2 + iV−1/3λiZi

1

t− t̄

)
; (10.13)

DūZ̄ =
1

2

(
1

u− ū
Z0 + V−1/3Z3 + iV−1/3λiZi

1

u− ū

)
. (10.14)

By recalling the definition λiV−1/3 = λie−2φ ≡ λ̂i (cfr. section 8), and defining

e1 ≡ λ̂1Z1 , e2 ≡ λ̂2Z2 , e3 ≡ λ̂3Z3 , (10.15)

one computes

gss̄Ds̄Z̄DsZ =
1

4

∣∣∣Z0 − iλ̂1Z1 + iλ̂2Z2 + iλ̂3Z3

∣∣∣
2
=

1

4
|Z0 + i (−e1 + e2 + e3)|2 ; (10.16)

gtt̄Dt̄Z̄DtZ =
1

4

∣∣∣Z0 + iλ̂1Z1 − iλ̂2Z2 + iλ̂3Z3

∣∣∣
2

=
1

4
|Z0 + i (e1 − e2 + e3)|2 ; (10.17)

guuDuZ̄DuZ =
1

4

∣∣∣Z0 + iλ̂1Z1 + iλ̂2Z2 − iλ̂3Z3

∣∣∣
2

=
1

4
|Z0 + i (e1 + e2 − e3)|2 , (10.18)
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from which the entries of the ZAB matrix can be read off (in the conventions of e.g. (5.32)

of [23])

z1 = Z =
i

2
[−(e1 + e2 + e3)− iZ0] , (10.19)

z2 = Ds̄Z̄(g
−1/2)s̄1 =

i

2

(
−iZ0 − λ̂1Z1 + λ̂2Z2 + λ3Z3

)
=

=
i

2
[(e2 + e3 − e1)− iZ0] , (10.20)

z3 = Dt̄Z̄(g
−1/2)t̄2 =

i

2

(
−iZ0 + λ̂1Z1 − λ̂2Z2 + λ3Z3

)
=

=
i

2
[(e1 + e3 − e2)− iZ0] , (10.21)

z4 = DūZ̄(g
−1/2)ū3 =

i

2

(
−iZ0 + λ̂1Z1 + λ̂2Z2 − λ3Z3

)
=

=
i

2
[(e1 + e2 − e3)− iZ0] . (10.22)

The 4D/5D covariant splitting is thus manifest in the following form of the central charge

matrix4 [9]

ZAB =
i

2
ǫ⊗


−iZ0 id4 +




−e1 − e2 − e3 0 0 0

0 −e1 + e2 + e3 0 0

0 0 e1 − e2 + e3 0

0 0 0 e1 + e2 − e3





 .

(10.23)

This result, compared with formulæ (3.2) of [9], explains the definition

ZAB =
1

2

(
eAB − iZ0Ω

)
,

in which Ω = ǫ⊗ id4, given in eq. (4.7) of the same reference; notice that the overall phase

i is uninfluential.

10.1 Residual U(1)3 symmetry of the skew-diagonal ZAB

The form of the central charge, as derived in the previous section, reflects the more general

structure of the 28 → 1C + 27C decomposition of SU(8) ⊃ USp(8) representation.

The central charge matrix for the p0, q0 configuration in N = 8 Supergravity has been

given in [26], in the same symplectic frame. The reason why this is a suitable frame to

study the non-BPS orbit is related to the choice of orbit representative. The moduli space

of the non-BPS p0, q0 solution is indeed the moduli space of the 5 dimensional theory,

namely E6(6)/USp(8) . By solving a nonstandard diagonalization problem, the authors

of [26] identify the fake-superpotential in the singlet of the axion-base decomposition of

the central charge matrix. However, the form of ZAB is unique up to SU(8) transformations,

4idn denotes the n× n identity matrix throughout.
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and the choice of symplectic frame is not covariant with respect to the action of SU(8),

since the singlet is not left invariant by R-symmetry rotations.

Starting from the form of the central charge in (10.23), we look for the transformation

that rotates ZAB in such a way that the transformed matrix can be identified with the one

of [26]. The goal is to determine the SU(8) rotation in terms of the scalar fields, and then

read from the transformed singlet the explicit form of the fake superpotential.

Because of the residual USp(8) symmetry of the skew-diagonal central charge (10.3),

we can restrict the analysis to the transformations of U(1)3 ⊂ SU(8)/USp(8).

10.1.1 The
(
p0, q0

)
configuration

In the non-BPS
(
p0, q0

)
charge configuration (corresponding to D0 − D6 in Type II lan-

guage), the dressed charges of the N = 8 theory read (3.17)

Z0 =
1√
2

(
e−3φq0 + e−3φp0a1a2a3 + ie3φp0

)
; (10.24)

Zi =
1√
2
p0


e−φ



λ̂1a2a3

λ̂2a1a3

λ̂3a1a2


− ieφ




a1

λ̂1

a2

λ̂2

a3

λ̂3





 . (10.25)

Thus, the N = 8 skew-diagonal ZAB (10.3) in the
(
p0, q0

)
charge configuration can then

be written as

Z
(p0,q0)
AB =

1

2
√
2
ǫ⊗


(e

−3φq0 + α1α2α3 p
0e3φ + ip0e3φ)




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


+ (10.26)

+ p0e3φ




−(α1 + α2 + α3) 0 0 0

0 −α1 + α2 + α3 0 0

0 0 α1 − α2 + α3 0

0 0 0 α1 + α2 − α3


 +

+ p0ie3φ(α1α2α3)




−( 1
α1

+ 1
α2

+ 1
α3
) 0 0 0

0 (− 1
α1

+ 1
α2

+ 1
α3
) 0 0

0 0 ( 1
α1

− 1
α2

+ 1
α3
) 0

0 0 0 ( 1
α1

+ 1
α2

− 1
α3
)





 ,

(10.27)

where αi ≡ ai/λi is the axion/dilaton ratio, with λi = e2φλ̂i, and λ̂1λ̂2λ̂3 = 1. When

ai = 0, one recovers the KK solution studied in [9].

To proceed further, it is convenient to define the following quantities:

Y0 =
1√
2
(q0 e

−3φ + α1α2α3 p
0e3φ) +

i√
2
p0e3φ; (10.28)

Yi = − 1√
2
p0e3φ

(
αi +

i

2
|ǫijk|αjαk

)
, (10.29)
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and

σ3 =

(
1 0

0 −1

)
. (10.30)

We can write

id2 ⊗ id2 = id4 , id2 ⊗ σ3 =




1 0

0 1

−1 0

0 −1


 , σ3 ⊗ id2 =




1 0

0 −1

1 0

0 −1


 ;

σ3 ⊗ σ3 =




1 0

0 −1

−1 0

0 1


 . (10.31)

Thus, by recalling (10.26), ZAB can be decomposed as

Z
(p0,q0)
AB ≡ ZAB(Y0, Yi) =

1

2
ǫ⊗ [Y0 id4 + Y1 id2 ⊗ σ3 + Y2 σ3 ⊗ id2 + Y3 σ3 ⊗ σ3] . (10.32)

This parametrization of the central charge matrix will allow us to perform the necessary

rotation to identify the fake superpotential.

10.1.2 U(1)3

The matrix ZAB (10.32) has a residual U(1)3 ⊂ SU(8)/USp(8) symmetry. More pre-

cisely, U(1)3 can be considered as the Cartan subalgebra of the symmetric, rank-3 compact

manifold SU(8)/USp(8) (dimR = 27); indeed, U(1)3-transformations do not generate off-

diagonal elements, and they leave the skew-diagonal form of ZAB invariant. We choose to

parametrize such a U(1)3 matrix as a 4 × 4 matrix acting on the diagonal part of ZAB,

namely (χi ∈ R)

U ≡




e−i(χ1+χ2+χ3)

ei(−χ1+χ2+χ3)

ei(χ1−χ2+χ3)

ei(χ1+χ2−χ3)


 ∈ U(1)3 ⊂ SU(8)/USp(8) .

(10.33)

Note that, consistently, the sum of the four diagonal phases vanishes. Therefore, by the

exponential mapping, one obtains

U = exp




−i(χ1 + χ2 + χ3)

i(−χ1 + χ2 + χ3)

i(χ1 − χ2 + χ3)

i(χ1 + χ2 − χ3)


 ,

(10.34)

which, analogously to ZAB (10.32), enjoys the following decomposition:

U = exp [−i(χ1 id2 ⊗ σ3 + χ2 σ3 ⊗ id2 + χ3 σ3 ⊗ σ3)] =

= exp [−iχ1 id2 ⊗ σ3] · exp [−iχ2 σ3 ⊗ id2] · exp [−iχ3 σ3 ⊗ σ3] =

= U1 · U2 · U3 (10.35)

where all matrices are reciprocally commuting.
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Under U(1)3 (10.34), ZAB (10.32) transforms as

ZAB → UZABUT ≡ U2ZAB. (10.36)

Without loss of generality, one can therefore just redefine the χi’s by a factor of 2, and

consider the transformation

ZAB → UZAB. (10.37)

Each single Ui actually reads

U1 = exp [−iχ1 id2 ⊗ σ3] = cosχ1 id4 − i sinχ1 id2 ⊗ σ3;

U2 = exp [−iχ2 σ3 ⊗ id2] = cosχ2 id4 − i sinχ2 σ3 ⊗ id2;

U3 = exp [−iχ3 σ3 ⊗ σ3] = cosχ3 id4 − i sinχ3σ3 ⊗ σ3,

(10.38)

and induces the following transformation on ZAB (10.32):

U1 ZAB → cosχ1 ZAB − i sinχ1 ZAB · id2 ⊗ σ3;

U2 ZAB → cosχ2 ZAB − i sinχ2 ZAB · σ3 ⊗ id2;

U3 ZAB → cosχ3 ZAB − i sinχ3 ZAB · σ3 ⊗ σ3.

(10.39)

Consequently, U (10.35) has a well defined action on the coefficients of the matrices (10.31);

for example, by acting with only U1 gives rise to the following transformations of Y0 and Yi’s:

Y0 → γ0 ≡ cosχ1 Y0 − i sinχ1 Y1;

Y1 → γ1 ≡ cosχ1 Y1 − i sinχ1 Y0;

Y2 → γ2 ≡ cosχ1 Y2 − i sinχ1 Y3;

Y3 → γ3 ≡ cosχ1 Y3 − i sinχ1 Y2,

(10.40)

such that the U1-transformed central charge matrix (10.32) can be rewritten as

ZAB(Y0, Yi) → U1ZAB(Y0, Yi) = ZAB(γ0, γi) . (10.41)

The complete action of U (10.35) on (10.32) reads

ZAB(Y0, Yi) → ZAB(ζ0, ζi) = U3 U2 U1ZAB(Y0, Yi) , (10.42)

where the ζI ’s are defined as

ζ0 ≡ A Y0 +B Y1 + C Y2 +D Y3;

ζ1 ≡ B Y0 +AY1 +D Y2 + C Y3;

ζ2 ≡ C Y0 +D Y1 +A Y2 +B Y3;

ζ3 ≡ D Y0 + C Y1 +B Y2 +A Y3,

(10.43)

with (ci ≡ cosχi, si ≡ sinχi)

A ≡ (c1c2c3 − is1s2s3);

B ≡ (−c1s2s3 + is1c2c3);

C ≡ (−s1c2s3 + ic1s2c3);

D ≡ (−s1s2c3 + ic1c2s3).

(10.44)
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Within the same
(
p0, q0

)
axionful charge configuration, it is interesting to compare

the U(1)3-transformed ZAB (10.42)–(10.44) with the “non-standard” skew-diagonalized

Z
(BMP )
AB obtained by Bossard, Michel and Pioline (BMP) in [26]

Z
(BMP )
AB =

1

2
ǫ⊗


i(e

i(α−π/4) + sin 2αe−i(α−π/4))ρ




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




+e−i(α−π/4)




ξ1 + ξ2 + ξ3 0 0 0

0 −ξ1 0 0

0 0 −ξ2 0

0 0 0 −ξ3





 , (10.45)

which can equivalently be recast in the following form:

Z
(BMP )
AB =

1

2
ǫ⊗

[
i(eiη + cos 2η e−iη)ρ id4+

+e−iη




−µ1 − µ2 − µ3 0 0 0

0 −µ1 + µ2 + µ3 0 0

0 0 µ1 − µ2 + µ3 0

0 0 0 µ1 + µ2 − µ3





 =

=
1

2
ǫ⊗

[
µ0 id4 − e−iηµ1 id2 ⊗ σ3 − e−iηµ2 σ3 ⊗ id2 − e−iηµ3 σ3 ⊗ σ3

]
(10.46)

by introducing the quantities:

µ0 ≡ i(eiη + cos 2η e−iη)ρ , η ≡ α− π

4
,

ξ1 ≡ µ1 − µ2 − µ3 , ξ2 ≡ −µ1 + µ2 − µ3 , ξ3 ≡ −µ1 − µ2 + µ3. (10.47)

By comparing (10.32) and (10.46), in order to match (10.45) with (10.42)–(10.44), a trans-

formation U ∈U(1)3 should be found, such that

Y0 → ζ0 = µ0 , Yi → ζi = −e−iηµi , i = 1, 2, 3 . (10.48)

This amounts to solving the system composed by (10.43)–(10.44 ) and (10.47)–(10.48).

For simplicity’s sake, we will here confine ourselves to solve such a system within the “t3-

degeneration” of the formalism under consideration, which amounts to choosing three equal

phases χi’s, corresponding to the diagonal U(1)diag inside U(1)3.

10.1.3 t3 model

As mentioned, at the level of U -transformation, the “degeneration” procedure from stu to

t3 model amounts to identifying

χ1 = χ2 = χ3 ≡ χ. (10.49)
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This corresponds to considering the action of U(1)diag ⊂ U(1)3 ⊂ SU(8)/USp(8), such that

(recall (10.35))

U = U1 · U2 · U3 ≡ Udiag = exp




−3iχ

iχ

iχ

iχ


 . (10.50)

The central charge matrix given by (10.26) and (10.32) thus acquires the following

structure:5

Z
(p0,q0),t3

AB =
1

2
√
2
ǫ⊗



(
e−3φq0 + p0e3φ(i+ α3)

)
id4 + p0αe3φ(1 + iα)




−3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







=
1

2
ǫ⊗ [Y0 id4 + Y (id2 ⊗ σ3 + σ3 ⊗ id2 + σ3 ⊗ σ3)] , (10.51)

where here (α1 = α2 = α3 ≡ α)

Y0 ≡ 1√
2

(
e−3φq0 + p0e3φ(i+ α3)

)
;

Y ≡ − 1√
2

(
p0e3φα(1 + iα)

)
.

(10.52)

On the other hand, the consistent “t3-degeneration” of the central charge ma-

trix (10.46)–(10.47) reads

Z
(BMP ),t3

AB =
1

2
ǫ⊗


i(e

iη + cos 2η e−iη)ρ id4 + e−iηµ




−3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





 =

=
1

2
ǫ⊗

[
µ0 id4 − e−iηµ( id2 ⊗ σ3 + σ3 ⊗ id2 + σ3 ⊗ σ3)

]
, (10.53)

where

µ0 ≡ i(eiη + cos 2η e−iη)ρ , η ≡ α− π

4
µ1 = µ2 = µ3 ≡ µ ≡ −ξ1 = −ξ2 = −ξ3 . (10.54)

We notice that, by denoting η0 the phase of µ0, it holds that

tan η0 = − 1

(tan η)3
. (10.55)

Thus, in order to match (10.51)–(10.52) with (10.53)–(10.54), a phase χ should be

determined such that it rotates the relevant quantities as follows (ζ1 = ζ2 = ζ3 ≡ ζ,

Y1 = Y2 = Y3 ≡ Y )

Y0 → ζ0 = µ0 , Y → ζ = −e−iηµ . (10.56)

5In order to simplify the computation, we will henceforth choose p0 > 0 and q0 > 0. This does not

imply any loss of generality, since all other sign choices are related to this by a duality rotation along the

non-BPS (ZH 6= 0) charge orbit of the stu model.
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From the “t3-degeneration” of (10.43), one gets

ζ0 = AY0 + 3BY ; (10.57)

ζ = (A+ 2B)Y +BY0. (10.58)

However, now A and B respectively simplifies down to

A ≡ B + e−iχ, B ≡ i

2
sin(2χ)eiχ, (10.59)

thus allowing for the following re-writing of (10.57)–(10.58):

ζ0 = e−iχY0 +
i

2
sin(2χ)eiχ(3Y + Y0);

ζ = e−iχY +
i

2
sin(2χ)eiχ(3Y + Y0) . (10.60)

The action of U(1)diag ⊂ U(1)3 implies that

eiχ =
Y − Y0
ζ − ζ0

. (10.61)

As pointed out above, in order to match (10.51)–(10.52) with (10.53)–(10.54), we are inter-

ested in finding the phases of these parameters in terms of χ entering (10.50). Therefore,

we can solve for tanχ, as we read from (10.55) and (10.56):

η0 = tanψ(ζ0) =
1

[tanψ(ζ)]3
, (10.62)

where ψ(ζ0) and ψ(ζ) respectively denote the phases of ζ0 and ζ.

From (10.60), one obtains

tanψ(ζ0) =
1

τ3
Y0I − τ3Y0R − 3τ2YI + 3τYR

Y0I +
1
τ3
Y0R − 3

τ2
YI − 3

τ YR
; (10.63)

tanψ(ζ) =
1

τ3
YI − τ3YR − τ2(2YI + Y0I) + τ(2YR + Y0R)

YI +
1
τ3
Y0R − 1

τ2
(2YI + Y0I)− 1

τ (2YR + Y0R)
, (10.64)

where

Y ≡ YR + iYI , Y0 ≡ Y0R + iY0I , τ ≡ tanχ. (10.65)

In order to find τ in terms of α, p0, q0, one needs to solve (10.62), which in virtue of (10.63)–

(10.64) can be made explicit as

Y0I − τ3Y0R − 3τ2YI + 3τYR

Y0I +
1
τ3
Y0R − 3

τ2
YI − 3

τ YR
= τ12

[
YI +

1
τ3
Y0R − 1

τ2
(2YI + Y0I)− 1

τ (2YR + Y0R)

YI − τ3YR − τ2(2YI + Y0I) + τ(2YR + Y0R)

]3
.

(10.66)
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Further simplifications are possible. Indeed, by recalling (10.52), the dependence

of (10.63)–(10.64) on α, eφ, p0, q0 can be made manifest:

η0 = tanψ(ζ0) =
−q0 tanχ3 + p0e6φ(1− tanχ α)3

q0 + p0e6φ(tanχ+ α)3

= − tanχ3
1− p0

q0
e6φ( 1

tanχ − α)3

1 + p0

q0
e6φ(tanχ+ α)3

; (10.67)

tanψ(ζ) =
−q0 tanχ+ p0e6φ(tanχ+ α)2(1− tanχ α)

q0 tanχ2 + p0e6φ(tanχ+ α)(1− tanχ α)2

= − 1

tanχ

1− p0

q0
e6φ(tanχ+ α)2( 1

tanχ − α)

1 + p0

q0
e6φ(tanχ+ α)( 1

tanχ − α)2
. (10.68)

As a consequence, (10.62) can be recast as

1− x3

1 + y3
=

(1 + x2y)3

(1− x y2)3
, (10.69)

x ≡
(
p0

q0

)1/3

e2φ
(

1

tanχ
− α

)
, y ≡

(
p0

q0

)1/3

e2φ (tanχ+ α) , (10.70)

and therefore solved for

x = y or x 6= y , xy = −1 . (10.71)

For real values of tanχ the case x = y is not allowed, so one is left with

xy = −1 ⇒
(
p0

q0

)2/3

e4φ
[
1− α2 +

2α

tan 2χ

]
= −1 . (10.72)

Thus, the angle χ, which provides the U(1)diag-rotation between the skew-eigenvalues

of (10.51) and (10.53), is given by

tanχ =
1

2ν2/3α

(
(1− ν2/3(α2 + 1))±

√
(1− ν2/3(α2 + 1))2 + 4ν2/3

)
, (10.73)

ν ≡ (p0/q0)e
6φ. (10.74)

For later convenience we explicite here the expression for χ

χ = −1

2
arctan

[
2α

( q0
p0
)2/3e4φ − 1 + α2

]
; (10.75)

we also recall the choice of q0 > 0, p0 > 0, in our computation.

10.1.4 Duality invariants

One can also relate the parameters entering the solution (10.73) to the duality invariants

I4, i1, i2 and i3 defined e.g. in [40]. Using the relations (3.6)-(3.10) of [22], one finds

α =
b

3
√−I4

; (10.76)

(q0)2e−6φ =
1

(−I4)
(
4i3
√
−I4 ±

√
b6 − I4(3b4 + 16i33) + 3b2(−I4)2 − I3

4

)
, (10.77)

– 29 –



J
H
E
P
0
2
(
2
0
1
3
)
0
5
9

where i2 = b+ 3i1, and the “±” choice has to be consistent with the positivity of e6φ. We

notice that α is a duality invariant quantity by itself, as well as the combinations q0e
−3φ

and p0e3φ (recall
√−I4 = p0q0). Thus, the expression (10.73) is explicitly duality invariant.

10.2 Recovering the non-BPS fake superpotential

In [26] it is shown that the non-BPS fake superpotential is given by

W = 2ρ, (10.78)

where ρ enters the expression (10.46). From the same equation, one can also write µ0 as

µ0 = 2ρ(− sin η3 + i cos η3) , (10.79)

thus yielding

W = 2ρ =
Imµ0
cos η3

≡ Imζ0
cos η3

. (10.80)

Moreover, (10.52) and (10.60) imply

Imζ0 = − 1√
2
e−3φ cosχ3

(
q0 tanχ

3 − e6φp0(1− tanχα)3
)
=

= − 1√
2
e−3φq0 sinχ

3

(
1− ν

(
1

tanχ
− α

)3
)
. (10.81)

By using

sinχ3 =
tanχ3

(1 + tanχ2)3/2
,

1

cos η3
= (1 + tanφ(ζ)2)3/2 , (10.82)

and (10.67)–(10.68), (10.62) and (10.71) yield

ν2/3(1/τ − α)(τ + α) = −1 , (10.83)

and one can rewrite

tanψ(ζ) = −1

τ

1 + ν1/3(τ + α)

1− ν1/3(1/τ − α)

⇓
1

cosφ(ζ)3
=

1

τ3

(
(1− ν1/3(1/τ − α))2 + (1 + ν1/3(τ + α))2

)3/2

(1− ν1/3(1/τ − α))3
=

=
(1 + τ2)3/2

τ3
(1 + 2αν1/3 + ν2/3(α2 + 1))3/2

(1− ν1/3(1/τ − α))3
; (10.84)

Imζ0 = −q0e−3φ τ3

(1 + τ2)3/2

(
1− ν (1/τ − α)3

)
. (10.85)

Therefore, the non-BPS fake superpotential W (10.80) is given by

W = − 1√
2
q0e

−3φ

(
1− ν (1/τ − α)3

)

(
1− ν1/3 (1/τ − α)

)3 (1 + 2αν1/3 + ν2/3(α2 + 1))3/2 . (10.86)
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Substituting the expression of τ ≡ tanχ as in (10.73), one finds that

(
1− ν (1/τ − α)3

)

(
1− ν1/3 (1/τ − α)

)3 =
1− αν1/3 + ν2/3(α2 + 1)

1 + 2αν1/3 + ν2/3(α2 + 1)
, (10.87)

which yields the following explicit expression:

W = − 1√
2
q0e

−3φ
√
1 + 2αν1/3 + ν2/3(α2 + 1)

(
1− αν1/3 + ν2/3(α2 + 1)

)
=

= − 1√
2
e−3φ

√
(q

1/3
0 + (p0)1/3αe2φ)2 + e4φ(p0)2/3 ·

·
(
(q

1/3
0 + (p0)1/3αe2φ)2 + e4φ(p0)2/3 − 3(q0p

0)1/3αe2φ
)
. (10.88)

Notice that the overall minus in (10.88) is totally irrelevant, since it can be eliminated with

a U(1)diag-rotation through the matrix −ǫ⊗ id4 .

Equation (10.88), up to a factor of 1/2, coincides with the formula of the non-BPS

fake superpotential for the (p0, q0) configuration in the t3 model computed in [22]. The

difference of a factor 1/2 is simply due to the different normalization used for the normal

form central charge in our notation (which coincides, for example, with the one in eq.

(3.13) of [15]) with respect to the one used in [26], as one can read from eq. (2.11) therein.

This implies that the correct identification would be Imµ0 = 1
2 Imζ0. Consequently, the

correctly normalized fake superpotential becomes finally

W =
1

2
√
2
e−3φ

√
(q

1/3
0 + (p0)1/3αe2φ)2 + e4φ(p0)2/3 ·

·
(
(q

1/3
0 + (p0)1/3αe2φ)2 + e4φ(p0)2/3 − 3(q0p

0)1/3αe2φ
)
. (10.89)

This computation is a non-trivial consistency check for the formalism based on the axion-

independent matrices M and M̂ introduced in sections 8 and 9, as well as for the results

on the phase χ obtained above.
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J3
G4
H4

G5
H5

q N

JO

3
E7(7)

SU(8)

E6(6)

USp(8) 8 8

JOs

3
E7(−25)

E6(−78)×U(1)

E6(−26)

F4(−52)
8 2

JH
3

SO∗(12)
SU(6)×U(1)

SU∗(6)
USp(6) 4 2 or 6

JHs

3
SO(6,6)

SO(6)×SO(6)
SL(6,R)
SO(6) 4 0

JC
3

SU(3,3)
SU(3)×SU(3)×U(1)

SL(3,C)
SU(3) 2 2

JCs

3
SL(6,R)
SO(6)

[
SL(3,R)
SO(3)

]2
2 0

JR
3

Sp(6,R)
SU(3)×U(1)

SL(3,R)
SO(3) 1 2

R
SL(2,R)
U(1) – −2/3 2

(t3 model)

R⊕ Γm−1,n−1
SL(2,R)
U(1) × SO(m,n)

SO(m)×SO(n) SO(1, 1)× SO(m−1,n−1)
SO(m−1)×SO(n−1) (m+ n− 4) /3

2 (m or n = 2)

4 (m or n = 6)

0 otherwise

Table 1. Rank-3 Euclidean Jordan algebras J3, and corresponding symmetric scalar manifolds for

vector multiplets in D = 4 and D = 5, with the parameter q and the number of supersymmetries N .

A Some results on exponential matrices

Let us recall the decomposition (4.2):

A =

(
11 0

ReN 11

)



1 0 0 0

aI 1 0 0

0 0 1 −aJ
0 0 0 1


 = (R)−1AD(a

I) , (A.1)

where A(a) = exp(T (a)) (cfr. (2.7)).

Thus, by defining

AD ≡ exp(TD), R ≡ exp(TR), (A.2)

and

T (a) = TD(a) + Td(a, d); (A.3)

TD(a) ≡




0 0 0 0

aI 0 0 0

0 0 0 −aJ
0 0 0 0


 , Td(a, d) ≡




0 0 0 0

0 0 0 0

0 0 0 0

0 0 dIJ 0


 , (A.4)

one obtains that

A(a) = exp[Td + TD] = exp[−TR] · exp[TD] , (A.5)
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with

TR(d) ≡
(

0 0

−ReN 0

)
. (A.6)

This allows us to describe how the matrix ReN is constructed from the algebra perspective,

as (
11 0

−ReN 11

)
≡ R = exp

[
aI(T̂D)I

]
exp

[
−aI((T̂D)I + (T̂d)I)

]
,

where the generators

(T̂D)I =
∂

∂aI
TD , (T̂d)I =

∂

∂aI
Td

do not depend on the axions, since

(T̂D)I ≡




0 0 0 0

δJI 0 0 0

0 0 0 −δJI
0 0 0 0


 , (T̂d)I ≡




0 0 0 0

0 0 0 0

0 0 0 0

0 0 dIJK 0


 .

B M and Y in the t
3 model

We now explicitly compute the matrices M (8.23) and Y (8.25) for the special geometry

defined by the holomorphic prepotential

F =
(X1)3

X0
, (B.1)

corresponding to the t3 model of N = 2, D = 4 supergravity, where the unique complex

scalar field is defined as
X1

X0
≡ t = a− iλ. (B.2)

In this model, which uplifts to N = 2, D = 5 “pure” supergravity (thus with no scalars in

D = 5), the matrices M (8.23) and Y (8.25) are simply numerical matrices.

From the analysis of [7], it follows that

∂iK = 6λ2 , gtt̄ = 12λ , (B.3)

with λ = e2φ. Since

att̄ =
1

4
gtt̄e

−4φ , (B.4)

it then follows that

(g1/2)t̄t = 2
√
3e2φ , (a1/2)t̄t =

√
3. (B.5)

Thus, the matrices M (8.23) and Y (8.25) can be computed to be

M =
1

2

(
1

√
3i

−
√
3i −1

)
= sin (θt3)σ3 + cos (θt3)σ2; (B.6)

Y =
1

2




1 0 0 −
√
3

0 −1
√
3 0

0
√
3 1 0

−
√
3 0 0 −1


 , (B.7)
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where σ2 and σ3 are the Pauli σ-matrices (such that the constraints (8.28) are trivially

satisfied), and

θt3 =
π

6
, (B.8)

such that (cfr. (B.5))

(a−1/2)tt = tan (θt3) . (B.9)

C On the complex Vielbein for the stu parametrization of N = 8 su-

pergravity

The “stu parametrization” of N = 8, D = 4 supergravity is based on the following cor-

respondence between the skew-eigenvalues of the N = 8 central charge matrix ZAB and

the (flattened) scalar-dressed charges of the N = 2, D = 4 stu model, which is a common

sector of all rank-3 symmetric special Kähler geometries [15, 22, 23]:

ZAB =




z1ǫ 0 0 0

0 z2ǫ 0 0

0 0 z3ǫ 0

0 0 0 z4ǫ


 =

=




Zǫ 0 0 0

0 −i(gss̄)1/2D̄s̄Z̄ǫ 0 0

0 0 −i(gtt̄)1/2D̄t̄Z̄ǫ 0

0 0 0 −i(guū)1/2D̄ūZ̄ǫ


 . (C.1)

The square root of gi̄ can in principle be chosen with real entries as

(gss̄)
1/2 = ± i

s− s̄
, (C.2)

and analogously for the tt̄ and uū components of g1/2. Thus, in this symplectic frame, the

rank-3 C-tensor reads

Cstu =
i

(s− s̄)(t− t̄)(u− ū)
(C.3)

can be written as

Cstu = ∓ (gss̄)
1/2(gtt̄)

1/2(guū)
1/2 , (C.4)

consistent with the choice made in (C.2). This choice affects the attractor equations since

Z̄DtZ = −iCstug
ss̄guūD̄s̄Z̄D̄ūZ̄ =

= (∓)(−i)(gtt̄)1/2(gss̄)1/2(guū)1/2D̄s̄Z̄D̄ūZ̄ ,

⇓
Z(gtt̄)1/2D̄t̄Z̄ = ∓i(gss̄)1/2DsZ (guū)1/2DuZ , (C.5)

which, using the notations of (C.1), can be recast as

z1z3 = ±z2z4 , (C.6)
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where only the choice “−” allows the attractor equation from special geometry to be

embedded into the N = 8 theory. Thus, we are lead to choose the minus sign in (C.2), and

correspondingly the Vielbein is fixed to be purely imaginary:

e = −ig1/2 =




(s− s̄)−1 0 0

0 (t− t̄)−1 0

0 0 (u− ū)−1


 = −e. (C.7)

D U -duality invariants for the D0 − D6 i3 = 0 configuration

Following the definitions in [23, 40], one can write the following U -duality invariant expres-

sions in stu model within the
(
p0, q0

)
configuration with i3 = 0 (recall (C.1) and (10.26)):

i1 = |Z|2 = 2e−6φq0

[
q0 + p0α1α2α3 − e4φp0(α1 + α2 + α3)

]
;

is2 = |DsZ|2 = 2e−6φq0

[
q0 + p0α1α2α3 + e4φp0(−α1 + α2 + α3)

]
;

it2 = |DtZ|2 = 2e−6φq0

[
q0 + p0α1α2α3 + e4φp0(α1 − α2 + α3)

]
;

iu2 = |DuZ|2 = 2e−6φq0

[
q0 + p0α1α2α3 + e4φp0(α1 + α2 − α3)

]
. (D.1)

It is worth remarking that that these four invariants collapse to a single one, in the axionless

case (αi ≡ ai/λi = 0).

The black hole potential for this system is given in terms of the invariants by

VBH = i1 + is2 + it2 + iu2 , (D.2)

and it admits the fake superpotential [22, 26, 41]

W =
1

2

(√
i1 +

√
is2 +

√
it2 +

√
iu2

)
; (D.3)

this case is usually referred to as the non-BPS “doubly-extremal” phase. Actually, one can

show that (D.3) satisfies

VBH =W 2 + 4gi̄∂iW∂ ̄W (D.4)

only in the case i3 = 0. Indeed, by their very definitions, using the special geometry

relations (cfr. e.g. eqs. (2.24)–(2.26) of [23])

Dsi1 = Dsi
s
2 = Z̄DsZ ;

Dsi
t
2 = Dsi

u
2 = iCstug

tt̄guūDt̄Z̄DūZ̄ , (D.5)

as well as the analogous ones concerning derivatives with respect to the scalars t and u,

and by recalling that (recall (C.4))

Cstu
2 = gss̄ gtt̄ guū ,
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one can compute that

4DsWDs̄Wgss̄ =
1

4

[
(
√
i1 +

√
is2)

2 + (
√
it2 +

√
iu2)

2+

+i
(
√
i1 +

√
is2)(
√
it2 +

√
iu2)√

i1is2i
t
2i

u
2

(z1z2z3z4 − z̄1z̄2z̄3z̄4)

]
. (D.6)

By definition (cfr. e.g. (1.12) of [22])

i(z1z2z3z4 − z̄1z̄2z̄3z̄4) = i4 ⇒ i4 = −
√
4i1is2i

t
2i

u
2 − i23, (D.7)

thus

VBH =W 2 + 4gi̄∂iW∂̄W+ (D.8)

−
(√

i1is2 +
√
i1it2 +

√
i1iu2 +

√
is2i

t
2 +

√
is2i

u
2 +

√
it2i

u
2

)(
1−

√
1− i23

4i1is2i
t
2i

u
2

)
,

which gives the required relation (D.4) in the case i3 = 0. We also notice that the ex-

pression (D.8) is non-singular, since none of the four invariants i1, i
s
2, i

t
2, i

u
2 vanishes for

this solution.
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