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1 Introduction

The allowed scalar manifolds for the N = 2 five-dimensional supergravity coupled to ny —1
Abelian vector multiplets, parametrized by scalar fields ¢* (r = 1,...,ny — 1), can be
described as the (ny — 1)-dimensional cubic hypersurface %dijkj\i;\j M = 1 of an ambient
space spanned by ny coordinates A* = X' (¢*) (i = 1,...,ny) [1]. The cubic nature of
this polynomial constraint is related to the presence of the Chern-Simons term d;;;, F' iFIAF
in the Lagrangian for the ny vector fields AZ (b = 0,1,2,3,4), with ny denoting the
total number of D = 5 vector potentials (including the D = 5 graviphoton). A complete
classification of the allowed homogeneous scalar manifolds was given in [2, 3], and many
interesting properties, especially when they are restricted to be a symmetric coset of the
Jordan family, were already analyzed in [1]. When this theory is dimensionally reduced
to four dimensions, it yields a particular class of N = 2 four-dimensional matter coupled
models with special Kéhler target space geometries, which were studied in [3] under the
name “d-spaces”. There, the uplift between four and five dimensions was called “r-map”,
since it associates real scalars to the N = 2 four dimensional complex scalar fields belonging
to the ny D = 4 vector multiplets: 2* = X?/X? = @ — 4 A, with a’, A’ real and with
the index 0 pertaining to the D = 4 graviphoton. The axions a’ originate by Kaluza-
Klein (KK) reduction from the vector components A%, and the X' = \e2® are ny real
scalars parametrizing the D = 5 scalars ¢* and the KK scalar ¢ = g44. In this sense,
the r-map is similar to the c-map, relating the moduli spaces of special Kéahler vector
multiplets to the quaternionic hypermultiplets scalar manifolds in N = 2 theories [3, 4]. In
superstring theories, the c-map relates I1A and 1B string theories compactified on the
same (2,2) superconformal field theory at ¢ = 9, while in a purely supergravity context, it
can simply be viewed as a consequence of dimensional reduction from 4 to 3 dimensions [4].
Actually, these N = 2 matter coupled theories, where the holomorphic prepotential takes
the cubic form o

_ 1, XXOxE

= 3%k x0 (1.1)

were first studied in [5], where they were shown to lead to supergravity couplings with

F(X)

flat potentials characterized by the completely symmetric rank-3 tensor d;j;. They are
particularly relevant in connection with the large volume limit of Calabi-Yau compactifi-
cations of type Il A superstrings where the d-tensors are related to intersection forms of
the Calabi-Yau manifold.

Formally, the d-tensor appears in the expression for the curvature of any special Kéhler
manifold [6]

Ryt = —9is0x7 — 9it9k5 + CirpC 97" (1.2)
since in “special coordinates” the covariantly holomorphic quantity Cjjy is given by Cjjp, =
eK(Z’E)dijk, with K (z,Z) denoting the Kéhler potential.

Notice that a generic d-geometry of complex dimension ny is not necessarily a coset
space, but nevertheless it admits ny + 1 real isometries, corresponding to Peccei-Quinn
shifts of the ny axions, and to an overall rescaling of the prepotential [3].

This paper aims to study d-geometries in a framework broader than N = 2, considering
the r-map for N > 2 extended supergravities along the lines of previous work on this 4D /5D



relation in the context of black hole supergravity solutions and their attractors [7-9]. Due
to the structure of 5D spinors, these generalized d-geometries encompass all extended
supergravities with a number of supercharges multiple of 8, and thus an even number of
supersymmetries N = 2,4, 6, 8.

d;ji is an invariant tensor of the underlying classical duality group G5 of the D = 5
action [10], corresponding to the continuous version of the non-perturbative string sym-
metries G5(Z) of [11]. The dimensional reduction yields interesting relations between the
scalar manifolds and the isometries of the 5D and 4D theories: (G5 is embedded into the
D = 4 electric-magnetic duality group G4, whose isometries are included in Sp(2ny + 2, R)
(for generic N > 1, one has Sp(2n,R) for a theory with n vector potentials; for N = 2,
n =ny + 1). More precisely, one always has the chain of embeddings

Gs x SO(1,1) C G4 C Sp(2ny + 2, R). (1.3)

Our main point is that the five-dimensional origin of all generalized d-geometries nat-
urally selects a particular branching of the D = 4 scalars, given by the axions a!, the
Kaluza-Klein scalar ¢ and the 5D scalars \*:

= {a’, ¢, \"}. (1.4)

When N > 2 these latter transform in a suitable representation of Hs, the maximal compact
subgroup of G5, which depends on N: for instance, in N = 8 there are 42 of them, sitting
in the rank-4 antisymmetric skew-traceless representation 42 of USp(8), and there are
27 axions.

Remarkably, only in N = 2 the number of axions exactly matches the number of
scalars plus 1, so that the two sets can be combined to give complex scalars. For this
case we will use a small index ¢ rather than I, to emphasize its complex nature. We
will illustrate that the a! and ¢ give rise to a universal sector which is present in any
N = 2,4,6,8 -extended supergravity in D = 4 endowed with generalized d-geometry for
the vector multiplet sigma model.

In the study and classification of BPS and non-BPS extremal black hole supergravity
solutions, the relation between 4D and 5D for cubic holomorphic prepotentials F'(X) (1.1)
was used in [7] to relate the two N = 2 effective black hole potentials and to derive the 4D
attractors and Bekenstein-Hawking classical entropies from the 5D ones. The key idea was
to reformulate the 4D effective black hole potential in terms of 5D real special geometry
data, implementing the natural splitting (1.4) of the 4D scalar fields.

Some extra features arise in symmetric special geometries, where the d-symbols satisfy
the relation [1]

4
dr(pqdij)kdrkl = 2 0(,d

=0t (1.5)

qij)>

and one can define cubic , Gs-invariant, and quartic, G4-invariant polynomials of electric

(qo, ¢;) and magnetic charges (p°, p’) by [12]:

013 (q) 013 (p)
dqi  op' |’

1 o 1 ..
= gdz‘jkpzpjpk, I3(q) = gd”qu‘qg'%‘ (1.7)

I (°,0" q0.4:) = — (P°q0 +P'%s)” +4 |aoI5 (p) — p°I3 (q) +

I3(p)



The simplest example of rank-3 symmetric d-geometry is provided in N = 2 by the stu
model [13, 14], with 3 complex scalar fields spanning the coset (SU(1,1)/U(1))3, which
serves as the ubiquitous toy model in the context of black holes arising from superstring
and M-theory.

The generalization of N = 2 special geometry is achieved in terms of a generalized
symplectic formalism, established in [15], which enlarges the rich geometric structure of
special Kéhler manifolds [3] to the other extended supergravities. In fact, an important
difference between N = 2 and N > 2 extended theories is that for N > 2 the scalar sigma
model is always given by a symmetric space G/H.

The formalism of [15] hinges on the definition of generalized sections (f,h) of a flat
symplectic bundle [16], which relates to N > 2 the flat bundle underlying special Kéhler
geometry [17]. Even in N = 2 the sections are fundamental, since they allow to describe also
theories where the holomorphic prepotential F(X*) does not exist [18, 19]. More precisely,
the sections V4 = (fﬁ, haa), with A =0,...,ny and A = 0, a, are square complex matrices
defined in N = 2 supergravity by

(f,h) = (LY, DaL™; My, Dab y) (1.8)

with (LA, My) = ef/2(X* F)), D, denoting the flat covariant derivative in the scalar
manifold: Dy = el D;, gi7 = efegéab and D; = 0; + %&K . They satisfy

haa = Nasf=a (1.9)

where Mpx(z) is the 4D complex vector kinetic matrix. The sections encode a generic
element L of the flat Sp(2ny + 2, R)-bundle over the D = 4 scalar manifold as [15]

A B f 1 A —iB
= 1.10
(e5) =) -(e ), o
or the inverse transformation
A B Ref —Imf

L = =2 1.11
<CD> f(Reh —Imh> ’ ( )

with the symplectic property LTQL = Q = (g_é) yielding the conditions

i(ffh—h'f)=1, fh-hlf=0. (1.12)

This paper studies in detail the properties of a certain parametrization (2.2), (2.13)
of four-dimensional generalized d-geometries, which reflects their five-dimensional origin,
yielding a lower-triangular structure (2.13) for the matrix L characterizing the flat sym-
plectic bundle sigma model which generalizes the one of N = 2 special Kéhler d-geometry
to any for any N = 2,4,6,8. This parametrization exploits nilpotent (of degree 4) trans-
lations [17, 20, 21] parametrized by axion scalars a’, and it acts on the same space where
the d-tensor is defined. The sigma model is parametrized by additional block diagonal
elements in the matrix L, one of them being a dilatation in terms of the KK radius ¢, and



by a symmetric matrix, which depends on the 5D data and is related to the kinetic term
of the 5D vector fields.

It should be stressed that the proposed basis turns out to be different from the standard
parametrization of N = 2 d-geometry (1.8), although it leads to the same 4D vector kinetic
matrix. We will emphasize that the two symplectic frames are in fact related by a unitary
transformation M that was introduced in [9], which only depends on the 5D data. The
unitary transformation M, that rotates the usual N = 2 complex basis of special geometry
into the basis where f is real and L is lower triangular, allows to make a precise connection
with the N = 2 stu model, viewed as a sub sector of the full N = 8 theory [15, 22, 23].
In the ¢3 model, this unitary transformation is numerical (cfr. appendix B), because the
relevant 5D uplifted theory is the pure N =2, D = 5 supergravity.

Symmetric d-geometries can be related to Euclidean Jordan algebras of rank 3 [1, 24],
which were classified in [25]; in this case, the nilpotent axionic translations fit into a
Jordan algebra irreducible representation. The reduction to D = 4 yields a Freudenthal
triple system (see e.g. [12]).

Our results have interesting applications to non-BPS extremal black holes, that we
illustrate by making a precise and non trivial comparison between the methods of [22]
and [26] in the computation of the fake superpotential [27] for non-BPS solutions and
(p°, qo) charge configuration in the stu-truncation of N = 8 supergravity.

Beyond their interest in relation to supergravity structure and solutions, one may
hope that these general properties of N > 2 d-geometries and the corresponding triangular
symplectic frame (with degree-4 nilpotent axionic translations) could play a role in un-
derstanding the symmetry structure of supergravity counterterms, in order to clarify the
issue of ultraviolet finiteness of N = 8 and other extended supergravity theories in D =4
space-time dimensions [28].

The paper starts in section 2 with the universal decomposition for the D = 4 symplectic
element L in the proposed basis 1.4, where axion are singled out. Then, the relation
between L and the matrix M entering the black hole effective potential is elucidated
in section 3. Other geometrical identities in a 5-dimensionally covariant formalism are
presented in section 4. The simpler case of N = 4, D = 4 pure supergravity (with no
matter coupling) is discussed in section 5. For d-geometries based on symmetric spaces
G/H, the computation of the Vielbein and of the H-connection is carried out in section 6,
in particular focusing on N = 8 supergravity. Next, in section 7 the N = 2 axion basis is
related to the reformulation of special Kéhler geometry as flatness condition of a symplectic
connection [17].

A detailed treatment of N = 2 d-geometries is then given in section 8, where we
elaborate on the results of [9] on the unitary matrix M rotating the axion basis to the
usual special coordinates one. Geometrical identities for M and the related matrix M are
derived in section 9.

An application of the axion basis to the first order formalism for extremal black holes
is considered in section 10. After a preliminary analysis for the stu model in sections 10.1.1
and 10.1.2 , explicit computations for the ¢3 limit in the (p° go) (DO — D6) charge con-
figuration are performed in sections 10.1.3, and the known fake non-BPS superpotential is



retrieved in section 10.2. In table 1 we list the allowed Rank-3 Euclidean Jordan algebras
J3 and corresponding symmetric generalized d-geometries, characterized by a parameter ¢
related to the number of vector and scalar fields for each N = 2,4,6, 8.

Some appendices conclude the paper. In appendix A useful results on exponential
matrices are collected, while appendix B contains some explicit computations in the t3
model, displaying the matrix M. The purely imaginary nature of the Vielbein of the stu
model and its consistent embedding into the N = 8 theory are discussed in appendix C.
Finally, appendix D deals with the duality-invariant polynomial and the first order fake
superpotential in the DO — D6 configuration of the stu model with i3 = 0.

2 Universal decomposition for the D = 4 symplectic element in the
axion basis

We are interested in general features of all D = 4 Maxwell-Einstein (super)gravity theories
admitting an uplift to D = 5. The classification of the tensors d; ;i associated to homo-
geneous Riemannian d-spaces was performed in [3]. For symmetric geometries, dyjx can
be characterized as the cubic norm of an associated rank-3 Jordan algebra® [1, 25]. In this
case, the general properties are given in terms of a parameter ¢ reported in table 1.

The number of D =5 vectors is ny = 3¢ + 3, while the number of D = 4 2-form field
strengths and their duals is 6¢ + 8. Only in N = 2 theories, the number of 5D real scalars
is 3¢ + 2, while the number of 4D complex scalars is 3¢ + 3 (one for each 4D Abelian vector
multiplet). Quite generally, the relation between the number of vector and scalar fields in
theories derived from five dimensions is such that

# 4D scalars = # 5D scalars + # 5D vectors + 1
# 4D vectors = # 5D vectors +1 =ny + 1, (2.1)

where the ny axions arise from the total number of 5D vectors.

We will show that in these generalized d-geometries, the representation of the D =4
axions a! is nilpotent of degree four and that, together with the Kaluza-Klein SO(1,1)
radius parametrized by the real scalar ¢, it provides a universal sector of the scalar manifold
of the D = 4 theory, regardless of its specific geometry. This reflects the property of special
Kahler d-geometries [3], of always having as minimal isometry of the scalar manifold the
ny axionic Peccei-Quinn translations and the SO(1,1) overall rescaling.

To prove the above statement, we split the symplectic element L according to the
decomposition of the D = 4 scalars (1.4), and we demonstrate that?

L (a',6.E () = A()D(6)G(E). (2.2)

In order to identify the various factors in (2.2), one must consider the definition (1.11) and
complement it with the results of [9], where the 4D /5D connection was used for N = 8

1'With the exception of the non-Jordan symmetric sequence [29] of N = 2, D = 5 vector multiplets’
SO(1,ny)

5 SO(ny) - )

In the following we will switch the axion index from i into I, whenever our analysis holds for generic

scalar manifolds

N > 2 d-geometries.



to determine the 28 x 28 symplectic sections ( fﬁ, haa) in a five-dimensionally covariant
symplectic frame, where the indices split as A = (0,) and A = (0,a). They take the form:

1 e 3% ‘ 0
A
- = : 2.3
I V2 (63%[ ed’(al/z)la) (23)
1 [ —e 304 —je3? ‘ —Le™dr(a™ VK +ie?al (al/?) "
haa=— 13 1/2\J - 1/2 ) (2.4)
V2 se | e ldiy(a ') —ief(al )
with
d= d]JKaIaJak y d[ = d]JKCLJak 5 d[J = d[JKaK N (2.5)
and where
EN=(a?),=E (2.6)

is the coset representative of the 5D scalar manifold G5/Hs. Notice that in this basis the
section f is real and it takes a lower triangular form, and that the 5D scalars enter the
sections only through E(\).

By generalizing this 5D /4D approach to the class of theories under consideration and
interpreting the indices A, A on the appropriate representations, we determine the generic
expression for each factor in (2.2).

The axionic generators

Afa) = '@ | (2.7)

also appeared in [30] in the context of gauging of flat groups in 4D supergravity, and they
are given by the 2(ny + 1) x 2(ny + 1) block-matrix

(2.8)
It is easily checked that T'(a) is nilpotent of order four:
1 1
T4a) = 0= Aa) = 1 4+ T(a) + §T2(a) + gT?’(a), (2.9)
which, by definition (2.7), yields
1 0 |0 O
a1 [0 0
Ala) — 2.10
(a) —Ld—Td,| 1 —d (2:10)
idy dry |0 1

As we will discuss in section 8, this is in agreement with the N = 2 interpretation of [21].
The 1-dimensional Abelian SO(1,1) factor in (2.2) is given by

e 0] 0 0
0 e® 0 0

PO =~ Ta 0 | (2.11)
0 0| 0 e




whereas the (2ny + 2) x (2ny + 2) matrix G is

(2.12)

By matrix multiplication of (2.10)—(2.12) according to (2.2), one finds that the symplectic
matrix L (1.11) acquires the triangular form:

e 3 0 0 0

ale 3 Ele? 0 0
—tde ™3 —3dgEX e7?| €3 —al(E~1)%e?
tdre™3® digEfe™? | 0 (E71)%e?

L(a', 6, E(\)=

(2.13)

We see that, in this particular basis, B = Im f = 0, since the f section is purely real:

1
f = Ref = EA(aI, b, E(\)). (2.14)

On the other hand, one has

Reh == 120(0’17 ¢7 E (A) 7d[JK)

lmh = - D(al, 6, E (V).

S

h:\}i(O—ZD) =

along with the normalization

&

1
f1Imh = 3 (2.15)

Notice that the C sub-block is the only one depending on dj k.

Conversely, one can say that the formula (2.13) for the symplectic representative yields
an explicit expressions for the symplectic sections f and h which match egs. (2.3) and (2.4).

To make the discussion concrete, let us consider N = 8 supergravity [31, 32|, based
on the rank-3 Euclidean Jordan algebra Jé? * over the split octonions; the D = 5 U-duality
group is G5 = Eg() and dyx is the invariant tensor of the fundamental irrep. 27 (I, J, K =
1,...,27T=ny—1,z=1,...,42,i=1,...70). The Sp(56, R) matrix L (1.11) is the coset
representative of the rank-7 symmetric D = 4 scalar manifold

Gy  Eqm

- i = 2.1
H, ~ SU(s) dimg = 70, (2.16)

where Hy is the maximal compact subgroup of Ey7). The 70 real D = 4 scalars 2% sit in
the rank-4 self-dual antisymmetric irrep. 70 of SU(8).

The symplectic sections (2.3) and (2.4) are given in the particular symplectic frame
defined by the partial decomposition of L (2.13) in a solvable basis, which is covariant with
respect to Hs = USp(8), the local symmetry of the D = 5 uplifted theory. Furthermore,
E (\) is the coset representative of the rank-6 symmetric D = 5 scalar manifold

Gs Eg6)

— = ———, dimp = 42. 2.17



The 42 real D = 5 scalars A* form the rank-4 self-dual antisymmetric skew-traceless irrep.
42 of USp(8). Note that (2.6) is consistent with the well known fact that the N = §,
D = 5 kinetic vector matrix (a=!);” is the square of the D = 5 coset representative [16].
The scalar decomposition (1.4) in this case becomes

SU(8) D USp(8);
70 = 42+ 27 + 1, (2.18)
AT al ¢

where the axions a’ form a representation of Jz? ., because

FEg) O USp(8);
27 = 27. (2.19)

3 Relation between M and L

We now consider a further consequence of the symplectic structure of generalized special
geometry [15], holding for every D = 4 Maxwell-Einstein supergravity even beyond d-
geometries. It can be useful in the present context and in view of applications to black
holes. The black hole effective potential for dyonic charges Q) = (pA, qa) is given by [33]

1 — _
Vin = —5Q'MWN)Q =< Q.Va >< Q.V" >= 2,2" (3.1)
where the central charges Z, =< ), V4 > are defined by the symplectic product

Zy=<Q,Va4>= QTQVA = fAAqA — hp ApA, (3.2)

in terms of the symplectic invariant metric

0 -1
Q= . 3.3
The matrix M is given by

1 —ReN ImN 0 1 0) _
M= (0 1 ) ( 0 (ImN)‘1> (—ReN ]1) =RIMpR; (34)
—_— :“- O .
R= (—Re/\f ]1) ’ (3.5)

mA 0
( 0 (ImN)—1>’ (36)

where N' = hf ! is the D = 4 kinetic vector matrix.
In generalized special geometry [15] one introduces the Sp(2ny + 2) Hermitian matrix

Mp

C=-(M+iQ); Cl=c, (3.7)

N | =



whose symmetric and antisymmetric parts are given by (3.4) and Q respectively. C is
related to the symplectic sections (f, h) by:

—hh' hff

and therefore its action on the vector V4 is given by

1

5(./\/1 +iQ) V4 =iQVy & MVy = iQVy, (3.9)
expressing a twisted self-duality [34], recently used in [35].

Using the above relations, since both M and L are given in terms of the sections (f, h),
one can see that they can be related by [36, 37]

M=—LHL = —(LLh) (3.10)
T
ML = —(LT)™! = QLQ, (3.11)

where the last step in (3.11) follows from the symplecticity of L itself. Notice that, since
also M is symplectic, (3.10) implies that M = —LL”, with L = QL.

To prove (3.10)—(3.11), one just notices that L (1.11) can be rewritten as (with x here
denoting complex conjugation)

1 N
L= 5(B+5 (3.12)
f f f .
B = (h ih) = (h) (1,:1), (3.13)
which, by (3.9) implies
B 1 o 1 [—=i(h—=h*) h+h* |
ML = M—ﬂ(B—i—B ) = 7 ( i(F— ) —(f+f*)> =

0 -1 0 -1
(3 )e(s ) onn o

By sandwiching (3.10) with the dyonic charge vector @), one also obtains

Voi = —3QMNQ = 5 (L'Q)T(L7'Q) = 5 27 7 (315)

1
2
where the real central charge vector Z satisfies

Z=L71Q, (3.16)

,10,



with the electric and magnetic real components of Z = (Z?m), Zf‘m), Z(ge), Z((le))T given by
universal formulae in terms of 5D axion and dilation fields

e d 1
Zée) = e 3(qo + qra’ + =p° — =pldy),

2 2
Z§e) =e %(qr + %podf —pldry),
2, = 4,
Z(Im) = e?(p! — pYal), (3.17)

which were derived in [9] for N = 8, but that we can here interpret as valid for all generalized
d-geometries. The components with flat indices are obtained by

2\ = 79V, . Zimy = Zlmy (@) (3.18)

a m

so that the complex central charge vector with flat indices is

(€) | ;0
Zo 1 Zy +’LZ( )
A (Za> ﬂ(z&e)ﬂ'zgm) (3.19)

and the effective black hole potential is written as [9]

Ven = |Zo|* + ZoZ, . (3.20)

4 5D-covariant identities

In the 5D covariant formalism introduced in [9], it was found that the kinetic vector matrix
Ny in N =8, D = 4 supergravity can be decomposed as:

d _dr _ 60 _ 20 I,.J J
Re/\/:(_?;lj 2), Im/\/:< o oreman e ) (4.1)

2
5 drg arja —e*ayy

In virtue of the discussion of section 2, these formulae hold for any d-geometry. Note
that ImA depends on the axions a! but not on d; g, whereas ReN only depends on axions,
and only through d; . It is immediate to realize that this is a consequence of the solvable
decomposition (2.2) of L, as well as of the relation (3.10) between M and L. Indeed,
using (3.5), the matrix A4 (2.10) can be rewritten as

100 0
_ 1 0 al 110 0 R s
A= <Re/\/ 1 001 =7 | = (R)"Ap(a’), (4.2)

0 0[0 1

thus yielding
L= (R) 'ApDG. (4.3)

Then, since DG is a diagonal matrix, (3.10) implies

M=-LNL = —~(R)T [(AL)"H(DG) " H(DG) AR R . (4.4)

— 11 —



Using (2.11), (2.12) and (4.2), one can check that

(4.5)

_ mN
— (A5) (DG (DG) A = (I : Imfv) ~

As mentioned, this explains the dependence of ImN on axions alone and not on the d-
tensor, and that of ReA on axions only through dj k.

5 A related case: N =4, D = 4 pure supergravity

Although pure 4D N = 4 supergravity cannot be obtained from five dimensions by Kaluza-
Klein reduction, which would always give rise to the coupling to matter multiplets, we
mention it here because of the recent related work of [38] and as a simple instance of the
splitting of scalar fields associated with (2.2). The vector kinetic matrix My, in this case
reads [39] (A, X =1,...,6)

Nas = =Sy, (5.1)

where the axio-dilatonic complex scalar field S of the gravity multiplet, spanning the rank-1
symmetric coset G/H = SL(2,R)/SO(2), is defined as

S=ie+a, (5.2)

yielding
ReNyy = —adpy ,  ImN = —e%0)x. (5.3)

A solvable basis can be defined also for this theory as in (5.1), and it is given by the

azio-dilatonic symplectic frame , where the relevant matrices read

—e? —a%e ? —ae?
M = ( - > ; (5.4)

—a 67(15
—9/2 —¢/2
L — 10 e 0 _ e 5 0 (5.5)
—a 0 0 e?/? —ae 92 02 |7
such that the coset representative L of SL(2,R)/SO(2) satisfies

Lil(aa ¢) = L(—CL, —(;5) : (56)

In this case the axionic generator

0 10 00
A=— = 5.7
8a<—a0) (—10) (5:7)
is nilpotent of order two rather than of order four, as for generic d-geometries:

A% =0. (5.8)

The different degree of nilpotency is due to the fact that this theory does not admit a
5D uplift and thus it is not a d-geometry in absence of matter coupling.
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6 Vielbein and H-connection in the axion basis

When the d-geometry is not only an homogeneous but a symmetric cosets G/H , the
Vielbein P, and H-connection w, in a solvable decomposition can be simply computed
from the (g © h)-valued Maurer-Cartan 1-form L~!dL by standard methods

(L™ldL), = % (L7'dL + (L™ '4L)") = P, ; (6.1)
(L~'dL), = % (L™'dL — (L™ YL)") = w,, (6.2)

(19N}

where subscripts “s” and “a” denote the symmetric and antisymmetric part, respectively.
The simplest example is provided by the axio-dilatonic coset G/H = SL(2,R)/SO(2)
treated above, whose coset representative is given by (5.5), with Maurer-Cartan 1-form

_ldqg 0
L L = 2 :
(—e‘%la %dgf) ’ (6:3)

leading to the Vielbein P, and U(1)-connection w,, respectively given by

—Ldp —Lte%da 0 le=%da

P P Y P o

In particular, one sees that the U(1) connection w, contains only the da differential. The
kinetic term for the nonlinear o-model SL(2,R)/SO(2) therefore reads [39]

Tr (PTP) = % (40 + e72da?) . (6.5)

We now consider in particular N = 8 supergravity, where the Cartan decomposition
for the D = 4 scalar manifold (2.16) reads

g=ho (6.6)
g = erpy; b =s5u(8); €= "T0 of su(8).

According to (2.18)—(2.18), the following usp(8)-covariant branchings take place:

70 =1 + 42 + 274, (6.8)
b : 63, = 36, + 27,

The coset Vielbein P, is given by the non-compact generators

1, : D 1OD;
42, : [G71OG]s;
27, : [(DG)~'0T(a)(DG)], , (6.10)

while the compact ones give the SU(8)-connection w,,

36, — [G10G].;
27, — [(DG)'0T(a)(DG)], - (6.11)
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The Maurer-Cartan 1-form gets generally decomposed as
L '0L = (DG) 10T (a)(DG) + D~ 10D + G106 . (6.12)

From the definitions (2.10), (2.11) and (2.12), one can compute

D'0D = d¢ = (D'OD) ; (6.13)
0 0 |o o
0 E-'dE|0 0
G 'og = o 0 o o ; (6.14)
0 0 |0—-EY4E
0 0 0 0
1/2)aqq! 0 0 0
DG) 10T (a)(DG) = e=2¢ | LI
(DG) (a)(DG) = e 0 0 0—(a1/2)l}dal
0 dUK(a_l/Q)g(a_l/z)g(daI 0 0

(6.15)

This implies that the Maurer-Cartan 1-form L~'0L does not depend on the axions a’

explicitly, but only on their differential da’.

According to (6.1) and (6.2), the Vielbein P, and SU(8)-connection w, for the
coset (2.16) are the symmetric and anti-symmetric part of (6.12), respectively. In par-
ticular, the component 27; of P, and the component 27y of w, respectively read:

27, : [(DG) 0T (a)(DG)], =

(a*/?)bda’ 0 0
gy (a1/2)‘1‘da1 0 0 dUK(a_l/?)g(a_l/Q)g{daI ‘
=—e
0 0 0 —(a'/?)bda’ ’
0 dux(a V)] (@) dal |—(a'/?)9da’ 0
(6.16)
27y : [(DG)'0T(a)(DG)], =
0 —(a'/?)bda’ 0 0
1 oy | (a'?)gda’ 0 0 —dyx(a ')l (a”/?)f da”
B 0 0 0 —(a'/?)bda’
0 dry(a=?)](a=1/?) da’ | (a'/?)}da’ 0
(6.17)

7 Flat connections and axion basis

As shown in [17] and further investigated in [21], the defining identities of N = 2 special
Kéhler geometry can be viewed as the flatness condition of a non-holomorphic connection

— 14 —



Ar and can be encoded into a first-order matrix equation [21]
(0, —A)U=0, (7.1)

where U is a non-holomorphic matrix (V,D;V,D,;V,V) with V = (X" F,). One can
further choose a gauge where A; becomes holomorphic

Zi:O:>Ai:Ai,5AiZO, (72)
such that (7.1) can be recast as follows:
(0; —A) V=0, (7.3)

with now an holomorphic solution matrix V containing V' in the first row. In turn, the
holomorphic flat connection A; can be decomposed as

A =T, 4+ C;, (7'4)

where T'; is the diagonal part (which vanishes in special coordinates), and C; generates an
Abelian subalgebra of sp(2n + 2, R) that is nilpotent of order four:

C:C,;C;C; = 0. (7.5)

The case of special Kahler d-geometry in the axion basis basis is analysed in appendix
C of [21]. In particular, by recalling (2.8), one can compute the axionic generators of the
solvable parametrization of the D = 4 scalar manifold treated above as

Up to relabelling of rows and columns, (7.6) matches the expression of C; (for n = 27)
given by (3.6) of [21].

For N = 2 special Kéhler d-geometries (namely, for those special geometries admitting
an uplift to D = 5) in the axion basis, this highlights the relation between the solvable
parametrization of the D = 4 scalar manifold discussed in section 2 and the nilpotent
connection of the reformulation a la Strominger in the holomorphic gauge (7.2).

8 NN = 2 special Kahler d-geometry, symplectic sections and the unitary
matrix M

In this section we are going to make contact with N = 2 special Kéhler d-geometries [3]
in the symplectic frame defined by the cubic prepotential (1.1). We recall for convenience
some results of [7] and we build on them. It has already been remarked that N = 2 special
Kihler d-geometry differs from the higher N-extended theories in that the ny 5D axions a’
exactly combine with the 5D scalars A’ = A/(A%, ¢) in order to give complex 4D scalar fields

,15,



ig; = 2" = a’ — i)\, where X* = X0 X*. Moreover, in N = 2 the central charge can be
readily computed from the cubic prepotential F(X) of eq. (1.1) by the usual formula (3.2)

K(z,z)

Z=ec 2 (X% — Fxp") (8.1)

For N = 2 cubic geometry one finds [7]

- i 0 F() — i f ()]
Z = \/@[QO +aiz' +p f(z) = p' fi(2)]; (8.2)
1
DiZ = (8,;+282-K> f[oafw%(a +OK ) +
P’ (fi2) + 0K f(2)) = 97 (fij(2) + 0K [;(2))] , (83)
where
f(z) = %dijkzizjzk7 fi(z) = %dijk2j2k7 fij(2) = digpz®, V= %dijk)\iAj)\k = e

(8.4)

with the (real) Kahler potential and its (purely imaginary) derivatives given by

L di N = —9K (8.5)

K = —In(8V); 0K = -1

Notice that i is a curved index of the 5D U-duality group G5, and A = (0,4). The connection
with the universal basis is given by introducing ny 5D scalars as A\ = e 29\! so that they
satisfy dijkj\ij\j M= 1. The ny complex 4D scalar components are then (a’, ¢, 5\’) . The
special Kahler metric is given by

1.1 1 1
gij = 4(4/@1/@ /‘iz‘j)V_2/3 = ZV_2/3aij = 16_4¢aij, (8.6)
ki = V72BN k= VB 0E. (8.7)

One can assemble Z and D;Z into a symplectic central charge vector Z, with a curved

D.7
A
v, = <£AZ> . (8.9)

Then, from Z, in (8.2) and (8.3) one can read off the components of V,,, which are

lower index

<Q7 Va> - QTQV - anCIA - hAOcpAa (88)

f=r% =% = \/;T) (zl 5 fg_(Kzz) ; (8.10)
. _ 1 [ =f(7) 5(2) — K f(2)
h:hAa—(hAo,hAj)—@(fi(z) - ()+aKfZ(z)>‘ (8.11)
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While it can be checked that
0 gij

we should better consider the normalized symplectic sections with flat tangent indices
A = (0,a), such that
i(fTh — h'f) 4 = da5. (8.13)

They are the components of Z4 = (Z, DzZ), and they can be obtained by flattening the
curved indices 7 by the G5- Vielbein e?,?’ so that the orthonormalized symplectic sections
fAA and hp 4 are given by

A= ATV, hpa = ha(GTY2), (8.14)

It was emphasized in [9] that the symplectic sections f and h of (generalized) special
geometry are defined only up to the action

f>f=fM, h—h'=hM < M=f'f=h"'n, (8.15)

of a unitary matrix M, which preserves the form of the kinetic vector matrix A" = hf~!
and the conditions (1.12) derived from symplectic invariance of L. Actually, the matrix M
found in [9] to connect N = 2 with N = 8 is exactly the necessary one to rotate the usual
basis of special geometry into the axion basis of any d-geometry. It can be written as

_1 ( 1 (g71/%) 05K > . (8.16)

2 \ —iv BN )0 (VB VTN IK) (a1 /2) 0 (g7 %Y,
MM =1, (8.17)
where

K = 2iNgi7; (8.18)

1
(520K = 20X (g2) 050 (8.20)
(7% =203 (8.21)

By further rescaling the D = 4 dilatons as

. 1 R

A\ = V1/3)\Z, gdijk)‘z)\JAk =1. (822)

the matrix M (8.16) can be recast as follows:

1 1 iN(a'/?)b5,,
M == .. Nl v . 8.23
) (_i)\z(al/Q)ia 25;} _)\1)\](&1/2)ia(a1/2)jb5db ( )

3Further below, in the explicit case of stu model, the Vielbein will be taken to be purely imaginary (cfr.
appendix C).
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Using (1.11), one can see that the action (8.15) of M induces the following transformation
of the coset representative L:

ReM —ImM

L—-L =L
ImM ReM

) =LY (ReM,ImM), (8.24)

where the real symmetric and unitary matrix

1 0 0 —Ni(a'/?)b5,
SR N e ¥ Ui P Gl 8 L 0 |
2 0 A (al72)b6 4 1 0 ’
—\i(al/?)2 0 0 268 — XN (a¥/2)3(a'/?)50p

(8.25)

V=Y =y=yleyy =0T =22 =1, (8.26)
does not depend on the volume modulus V.

The symplecticity of L (and thus of L) yields
LTor =0 - )Yy =0, (8.27)

thus also ) is a symplectic matrix, as expected. Indeed, from its very definition (8.24), the
symplectic condition (8.27) becomes

ImM ReM + ReM ImM =0, ReM? —ImM? =1, (8.28)

which is identically satisfied since M is a unitary matrix, with ReM” = ReM, and
ImMT = —ImM (cfr. (8.16)-(8.17)).
The matrix ) (ReM,ImM) (8.24) provides a realization of the maximal symmetric
embedding [10]
U(28) C Sp(56,R). (8.29)

Indeed, since L is symplectic, one has checked that also ) is symplectic, but
given (8.26), this leads to
V,Q]=0. (8.30)

An explicit computation of the matrices M (8.23) and ) (8.25) for the ¢* limit of the
stu model is presented in appendix B.

9 Unitarity relations for M and induced relations on M

The residual freedom in the definition of the symplectic section was found in [9] to imply
that the symplectic vector Z4 = (Z , 557)T of N = 2 special geometry, with a flat index
A = (0,a), differs by a unitary transformation from the corresponding central charge vector
Za = (Zo, Za)" of the N =8, D = 4 theory (3.19) in the Egg)-covariant symplectic frame
(with a =1,...,27),

Za=ZpMP,. (9.1)
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This is obvious from the fact that the N = 2 sections in (8.10) are not lower triangular,
as required in the axion basis in (2.3) where the the symplectic section f is real. Notice
that the Fg) basis is related to the usual de Wit and Nicolai symplectic frame by a
symplectic transformation [8] . However, under a change of symplectic basis, that is a
duality transformation, the kinetic matrix transforms as Ny — (C + DN)(A + BN)~L,
while the unitary transformation M leaves N,y invariant.

M acts on the normalized sections, with a flat tangent index, as given by (8.15) (where
now prime refers to N = 8 sections and unprimed sections are the N = 2 ones in the axion
basis, discussed in section 8). On the other hand, one can define a matrix M acting on
(un-normalized) sections with a curved lower index as

f=ftM, NhW=hM o M=f'¥=h'N, (9.2)

They can be obtained from (2.3) and (2.4) by multiplication with the appropriate
Vielbein, that is

P = FAaAld, haa = ha a(AY?)2, (9.3)
with
1 (0...0
A= 0 (9.4)
e argj
0

where ay; is the kinetic vector matrix of N =8, D = 5 supergravity. In the Eg)-frame of
4D N = 8 supergravity, the symplectic section with curved indices f read [9]

. 1 e3¢ ‘ 0 R 30 0
A = — He=v2 9.5
f @ \/Q <6—3¢aJ ‘ e—¢5}]> ) (f )A \/> <—€¢CLI 6¢5§ s ( )

where, in the symmetric gauge [8], A = 0,1 and o = 0, I, where here I is a curved index

spanning the 27 of Eg ().
From (8.10), (9.5) and (9.3), one can compute the matrix [9]

B i1y BEA L 1 ;K
M= (7" e =3 <_w‘v—1/3 VUS4 iy BNIgK ) (96)

which does not depend on the axion fields. Moreover, using (8.14), (9.3) and (8.15), the
relation between M and M is given by

M=Ff1F = Afl/folf/gl/Q _ A*1/2Mgl/2 o M= Al/QJ/\ngl/? (9.7)
The unitarity of M entails the following identities for M , namely:

MM =1Ide AMG M =1d;
MM =Ide ¢ 'MAM =1d.
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10 Axion basis and the fake superpotential

In this section we show an interesting application of the axion basis to non-BPS extremal
black holes. The unitary transformation M that rotates the usual N = 2 basis of special
geometry Z4 into the Eg(g) basis Z4 allows to make a precise connection with the N = 2
stu model, where the three complex scalar fields z* = {s,¢,u} span the rank-3 coset space

B ', with

f=stu, e K =8N\ =38V, (10.1)
viewed as a sub sector of the full N = 8 theory [15, 22, 23]. The aim is to illustrate the
computation of the fake superpotential for non-BPS solutions and (p°, gg) charge configu-
ration in the stu-truncation of N = 8 supergravity. This example was discussed from two
different viewpoints: in [22] the fake superpotential was computed for generic charges in
terms of duality invariants of the underlying special geometry, while in [26] Bossard, Michel
and Pioline (BMP) provided a procedure based on nilpotent orbits which lead to the fake
superpotential as solution of a sixth order polynomial.

The virtue of the axion basis is that, while showing the equivalence of the derivation
of [26] and [22], we can read out the fake superpotential from the N = 8 central charge in the
skew symmetric form. Here we start from the formula for the central charge derived in [9]
using 4D /5D special geometry relations, and we look for a suitable SU(8) transformation
that brings it to the form given by eq. (2.68) of [26]

7GEG SV ZBMp (10.2)

In particular, we study the effect of such a rotation with respect to the decomposition
28 — 1¢ + 27¢, which is common to the central charge normal frame of both [9] and [26].
We identify this transformation in the #3-truncation where it depends only on one angle
X, purely given in terms of duality invariant quantities. When this rotation is used to
match the central charge in [9] and that of [26], we consistently retrieve the non-BPS fake
superpotential for the N = 2 #3 model, within the (p°, go) charge configuration in presence
of non zero axions. This is a non-trivial consistency check for the 4D/5D formalism based
on the matrices M and M [9] detailed in previous sections.

The key point of this analysis is that the 28 components of the N = 8 central charge
matrix Z4p can be traded for the symplectic vectors Z4 (with flat lower index) or Z,, (with
a curved one) reflecting the splitting 28 = 1¢ + 27¢ of the axion basis. Since Zp can
always be brought to the skew-diagonal form

24000
02 0 0

Tan = 10.3

AB 00202 (10.3)

000 2

one has to relate the eigenvalues z1, 29, z3, 24 with the complex components of Z, =

(Zo, Zr) 9], with I = 1,2,3,
Zy = (28 +iZ0,),

Zr = (2 viagZ],). (10.4)
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In fact, in light of the previous discussion, egs. (8.15) and (9.2) yield
(2,D:2) = (2o, Zi)M , (10.5)

where Z and D;Z in the L.h.s. are given by (8.2) and (8.3). Using (9.2), one finds

N
I

1 .
5 (%o~ iINZ VT3 (10.6)
1 )

5 (0K Zy + VB Z 4 VTSN Z;0K) . (10.7)

N
I

D;

In order to find the skew eigenvalues z1, 29, 23, 24 in (10.3), one needs the inverse metric,
which in this case is factorized as

g =—(s=97, ¢'=—(t-0* g¢"=—-(u-u), (10.8)
as well as the purely imaginary Vielbein (see appendix C)
(= (-5, (= (-D, (= @-1), (109

and the Kahler connection

s—§ t—t u—1u

&K:( Lot )T. (10.10)

Using (10.8)—(10.10) in (10.6)—(10.7), one obtains

1 .
J = §(Zo — Z)\zZl) 3 (1011)

— - 1/ 1 1

DsZ = = < _Zo+ VY37, 4 iy BN Z; > ; (10.12)
2\s—3s s— 35

D;Z = L g vz, i, (10.13)
2\t—t t—t)’

—_ 1/ 1 1

DuZ = = < —Zo+ V375 +iV_1/3)\ZZi_> . (10.14)
2\u—1u u—1u

By recalling the definition AV ~1/3 = Xie=26 = \i (cfr. section 8), and defining

el = )\1Z1 s €y = ;\ZZQ N €3 = 5\323, (10.15)

one computes

_ 1 . . . 2 1
9" DsZDsZ = 4 | Z ~ INZy 40N 2y +iN3 23| = 1o ti(ert et e3)|?; (10.16)
P - 1 < < a2 1
g D;ZDy 7 = 11%0+ INZy — N Zy +iN3 73| = 1|Gtila—ev e3)]*;  (10.17)
uuTy 17 _1 -3 1 -2 23 2 _1 . _ 2
q D2 = 1 Zo+iN 21 +iN Dy —iN 23| = 1 |Zo—|—l(€1+€2 63)’ , (1018)
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from which the entries of the Z4p matrix can be read off (in the conventions of e.g. (5.32)
of [23])

Y= 7= % [—(e1 + ez + e3) — iZ0) , (10.19)
2 = DsZ(g~ V25, = % (—z’Zo N2+ 322, + )\323> -

% (e + €5 — e1) — i) | (10.20)
2 = DiZ (g~ V), = % (—iZo FAZ - 322, + )\323) -
(e + e5 — e2) — iZ0)] | (10.21)

v
2
2 = DaZ(g~ V2% = % (—iZO + A7+ 22, — >\3Z3> -

i .
= 5 [(61 +e9 — 63) — ZZ()] . (10.22)
The 4D /5D covariant splitting is thus manifest in the following form of the central charge
matrix* [9]
—e1 —eg —e3 0 0 0
7 . . 0 —e1 + e+ e3 0 0
ZAB = = —iZp id
AB = €@ | a0t 0 0 e1—estes 0
0 0 0 e1+e2—e3

(10.23)

This result, compared with formulee (3.2) of [9], explains the definition

1
Zag = = —iZ°Q
AB 9 (eAB ? ) )
in which Q = e®idy, given in eq. (4.7) of the same reference; notice that the overall phase
i is uninfluential.

10.1 Residual U(1)? symmetry of the skew-diagonal Z,p

The form of the central charge, as derived in the previous section, reflects the more general
structure of the 28 — 1¢ 4 27¢ decomposition of SU(8) D USp(8) representation.

The central charge matrix for the p°, ¢y configuration in N = 8 Supergravity has been
given in [26], in the same symplectic frame. The reason why this is a suitable frame to
study the non-BPS orbit is related to the choice of orbit representative. The moduli space
of the non-BPS pP, ¢y solution is indeed the moduli space of the 5 dimensional theory,
namely Fg)/USp(8) . By solving a nonstandard diagonalization problem, the authors
of [26] identify the fake-superpotential in the singlet of the axion-base decomposition of
the central charge matrix. However, the form of Z4p is unique up to SU(8) transformations,

4id,, denotes the n x n identity matrix throughout.

— 922 —



and the choice of symplectic frame is not covariant with respect to the action of SU(8),
since the singlet is not left invariant by R-symmetry rotations.

Starting from the form of the central charge in (10.23), we look for the transformation
that rotates Z4p in such a way that the transformed matrix can be identified with the one
of [26]. The goal is to determine the SU(8) rotation in terms of the scalar fields, and then
read from the transformed singlet the explicit form of the fake superpotential.

Because of the residual USp(8) symmetry of the skew-diagonal central charge (10.3),
we can restrict the analysis to the transformations of U(1)? c SU(8)/USp(8).

10.1.1 The (po,qo) configuration

In the non-BPS (po, qo) charge configuration (corresponding to DO — D6 in Type II lan-
guage), the dressed charges of the N = 8 theory read (3.17)

1
Zy = E (e qo + e 3% arasas + ze3¢p0) ; (10.24)
243 g;
L 9 - | 32,13 i o® 32
Z; = ﬁp e Aata® [ —ie? | G5 . (10.25)
Mala? a
)\3

Thus, the N = 8 skew-diagonal Z,p (10.3) in the (po, qo) charge configuration can then
be written as

1000
(posao) _ 1 3 3 036 | 0100
Zi5" = 5 5@ | (@ “go + caasas e +ip’e®) | 0L+ (10.26)
0001
—(0q + az + a3) 0 0 0
0 — 0 0
40630 o1+ o2+ a3 n
0 0 ap — a2+ ag 0
0 0 0 a1+ g — ag
(L 1 1
aﬁ o2 ag) 1 01 1 0 0
0 (—+ ==+ ) 0 0
0, a « «
—I—pze 041042043 1 2 3 ,
: R T
0 0 0 (OCL_FO%_L

—

where o/ = a'/\" is the axion/dilaton ratio, with A\’ = e2?)i and A'A2A3 = 1. When
a’ = 0, one recovers the KK solution studied in [9].
To proceed further, it is convenient to define the following quantities:

1
Yo = —=(qoe % + aragaz p°e®) + 39, (10.28)

i 0
—ple
V3 V3
Y = \/ip e3? <ozi + 5 |€ijk] ajozk) , (10.29)
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and

oy — ((1) _01> . (10.30)

We can write

10 1 0
id2®id2:id4, id2®0'3: 01 ~1 0 ; U3®'id2: 0 -1 1 0 ;
0 -1 0 -1
1 0
0 —1
o ol (10.31)
01

Thus, by recalling (10.26), Z4p can be decomposed as
(r",q0) _ N1 ; : . R Y o
Zyg" = Za(Y0,Y;) = 5€ ® (Yo idy + Y1 idy @ 03 4+ Ys 03 ®idy + Y3 03 ® 03] . (10.32)

This parametrization of the central charge matrix will allow us to perform the necessary
rotation to identify the fake superpotential.

10.1.2  U(1)3

The matrix Z4p (10.32) has a residual U(1)®> C SU(8)/USp(8) symmetry. More pre-

cisely, U(1)? can be considered as the Cartan subalgebra of the symmetric, rank-3 compact

manifold SU(8)/USp(8) (dimg = 27); indeed, U(1)3-transformations do not generate off-

diagonal elements, and they leave the skew-diagonal form of Z4p invariant. We choose to

parametrize such a U(1)? matrix as a 4 x 4 matrix acting on the diagonal part of Z4p,
namely (x; € R)

e—iha+x2+x3)

ei(=x1+x2+x3) 3

el —x2+xs) € U(1)° € SU(8)/USp(8).

ei(Xl‘FXQ*XS)

(10.33)

Note that, consistently, the sum of the four diagonal phases vanishes. Therefore, by the

exponential mapping, one obtains

—i(x1 + x2 + x3)
U = exp i(—=x1+ x2 + Xx3)
i(x1 — x2 +x3)

i(x1+ x2 — x3)

(10.34)
which, analogously to Z4p (10.32), enjoys the following decomposition:
U =exp|—i(x1 idy ® o3+ x2 03 Qida+ x3 03 R 03)] =
= exp [—ix1 ids ® 03] -exp[—ix2 03 ®ids] - exp[—ix3 03 ® 03] =
=U-Uy-Us (10.35)

where all matrices are reciprocally commuting.
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Under U(1)? (10.34), Z4p (10.32) transforms as
Zag — UZapUT = U*Z 4p. (10.36)

Without loss of generality, one can therefore just redefine the x;’s by a factor of 2, and
consider the transformation
ZAB —)UZAB. (10.37)

Each single U; actually reads

Up = exp[—ix1 idy ® os] = cosx idy —isinx; ida @ o3;
Uz = exp[—ix2 03 ® ida] = cos x2 idy — isin xa 03 ® idy; (10.38)
Us = exp[—ix3 03 ® 03] = cos x3 idy — isin x303 ® 03,

and induces the following transformation on Zsp (10.32):

U1 Zap — cosx1 ZaB —iSinx1 Zap - ido ® 03;
Us Zap — cos X2 Zap —isinxa Zap - 03 ® ida; (10.39)
Us Zap — cos X3 Zap —isinxs Zap - 03 ® 03.

Consequently, ¢ (10.35) has a well defined action on the coefficients of the matrices (10.31);
for example, by acting with only U; gives rise to the following transformations of Yy and Y;’s:

Yo = v =cosx1 Yo —isiny; Yi;
Y] — y1 =cosx1 Y1 —isiny; Yo

10.40
Yo — v =cosx1 Yo —isiny; Ys; ( )
Yg — Y3 = COS X1 }/3 — isinxl YQ,
such that the U -transformed central charge matrix (10.32) can be rewritten as
Zap(Yo,Y:) = U Zap(Yo,Yi) = Zap(10,7%) - (10.41)
The complete action of U (10.35) on (10.32) reads
ZaB(Y0,Yi) = Zap(Co,G) = Uslalh Zap (Yo, Y) , (10.42)
where the (;’s are defined as
=AYy +BY  +C Yo+ D Yz;
GQ=BYy+AY1 +D Yo+ C Y3; (10.43)
G@=CYy+DYI+AY>+ B Ys; '
@B=DYo+CY1+BY,+AYj3,
with (¢; = cos i, $i = sin ;)
A = (c1c903 — 1815283);
B = (—c189283 + ’6.810263); (10.44)
C = (—s1c283 +ic152¢3);
D = (—s182¢3 + ic1c283).
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Within the same (po,qo) axionful charge configuration, it is interesting to compare

the U(1)3-transformed Zap (10.42)-(10.44) with the “non-standard” skew-diagonalized

ZIE‘%MP) obtained by Bossard, Michel and Pioline (BMP) in [26]

1000
1 . '
ZI(LX%MP) =5¢¢ i(e @) 4 sin 27O/ 8 (1) (1) 8
0001
Gl+&+E& 0 0 0
—i(a— 0 —& 0 0
e ' 10.45
B 0 0 & 0 ’ ( )
0 0 0 &
which can equivalently be recast in the following form:
1 y .
ZI(LXBBMP) = 56 (9] [i(eln + cos 277 e*ln)pid4+
THL T 2 3 0 0 0
+e 0 —H1 A+ p2 s 0 0 3
! 0 P — p2 + p3 0
! 0 0 H1+ o — 3

1 . . .
= 56 & [MO idy — 6_”7/1,1 ido ® 03 — e_mug 03 ® 1dy — e_mug 03 X 03] (10.46)

by introducing the quantities:

o = i(e™ + cos2neMp, nza—%,
&1 =1 — p2 — i3, §o = —p1 + po — p3, §3=—p1 — p2 +p3. (10.47)

By comparing (10.32) and (10.46), in order to match (10.45) with (10.42)—(10.44), a trans-
formation ¢ €U(1)? should be found, such that

Yo Co=po, Yi—G=—e"p, i=12,3. (10.48)

This amounts to solving the system composed by (10.43)—(10.44 ) and (10.47)—(10.48).

For simplicity’s sake, we will here confine ourselves to solve such a system within the “t3-

degeneration” of the formalism under consideration, which amounts to choosing three equal
phases x;’s, corresponding to the diagonal U(1) g, inside U(1)3.

10.1.3 3 model

As mentioned, at the level of U-transformation, the “degeneration” procedure from stu to
3 model amounts to identifying

X1 = X2 = X3 = X- (10.49)
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This corresponds to considering the action of U(1)giag C U(1)3 C SU(8)/USp(8), such that
(recall (10.35))

—3ix
ix
U= Lﬁ 'UQ . Z/[3 = Udiag = exp . (10.50)
24
%
The central charge matrix given by (10.26) and (10.32) thus acquires the following
structure:®
-3000
.1 1
Zg);qo)’ts = 2\/§€ ® (e’3¢q0 +poe3¢(i + a3)> idy +P0ae3¢(1 +ia) g 0 (1] 8
0 001
1
= 56@[1/0 idy +Y (’id2®03+03®id2+03®03)] , (10.51)
where here (1 = ag = a3 = «)
Yo = == (€730 + pYe3?(i + o?)) ;
0= 5 (e7%%q0 + p"e*( ) (1052)

Y = —% (P> a(l +ia)) .

On the other hand, the consistent “t>-degeneration” of the central charge ma-
trix (10.46)—(10.47) reads

3000
1 ; : , 0 100
Z&%MP)JS = 5€ ® |i(e" +cos2ne " Mpids+e 0010 =
0 001
1 .
= 3¢ ® [,ug idg — e "p( idy ® 03 + 03 ®idy + 03 ® 03)] , (10.53)
where
y » T
po =i(e" +cos2ne”Mp, n=a-— == Ep=—h=-0= "6 (10.54)
We notice that, by denoting 7y the phase of g, it holds that
¢ ! (10.55)
anny = ————. .
o (tann)®

Thus, in order to match (10.51)—(10.52) with (10.53)—(10.54), a phase x should be
determined such that it rotates the relevant quantities as follows ({1 = (o = (3 = (,
Y1=Y=Y3=Y)

Yo = Co=po, Y —=C=—e"p. (10.56)

5In order to simplify the computation, we will henceforth choose p® > 0 and go > 0. This does not
imply any loss of generality, since all other sign choices are related to this by a duality rotation along the
non-BPS (Zg # 0) charge orbit of the stu model.
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From the “t3-degeneration” of (10.43), one gets

(o = AYy + 3BY; (10.57)
¢ = (A+2B)Y + BY,. (10.58)

However, now A and B respectively simplifies down to
A=B+e X B= %sin(Qx)eiX, (10.59)
thus allowing for the following re-writing of (10.57)—(10.58):
Co = e XY, + % sin(2x)eX(3Y + Yp);
(=e XY + %sin(2x)eix(3Y + Yo) . (10.60)

The action of U(1)gjag C U(1)? implies that

Y%

(—¢Co
As pointed out above, in order to match (10.51)-(10.52) with (10.53)—(10.54), we are inter-
ested in finding the phases of these parameters in terms of x entering (10.50). Therefore,

eX

(10.61)

we can solve for tan x, as we read from (10.55) and (10.56):

1
no = tan (o) = —————, (10.62)
[pan (¢
where 1(p) and 1({) respectively denote the phases of (y and (.
From (10.60), one obtains
1 Yor — 7Yor — 37%Y7 + 37YR
tan¢(€0) = 3 1 3 3 ) (10'63)
™ Yor+ =Yor — 2Yr — 2Yr
1 Yy —7m3Yg — 72(2Y7 + Yor) + 7(2YR + Yor
tant(¢) = — ) 1( ) 1( ) : (10.64)
™Y+ 5 Yor — = (2Y7 + Yor) — 7 (2YR + Yor)
where
Y =Yg +iY;, Yo=Yor+iYy, T=tany. (10.65)

In order to find 7 in terms of o, p”; g, one needs to solve (10.62), which in virtue of (10.63)-
(10.64) can be made explicit as

3

Yb[ — 7'3Y()R — 37‘2Y] + 37’YR B 7_12 YI + %Y’OR - 712(2YI + YOI) - %(QYR + )/OR)

Yor + 5Yor — 21 — 2Yg Y7 — 7m3YR — 72(2Y] + Yor) + 7(2YR + YoR)
(10.66)
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Further simplifications are possible. Indeed, by recalling (10.52), the dependence
of (10.63)-(10.64) on a,e?,p°, ¢° can be made manifest:

—qo tan 3 + p%e52(1 — tan y )3
qo + pPe®(tan x + a)?
1 — Peb(L_ _ )3

= —tan > — % ___tanx ; (10.67)
1+ Befd(tan x + )’

no = tan(¢o) =

—qo tan y + p%ef(tan x + a)?(1 — tan y @)

t -
an $(¢) qo tan x2 + pPeb?(tan x + «)(1 — tan x «)?
1 1-— p % (tan x + a)?(—= — a)
= — o tjnx S (10.68)
anx 1+ P-ebo(tan x + o) (fany — @)
As a consequence, (10.62) can be recast as
1— 3 1 2,\3
v _ (L+a%y) (10.69)

T+y3  (1—axy?)?

0\ 1/3 1 0\ 1/3
r= <p> e%? ( - a) , y = (p) e*? (tan x + ), (10.70)
90 tan x q0

and therefore solved for

xT=1y or z#y, zy=-—1. (10.71)
For real values of tan y the case x = y is not allowed, so one is left with
o~ 2/3
2
y=-1 = <p> eté [1 ot = ] = 1. (10.72)
qo tan 2y

Thus, the angle x, which provides the U(1)gjag-rotation between the skew-eigenvalues
of (10.51) and (10.53), is given by

1
tanx = 55— <(1 — 3 a® +1)) £ \/(1 — 23 (a2 +1))? + 4V2/3> , (10.73)
v = (p°/qo)e’?. (10.74)

For later convenience we explicite here the expression for x

2a
(%)2/3e4¢ —1+4a?

; (10.75)

1
= ——arct
X 5 arctan [

we also recall the choice of gg > 0, p° > 0, in our computation.

10.1.4 Duality invariants

One can also relate the parameters entering the solution (10.73) to the duality invariants
T4, 11,12 and i3 defined e.g. in [40]. Using the relations (3.6)-(3.10) of [22], one finds

b
a= 3\/7; (10.76)
—44
1
(¢")%e % = (413 —T,+ \/56 — T4(3b* + 1643) + 3b2(—I4)% — I;f), (10.77)
(—Z4)
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where iy = b + 3i, and the “+” choice has to be consistent with the positivity of e5?. We
notice that « is a duality invariant quantity by itself, as well as the combinations gge 3¢
and pYe3? (recall /—Z; = pYqg). Thus, the expression (10.73) is explicitly duality invariant.

10.2 Recovering the non-BPS fake superpotential
In [26] it is shown that the non-BPS fake superpotential is given by
W = 2p, (10.78)
where p enters the expression (10.46). From the same equation, one can also write jg as
o = 2p(—sinn® +icosn?), (10.79)

thus yielding

1 I
Wo=2p— myo _ Imgp

= . 10.80
cosn3  cosn? ( )

Moreover, (10.52) and (10.60) imply

Im¢y = —\}ieg‘ﬁ cos x° <q0 tan x° — %p°(1 — tanxa)3> =
1 3 . 4 1 3
= —Ee qosiny” | 1—v tanx o . (10.81)
By using
.3 tan x* 1 2\3/2
= =1+t 10.82
SlnX (1+tanx2)3/27 COSng ( + angb(C) ) J ( )
and (10.67)~(10.68), (10.62) and (10.71) yield
VR —a)(r+a) = —1, (10.83)
and one can rewrite
1 1+v'3(1 +a)
t S
an (o) T1— v/ — )
\’
1 1 (=B =)+ 1+ B +a)?)?
cosp(C)3 73 (1—-v/3(1/7 —a))3
2\3/2 1/3 4 ,2/3( A2 3/2
_ (1472 (14 20/ + %> (" 4+ 1)) ; (10.84)
73 (1—-v/3(1/7 —a))3
3
- -3¢ T _ PR
Im¢y = —qpe TEEITE (1 v(l/T —a) ) . (10.85)

Therefore, the non-BPS fake superpotential W (10.80) is given by

_iqoe—&?ﬁ (171/(1/7'7003)
V2 (1—1/1/3(1/7'—oz))

3(1+ 2003 + 1213 (? + 1)) (10.86)
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Substituting the expression of 7 = tan x as in (10.73), one finds that

(1—y(1/7—a)3> B 1— a3 + 1232 + 1)

_ , 10.87
(1—1/1/3 (1/7’—04))3 1+ 20013 +12/3(a2 4 1) ( )
which yields the following explicit expression:
L 3 13, 2/3, 2
W = —que \/1+2ay1/3+y2/3(a2+1) (1—al/ + v («a —l—l)) =
L 3./, 13
= e a7+ a2+ o
. ((qé/?’ + (p%)3ae®)? 1 29 (p0)2/3 — 3(q0p0)1/3a€2¢) ‘ (10.88)

Notice that the overall minus in (10.88) is totally irrelevant, since it can be eliminated with
a U(1)giag-rotation through the matrix —e ® idy .

Equation (10.88), up to a factor of 1/2, coincides with the formula of the non-BPS
fake superpotential for the (p°,qo) configuration in the ¢3 model computed in [22]. The
difference of a factor 1/2 is simply due to the different normalization used for the normal
form central charge in our notation (which coincides, for example, with the one in eq.
(3.13) of [15]) with respect to the one used in [26], as one can read from eq. (2.11) therein.
This implies that the correct identification would be Impy = %Ing. Consequently, the
correctly normalized fake superpotential becomes finally

"o 2\1ﬁe—3¢\/ (a0 + (p°)/30e20)2 + c4o(p0)2/3 -

. ((qé/3 + (P0)3ae?)? 4 et (p0)/3 — 3(Q0p0)1/30z62¢> - (10.89)

This computation is a non-trivial consistency check for the formalism based on the axion-
independent matrices M and M introduced in sections 8 and 9, as well as for the results
on the phase x obtained above.
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J3 1% I% 4 N
5 st wShY i §
7 ) S 8 2
JH % g‘gpggg 4 2 or 6
I3 SO 50T 08 ! !
J5 SUGSU(3 0T Sty 2 ’
i ex ) : :
i ST SO : ’
R L(2R
(#* model) Rox B 23 ’
2 (morn=2)
RO —1n-1 SIfJ((Zl’gR) X 30?2)(%8(”) SO(1,1) x % (m+mn—4)/3/4 (m or n = 6)
0 otherwise

Table 1. Rank-3 Euclidean Jordan algebras .J3, and corresponding symmetric scalar manifolds for
vector multiplets in D = 4 and D = 5, with the parameter ¢ and the number of supersymmetries V.

A Some results on exponential matrices

Let us recall the decomposition (4.2):

o

100 0

0 0[0 1

where A(a) = exp(T'(a)) (cfr. (2.7)).

Thus, by defining

and

Ap =exp(Tp), R = exp(Tr),

T(a) = Tp(a) + Ty(a,d);

one obtains that

al 110 0 _
) 00[1 —a’ | (R) 1AD(aI>’

A(a) = exp[Ty+ Tp| = exp|—Tr] - exp[Tp] ,
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with

Tr(d) = (—Roej\/g> . (A.6)

This allows us to describe how the matrix Re/ is constructed from the algebra perspective,
as

—ReN 1

where the generators

( y 0) =R =exp [CLI(TD)I} exp {—al((TD)I + (Td)[)] 7

9
Oal

0

Tp, (Ty); = @Td

(Tp)r =

do not depend on the axions, since

B M and )Y in the t> model

We now explicitly compute the matrices M (8.23) and ) (8.25) for the special geometry

defined by the holomorphic prepotential

(X1
X0 7

corresponding to the t3 model of N = 2, D = 4 supergravity, where the unique complex

F= (B.1)

scalar field is defined as .

X .

ﬁzt:a—z)\. (B.2)
In this model, which uplifts to N =2, D =5 “pure” supergravity (thus with no scalars in
D =5), the matrices M (8.23) and Y (8.25) are simply numerical matrices.

From the analysis of [7], it follows that

K =6M%, g7 =12\, (B.3)
with A = 2%, Since ]
Qg = thie_%, (B.4)
it then follows that . .
(9" =2V3e*, (')} = V3, (B.5)
Thus, the matrices M (8.23) and Y (8.25) can be computed to be
1 1 )
M = B (_\/gz @z) =sin (0;3) o3 + cos (0;3) 02; (B.6)
1 0/0 —V3
1{ 0 —1]v3 0
Y= : (B.7)
21 0 V31 0
-V3 0|0 -1
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where o3 and o3 are the Pauli o-matrices (such that the constraints (8.28) are trivially
satisfied), and
0,5 = % (B.8)
such that (cfr. (B.5))
(a™'/?)t = tan (6;s) . (B.9)

C On the complex Vielbein for the stu parametrization of N = 8 su-
pergravity

The “stu parametrization” of N = 8, D = 4 supergravity is based on the following cor-
respondence between the skew-eigenvalues of the N = 8 central charge matrix Z4p and
the (flattened) scalar-dressed charges of the N =2, D = 4 stu model, which is a common
sector of all rank-3 symmetric special Kéhler geometries [15, 22, 23]:

zze 0 0 O
0 z¢ 0 O
Z = pum—
A8 0 0 z¢ 0
0 0 0 ze
Ze 0 0 0
0 —i(g*)'/2DsZ 0 0
_ Z(g ) sL€ e o (Cl)
0 0 —i(g")V/2D; Ze 0
0 0 0 —i(g"™)/2 Dy Ze
The square root of g;; can in principle be chosen with real entries as
i
(ges)'/? = £—, (C.2)

S§— S

1/2

and analogously for the t¢ and uu components of g'/2. Thus, in this symplectic frame, the

rank-3 C-tensor reads )
1

N DI T

(C.3)

can be written as

Cstu =+ (955)1/2(95)1/2 (guﬂ)l/Q ) (04)

consistent with the choice made in (C.2). This choice affects the attractor equations since

N |

ZD,Z = —iCgug**g""D
/2 ( uu)1/2[)§Z[)ﬂZ7

= (:F)(—i)(gtt)

¢
Z(gt{)l/zD{Z _ $i(gs’§)1/2DsZ (guﬂ)1/2DuZ, (C.5)

sZ Dy
( 5)1

which, using the notations of (C.1), can be recast as

2123 = *+Z924 , (C.6)
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where only the choice “—”

allows the attractor equation from special geometry to be
embedded into the N = 8 theory. Thus, we are lead to choose the minus sign in (C.2), and

correspondingly the Vielbein is fixed to be purely imaginary:

(s—3)t 0 0
e=—igl? = 0o (t-H"' 0 = (C.7)
0 0 (u—u)~t

D U-duality invariants for the D0 — D6 i3 = 0 configuration

Following the definitions in [23, 40], one can write the following U-duality invariant expres-
sions in stu model within the (p”,qo) configuration with i5 = 0 (recall (C.1) and (10.26)):

i1 = |Z> = 2¢"%qq [qo + platasas — e*?p®(an + ao + 043)} ;

i5 = |DsZ|* = 2¢ %o [QO + plaragas + e*?p’(—ar + a + Oés)} ;

ib = |DyZ|? = 2e ¢ [qo + pParasas + e**p° (o — ag + 043):| ;

is = |DuZ|* = 2e"%qq [QO + plajasas + e*?p’(ar + as — 043)} : (D.1)

It is worth remarking that that these four invariants collapse to a single one, in the axionless
case (a; = a' /A" = 0).

The black hole potential for this system is given in terms of the invariants by
Vir = i1 + i3 + i + i , (D.2)

and it admits the fake superpotential [22, 26, 41]

w3 (Vi v+ B+ VE) (0.3)

this case is usually referred to as the non-BPS “doubly-extremal” phase. Actually, one can
show that (D.3) satisfies

Vg = W2 + 4g70,W0;W (D.4)

only in the case i3 = 0. Indeed, by their very definitions, using the special geometry
relations (cfr. e.g. egs. (2.24)—(2.26) of [23])

Dyiy = Dyiy = ZDZ ;
Dyib = Dgit = iCyoug'g"* D Z Dy Z (D.5)

as well as the analogous ones concerning derivatives with respect to the scalars ¢ and wu,
and by recalling that (recall (C.4))

Cstu2 = Y9s5 9tt Gui »
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one can compute that

1
ADWDWg* = | (ViL +/i5)* + (i + B+

(Vi1 + 13 (Vi + /1) -
+e \\/ES—\{E \/; (21222324 — 21722374) | . (D.6)
11252914

By definition (cfr. e.g. (1.12) of [22])

i(21222324 — 21225324) =14 = 14 = —1/ 4111562% — ’L%, (D.?)

thus
Vg = W2 + 4¢70;W ;W + (D.8)
. . . .t . . . .t . . .t . Z‘%
_< 1105 + 4/ 1195 + /1115 + /1515 + zgzg—l—\/zng) 1-— 1_W ,

which gives the required relation (D.4) in the case i3 = 0. We also notice that the ex-
pression (D.8) is non-singular, since none of the four invariants iy, i, i, 74 vanishes for
this solution.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution and reproduction in any medium,
provided the original author(s) and source are credited.
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