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1 Introduction

The allowed scalar manifolds for the N = 2 five-dimensional supergravity coupled to nV − 1 Abelian

vector multiplets, parametrized by scalar fields ϕx (x = 1, . . . , nV −1), can be described as the (nV − 1)-

dimensional cubic hypersurface 1
3!dijkλ̂

iλ̂j λ̂k = 1 of an ambient space spanned by nV coordinates

λ̂i = λ̂i(ϕx) (i = 1, ..., nV ) [1]. The cubic nature of this polynomial constraint is related to the presence

of the Chern-Simons term dijkF
iF jAk in the Lagrangian for the nV vector fields Ai

µ (µ = 0, 1, 2, 3, 4),

with nV denoting the total number of D = 5 vector potentials (including the D = 5 graviphoton).

A complete classification of the allowed homogeneous scalar manifolds was given in [2, 3], and many

interesting properties, especially when they are restricted to be a symmetric coset of the Jordan family,

were already analyzed in [1]. When this theory is dimensionally reduced to four dimensions, it yields

a particular class of N = 2 four-dimensional matter coupled models with special Kähler target space

geometries, which were studied in [3] under the name “d-spaces”. There, the uplift between four and

five dimensions was called “r-map”, since it associates real scalars to the N = 2 four dimensional

complex scalar fields belonging to the nV D = 4 vector multiplets: zi = Xi/X0 = ai− i λi, with ai, λi
real and with the index 0 pertaining to theD = 4 graviphoton. The axions ai originate by Kaluza-Klein

(KK) reduction from the vector components Ai
4, and the λi = λ̂ie2φ are nV real scalars parametrizing

the D = 5 scalars φx and the KK scalar φ = g44. In this sense, the r-map is similar to the c-map,

relating the moduli spaces of special Kähler vector multiplets to the quaternionic hypermultiplets

scalar manifolds in N = 2 theories [4, 3]. In superstring theories, the c-map relates IIA and IIB

string theories compactified on the same (2, 2) superconformal field theory at c = 9, while in a purely

supergravity context, it can simply be viewed as a consequence of dimensional reduction from 4 to 3

dimensions [4]. Actually, these N = 2 matter coupled theories, where the holomorphic prepotential

takes the cubic form

F (X) ≡ 1

3!
dijk

XiXjXk

X0
, (1.1)

were first studied in [5], where they were shown to lead to supergravity couplings with flat potentials

characterized by the completely symmetric rank-3 tensor dijk. They are particularly relevant in

connection with the large volume limit of Calabi-Yau compactifications of type IIA superstrings

where the d-tensors are related to intersection forms of the Calabi-Yau manifold.

Formally, the d-tensor appears in the expression for the curvature of any special Kähler manifold [6]

Rīkl̄ = −gīgkl̄ − gil̄gk̄ + CikpC ̄l̄p̄g
pp̄ (1.2)

since in “special coordinates” the covariantly holomorphic quantity Cijk is given by Cijk = eK(z,z̄)dijk,

with K(z, z̄) denoting the Kähler potential.

Notice that a generic d-geometry of complex dimension nV is not necessarily a coset space, but

nevertheless it admits nV + 1 real isometries, corresponding to Peccei-Quinn shifts of the nV axions,

and to an overall rescaling of the prepotential [3].

This paper aims to study d-geometries in a framework broader than N = 2, considering the r-map

for N ≥ 2 extended supergravities along the lines of previous work on this 4D/5D relation in the

context of black hole supergravity solutions and their attractors [7, 8, 9]. Due to the structure of
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5D spinors, these generalized d-geometries encompass all extended supergravities with a number of

supercharges multiple of 8, and thus an even number of supersymmetries N = 2, 4, 6, 8.

dijk is an invariant tensor of the underlying classical duality group G5 of the D = 5 action [10],

corresponding to the continuous version of the non-perturbative string symmetries G5(Z) of [11]. The

dimensional reduction yields interesting relations between the scalar manifolds and the isometries of

the 5D and 4D theories: G5 is embedded into the D = 4 electric–magnetic duality group G4, whose

isometries are included in Sp(2nV + 2,R) (for generic N > 1, one has Sp(2n,R) for a theory with n

vector potentials; for N = 2, n = nV + 1). More precisely, one always has the chain of embeddings

G5 × SO(1, 1) ⊂ G4 ⊂ Sp(2nV + 2,R). (1.3)

Our main point is that the five-dimensional origin of all generalized d-geometries naturally selects

a particular branching of the D = 4 scalars, given by the axions aI , the Kaluza-Klein scalar φ and the

5D scalars λx:

Φ =
{
aI , φ, λx

}
. (1.4)

When N > 2 these latter transform in a suitable representation of H5, the maximal compact subgroup

of G5, which depends on N : for instance, in N = 8 there are 42 of them, sitting in the rank-4

antisymmetric skew-traceless representation 42 of USp(8), and there are 27 axions.

Remarkably, only in N = 2 the number of axions exactly matches the number of scalars plus 1, so

that the two sets can be combined to give complex scalars. For this case we will use a small index

i rather than I, to emphasize its complex nature. We will illustrate that the aI and φ give rise to a

universal sector which is present in any N = 2, 4, 6, 8 -extended supergravity in D = 4 endowed with

generalized d-geometry for the vector multiplet sigma model.

In the study and classification of BPS and non-BPS extremal black hole supergravity solutions, the

relation between 4D and 5D for cubic holomorphic prepotentials F (X) (1.1) was used in [7] to relate

the two N = 2 effective black hole potentials and to derive the 4D attractors and Bekenstein-Hawking

classical entropies from the 5D ones. The key idea was to reformulate the 4D effective black hole

potential in terms of 5D real special geometry data, implementing the natural splitting (1.4) of the

4D scalar fields.

Some extra features arise in symmetric special geometries, where the d-symbols satisfy the relation [1]

dr(pqdij)kd
rkl =

4

3
δl(pdqij), (1.5)

and one can define cubic , G5-invariant, and quartic, G4-invariant polynomials of electric (q0, qi) and

magnetic charges (p0, pi) by [12]:

I4
(
p0, pi, q0, qi

)
= −

(
p0q0 + piqi

)2
+ 4

[
q0I3 (p)− p0I3 (q) +

∂I3 (q)

∂qi

∂I3 (p)

∂pi

]
, (1.6)

I3(p) ≡
1

3!
dijkp

ipjpk, I3(q) ≡
1

3!
dijkqiqjqk . (1.7)

The simplest example of rank-3 symmetric d-geometry is provided in N = 2 by the stu model [13],

with 3 complex scalar fields spanning the coset (SU(1, 1)/U(1))3 , which serves as the ubiquitous toy

model in the context of black holes arising from superstring and M -theory.
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The generalization of N = 2 special geometry is achieved in terms of a generalized symplectic

formalism, established in [14], which enlarges the rich geometric structure of special Kähler manifolds

[3] to the other extended supergravities. In fact, an important difference between N = 2 and N > 2

extended theories is that for N > 2 the scalar sigma model is always given by a symmetric space G/H.

The formalism of [14] hinges on the definition of generalized sections (f ,h) of a flat symplectic

bundle [15], which relates to N > 2 the flat bundle underlying special Kähler geometry [16]. Even in

N = 2 the sections are fundamental, since they allow to describe also theories where the holomorphic

prepotential F (XΛ) does not exist [17]. More precisely, the sections VA = (fΛA , hΛA), with Λ =

0, . . . , nV and A = 0, a, are square complex matrices defined in N = 2 supergravity by

(f ,h) = (LΛ,DāL
Λ
;MΛ,DāMΛ) , (1.8)

with (LΛ,MΛ) = eK/2(XΛ, FΛ), Da denoting the flat covariant derivative in the scalar manifold:

Da = eaiDi, gī = eai e
b
̄δab and Di = ∂i +

1
2∂iK. They satisfy

hΛA = NΛΣf
Σ
A (1.9)

where NΛΣ(z) is the 4D complex vector kinetic matrix. The sections encode a generic element L of

the flat Sp(2nV + 2,R)-bundle over the D = 4 scalar manifold as [14]

(
A B
C D

)
−→

(
f

h

)
=

1√
2

(
A −iB
C −iD

)
, (1.10)

or the inverse transformation

L ≡
(
A B
C D

)
=

√
2

(
Re f −Im f

Reh −Imh

)
, (1.11)

with the symplectic property LTΩL = Ω =
(
0−1

1 0

)
yielding the conditions

i(f †h− h†f) = 11 , fTh− hT f = 0 . (1.12)

This paper studies in detail the properties of a certain parametrization (2.2), (2.13) of four-

dimensional generalized d-geometries, which reflects their five-dimensional origin, yielding a lower-

triangular structure (2.13) for the matrix L characterizing the flat symplectic bundle sigma model

which generalizes the one of N = 2 special Kähler d-geometry to any for any N = 2, 4, 6, 8. This

parametrization exploits nilpotent (of degree 4) translations [16, 18, 19] parametrized by axion scalars

aI , and it acts on the same space where the d-tensor is defined. The sigma model is parametrized by

additional block diagonal elements in the matrix L, one of them being a dilatation in terms of the

KK radius φ, and by a symmetric matrix, which depends on the 5D data and is related to the kinetic

term of the 5D vector fields.

It should be stressed that the proposed basis turns out to be different from the standard parametriza-

tion of N = 2 d-geometry (1.8), although it leads to the same 4D vector kinetic matrix. We will

emphasize that the two symplectic frames are in fact related by a unitary transformation M that was

introduced in [9], which only depends on the 5D data. The unitary transformationM , that rotates the

usual N = 2 complex basis of special geometry into the basis where f is real and L is lower triangular,
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allows to make a precise connection with the N = 2 stu model, viewed as a sub sector of the full

N = 8 theory [14, 20, 21]. In the t3 model, this unitary transformation is numerical (cfr. App. B),

because the relevant 5D uplifted theory is the pure N = 2, D = 5 supergravity.

Symmetric d-geometries can be related to Euclidean Jordan algebras of rank 3 [1, 22], which were

classified in [23]; in this case, the nilpotent axionic translations fit into a Jordan algebra irreducible

representation. The reduction to D = 4 yields a Freudenthal triple system (see e.g. [12]).

Our results have interesting applications to non-BPS extremal black holes, that we illustrate by

making a precise and non trivial comparison between the methods of [20] and [24] in the computation

of the fake superpotential [25] for non-BPS solutions and (p0, q0) charge configuration in the stu-

truncation of N = 8 supergravity.

Beyond their interest in relation to supergravity structure and solutions, one may hope that these

general properties of N ≥ 2 d-geometries and the corresponding triangular symplectic frame (with

degree-4 nilpotent axionic translations) could play a role in understanding the symmetry structure of

supergravity counterterms, in order to clarify the issue of ultraviolet finiteness of N = 8 and other

extended supergravity theories in D = 4 space-time dimensions [26].

The paper starts in Sec. 2 with the universal decomposition for the D = 4 symplectic element L

in the proposed basis 1.4, where axion are singled out. Then, the relation between L and the matrix

M entering the black hole effective potential is elucidated in Sec. 3. Other geometrical identities in a

5-dimensionally covariant formalism are presented in Sec. 4. The simpler case of N = 4, D = 4 pure

supergravity (with no matter coupling) is discussed in Sec. 5. For d-geometries based on symmetric

spaces G/H, the computation of the Vielbein and of the H-connection is carried out in Sec. 6, in

particular focusing on N = 8 supergravity. Next, in Sec. 7 the N = 2 axion basis is related to the

reformulation of special Kähler geometry as flatness condition of a symplectic connection [16].

A detailed treatment of N = 2 d-geometries is then given in Sec. 8, where we elaborate on the

results of [9] on the unitary matrix M rotating the axion basis to the usual special coordinates one.

Geometrical identities for M and the related matrix M̂ are derived in Sec. 9.

An application of the axion basis to the first order formalism for extremal black holes is considered

in Sec. 10. After a preliminary analysis for the stu model in Secs. 10.1.1 and 10.1.2 , explicit

computations for the t3 limit in the
(
p0, q0

)
(D0 − D6) charge configuration are performed in Secs.

10.1.3, and the known fake non-BPS superpotential is retrieved in Sec. 10.2. In Table 1 we list the

allowed Rank-3 Euclidean Jordan algebras J3 and corresponding symmetric generalized d-geometries,

characterized by a parameter q related to the number of vector and scalar fields for each N = 2, 4, 6, 8.

Some appendices conclude the paper. In App. A useful results on exponential matrices are collected,

while App. B contains some explicit computations in the t3 model, displaying the matrix M . The

purely imaginary nature of the Vielbein of the stu model and its consistent embedding into the N = 8

theory are discussed in App. C. Finally, App. D deals with the duality-invariant polynomial and the

first order fake superpotential in the D0−D6 configuration of the stu model with i3 = 0.
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2 Universal Decomposition for the D = 4 Symplectic Element in the

Axion Basis

We are interested in general features of all D = 4 Maxwell-Einstein (super)gravity theories admitting

an uplift to D = 5. The classification of the tensors dIJK associated to homogeneous Riemannian

d-spaces was performed in [3]. For symmetric geometries, dIJK can be characterized as the cubic norm

of an associated rank-3 Jordan algebra 2 [23, 1]. In this case, the general properties are given in terms

of a parameter q reported in Table 1.

The number of D = 5 vectors is nV = 3q + 3, while the number of D = 4 2-form field strengths

and their duals is 6q + 8. Only in N = 2 theories, the number of 5D real scalars is 3q + 2, while the

number of 4D complex scalars is 3q + 3 (one for each 4D Abelian vector multiplet). Quite generally,

the relation between the number of vector and scalar fields in theories derived from five dimensions is

such that

# 4D scalars = # 5D scalars + # 5D vectors + 1

# 4D vectors = # 5D vectors + 1 = nV + 1 , (2.1)

where the nV axions arise from the total number of 5D vectors.

We will show that in these generalized d-geometries, the representation of the D = 4 axions aI is

nilpotent of degree four and that, together with the Kaluza-Klein SO(1, 1) radius parametrized by

the real scalar φ, it provides a universal sector of the scalar manifold of the D = 4 theory, regardless

of its specific geometry. This reflects the property of special Kähler d-geometries [3], of always having

as minimal isometry of the scalar manifold the nV axionic Peccei-Quinn translations and the SO(1, 1)

overall rescaling.

To prove the above statement, we split the symplectic element L according to the decomposition

of the D = 4 scalars (1.4), and we demonstrate that3

L
(
aI , φ,E (λ)

)
= A(aI)D(φ)G(E) . (2.2)

In order to identify the various factors in (2.2), one must consider the definition (1.11) and complement

it with the results of [9], where the 4D/5D connection was used for N = 8 to determine the 28 × 28

symplectic sections (fΛA , hΛA) in a five-dimensionally covariant symplectic frame, where the indices

split as Λ = (0, I) and A = (0, a). They take the form:

fΛA =
1√
2




e−3φ 0

e−3φaI e−φ(a−1/2)Ia




; (2.3)

2With the exception of the non-Jordan symmetric sequence [27] of N = 2, D = 5 vector multiplets’ scalar manifolds
SO(1,nV )
SO(nV )

.
3In the following we will switch the axion index from i into I , whenever our analysis holds for generic N > 2

d-geometries.
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hΛA =
1√
2




−e−3φ d
6 − ie3φ −1

2e
−φdK(a−1/2)Ka + ieφaK(a1/2) a

K

1
2e

−3φdI e−φdIJ(a
−1/2)Ja − ieφ(a1/2) a

I




, (2.4)

with

d ≡ dIJKa
IaJak , dI ≡ dIJKa

Jak , dIJ ≡ dIJKa
K , (2.5)

and where

E (λ) ≡ (a−1/2) J
a = E J

a (2.6)

is the coset representative of the 5D scalar manifold G5/H5. Notice that in this basis the section f

is real and it takes a lower triangular form, and that the 5D scalars enter the sections only through

E(λ).

By generalizing this 5D/4D approach to the class of theories under consideration and interpreting

the indices Λ, A on the appropriate representations, we determine the generic expression for each factor

in (2.2).

The axionic generators

A(a) ≡ eT (a) , (2.7)

also appeared in [28] in the context of gauging of flat groups in 4D supergravity, and they are given

by the 2(nV + 1)× 2(nV + 1) block-matrix

T (a) =




0 0 0 0
aJ 0 0 0

0 0 0 −aI
0 dIJ 0 0


 . (2.8)

It is easily checked that T (a) is nilpotent of order four:

T 4(a) = 0 ⇒ A(a) = 11 + T (a) +
1

2
T 2(a) +

1

3!
T 3(a), (2.9)

which, by definition (2.7), yields

A(a) =




1 0 0 0
aJ 1 0 0

−1
6d −1

2dI 1 −aI
1
2dJ dIJ 0 1


 . (2.10)

As we will discuss in Sec. 8, this is in agreement with the N = 2 interpretation of [19]. The 1-

dimensional Abelian SO(1, 1) factor in (2.2) is given by

D(φ) =




e−3φ 0 0 0
0 e−φ 0 0

0 0 e3φ 0
0 0 0 eφ


 , (2.11)

whereas the (2nV + 2)× (2nV + 2) matrix G is

G(λ) =




1 0 0 0
0 E 0 0

0 0 1 0
0 0 0 E−1


 . (2.12)
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By matrix multiplication of (2.10)-(2.12) according to (2.2), one finds that the symplectic matrix L

(1.11) acquires the triangular form:

L(aI , φ,E (λ))=




e−3φ 0 0 0
aIe−3φ E I

a e
−φ 0 0

−1
6de

−3φ −1
2dKE

K
ae

−φ e3φ −aK(E−1)aKe
φ

1
2dIe

−3φ dIKE
K

a e−φ 0 (E−1)aIe
φ


 . (2.13)

We see that, in this particular basis, B = Im f = 0, since the f section is purely real:

f = Ref =
1√
2
A(aI , φ,E (λ)). (2.14)

On the other hand, one has

h =
1√
2
(C − iD) ⇒

Reh = 1√
2
C(aI , φ,E (λ) , dIJK)

Imh = − 1√
2
D(aI , φ,E (λ)) ,

along with the normalization

fT Imh =
1

2
. (2.15)

Notice that the C sub-block is the only one depending on dIJK .

Conversely, one can say that the formula (2.13) for the symplectic representative yields an explicit

expressions for the symplectic sections f and h which match Eqs. (2.3) and (2.4).

To make the discussion concrete, let us consider N = 8 supergravity [29], based on the rank-3

Euclidean Jordan algebra JOs

3 over the split octonions; the D = 5 U -duality group is G5 = E6(6) and

dIJK is the invariant tensor of the fundamental irrep. 27 (I, J,K = 1, ..., 27 = nV − 1, x = 1, ..., 42,

i = 1, ...70). The Sp(56,R) matrix L (1.11) is the coset representative of the rank-7 symmetric D = 4

scalar manifold
G4

H4
=

E7(7)

SU(8)
, dimR = 70, (2.16)

where H4 is the maximal compact subgroup of E7(7). The 70 real D = 4 scalars zi sit in the rank-4

self-real antisymmetric irrep. 70 of SU(8).

The symplectic sections (2.3) and (2.4) are given in the particular symplectic frame defined by the

partial decomposition of L (2.13) in a solvable basis, which is covariant with respect to H5 = USp(8),

the local symmetry of the D = 5 uplifted theory. Furthermore, E (λ) is the coset representative of the

rank-6 symmetric D = 5 scalar manifold

G5

H5
=

E6(6)

USp(8)
, dimR = 42. (2.17)

The 42 real D = 5 scalars λx form the rank-4 self-real antisymmetric skew-traceless irrep. 42 of

USp(8). Note that (2.6) is consistent with the well known fact that the N = 8, D = 5 kinetic vector

matrix (a−1) J
I is the square of the D = 5 coset representative [15]. The scalar decomposition (1.4) in

this case becomes

SU(8) ⊃ USp(8);

70 = 42
λx

+ 27
aI

+ 1
φ
, (2.18)
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where the axions aI form a representation of JOs

3 , because

E6(6) ⊃ USp(8);

27 = 27. (2.19)

3 Relation between M and L

We now consider a further consequence of the symplectic structure of generalized special geometry [14],

holding for every D = 4 Maxwell-Einstein supergravity even beyond d-geometries. It can be useful in

the present context and in view of applications to black holes. The black hole effective potential for

dyonic charges Q = (pΛ, qΛ) is given by [30]

VBH = −1

2
QtM(N )Q =< Q,VA >< Q,V

A
>= ZAZ

A
(3.1)

where the central charges ZA =< Q,VA > are defined by the symplectic product

ZA =< Q,VA >= QTΩVA = fΛAqΛ − hΛ Ap
Λ , (3.2)

in terms of the symplectic invariant metric

Ω =

(
0 −11
11 0

)
. (3.3)

The matrix M is given by

M =

(
11 −ReN
0 11

)(
ImN 0

0 (ImN )−1

)(
11 0

−ReN 11

)
≡ RTMDR ; (3.4)

R ≡
(

11 0
−ReN 11

)
; (3.5)

MD ≡
(
ImN 0

0 (ImN )−1

)
, (3.6)

where N = hf−1 is the D = 4 kinetic vector matrix.

In generalized special geometry [14] one introduces the Sp(2nV + 2) Hermitian matrix

C ≡ 1

2
(M+ iΩ) ; C† = C, (3.7)

whose symmetric and antisymmetric parts are given by (3.4) and Ω respectively. C is related to the

symplectic sections (f ,h) by :

C =

(
−hh† hf †

fh† −ff†

)
, (3.8)

and therefore its action on the vector VA is given by

1

2
(M+ iΩ)VA = iΩVA ⇔ MVA = iΩVA, (3.9)

expressing a twisted self-duality [31], recently used in [32].
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Using the above relations, since both M and L are given in terms of the sections (f ,h), one can

see that they can be related by [33, 34]

M = −(LT )−1L−1 = −(LLT )−1; (3.10)

m
ML = −(LT )−1 = ΩLΩ, (3.11)

where the last step in (3.11) follows from the symplecticity of L itself. Notice that, since also M is

symplectic, (3.10) implies that M = −L̃L̃T , with L̃ ≡ ΩL.

To prove (3.10)-(3.11), one just notices that L (1.11) can be rewritten as (with ∗ here denoting

complex conjugation)

L =
1√
2
(B + B∗); (3.12)

B ≡
(

f if
h ih

)
=

(
f

h

)
(11, i11) , (3.13)

which, by (3.9) implies

ML = M 1√
2
(B + B∗) =

1√
2

(
−i(h− h∗) h+ h∗

i(f − f∗) −(f + f∗)

)
=

=

(
0 −11
11 0

)
L

(
0 −11
11 0

)
= ΩLΩ � (3.14)

By sandwiching (3.10) with the dyonic charge vector Q, one also obtains

VBH = −1

2
QtM(N )Q =

1

2
(L−1Q)T (L−1Q) =

1

2
ZT · Z (3.15)

where the real central charge vector Z satisfies

Z = L−1Q , (3.16)

with the electric and magnetic real components of Z = (Z0
(m), Z

a
(m), Z

(e)
0 , Z

(e)
a )T given by universal

formulae in terms of 5D axion and dilation fields

Z
(e)
0 = e−3φ(q0 + qIa

I +
d

2
p0 − 1

2
pIdI) ,

Z
(e)
I = e−φ(qI +

1

2
p0dI − pJdIJ) ,

Z0
(m) = e3φp0 ,

ZI
(m) = eφ(pI − p0aI) , (3.17)

which were derived in [9] for N = 8, but that we can here interpret as valid for all generalized

d-geometries. The components with flat indices are obtained by

Z(e)
a = Z

(e)
I (a−1/2)Ia , Za

(m) = ZI
(m)(a

1/2)aI (3.18)

so that the complex central charge vector with flat indices is

ZA =

(
Z0

Za

)
=

1√
2

(
Z

(e)
0 + iZ0

(m)

Z
(e)
a + iZa

(m)

)
(3.19)
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and the effective black hole potential is written as [9]

VBH = |Z0|2 + ZaZa . (3.20)

4 5D-Covariant Identities

In the 5D covariant formalism introduced in [9], it was found that the kinetic vector matrix NΛΣ in

N = 8, D = 4 supergravity can be decomposed as:

ReN =

(
d
3 −dI

2

−dJ
2 dIJ

)
, ImN =

(
−e6φ − e2φaIaJaIJ aIJa

J

aIJa
I −e2φaIJ

)
. (4.1)

In virtue of the discussion of Sec. 2, these formulae hold for any d-geometry. Note that ImN
depends on the axions aI but not on dIJK , whereas ReN only depends on axions, and only through

dIJK . It is immediate to realize that this is a consequence of the solvable decomposition (2.2) of L,

as well as of the relation (3.10) between M and L. Indeed, using (3.5), the matrix A (2.10) can be

rewritten as

A =

(
11 0

ReN 11

)



1 0 0 0
aI 1 0 0

0 0 1 −aJ
0 0 0 1


 ≡ (R)−1AD(a

I) , (4.2)

thus yielding

L = (R)−1ADDG . (4.3)

Then, since DG is a diagonal matrix, (3.10) implies

M = −(LT )−1L−1 = −(R)T
[
(AT

D)
−1(DG)−1(DG)−1A−1

D

]
R . (4.4)

Using (2.11), (2.12) and (4.2), one can check that

− (AT
D)

−1(DG)−1(DG)−1A−1
D =

(
ImN 0
0 ImN−1

)
. (4.5)

As mentioned, this explains the dependence of ImN on axions alone and not on the d-tensor, and that

of ReN on axions only through dIJK .

5 A related case : N = 4, D = 4 pure Supergravity

Although pure 4D N = 4 supergravity cannot be obtained from five dimensions by Kaluza-Klein

reduction, which would always give rise to the coupling to matter multiplets, we mention it here

because of the recent related work of [35] and as a simple instance of the splitting of scalar fields

associated with (2.2). The vector kinetic matrix NΛΣ in this case reads [36] (Λ,Σ = 1, ..., 6)

NΛΣ = −SδΛΣ, (5.1)

where the axio-dilatonic complex scalar field S of the gravity multiplet, spanning the rank-1 symmetric

coset G/H = SL(2,R)/SO(2), is defined as

S ≡ ieφ + a , (5.2)
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yielding

ReNΛΣ = −aδΛΣ , ImN = −eφδΛΣ . (5.3)

A solvable basis can be defined also for this theory as in (5.1), and it is given by the axio-dilatonic

symplectic frame , where the relevant matrices read

M =

(
−eφ − a2e−φ −ae−φ

−a e−φ −e−φ

)
; (5.4)

L =

(
1 0
−a 0

)(
e−φ/2 0

0 eφ/2

)
=

(
e−φ/2 0

−a e−φ/2 eφ/2

)
, (5.5)

such that the coset representative L of SL(2,R)/SO(2) satisfies

L−1(a, φ) = L(−a,−φ) . (5.6)

In this case the axionic generator

A ≡ ∂

∂a

(
1 0
−a 0

)
=

(
0 0
−1 0

)
(5.7)

is nilpotent of order two rather than of order four, as for generic d-geometries :

A2 = 0. (5.8)

The different degree of nilpotency is due to the fact that this theory does not admit a 5D uplift

and thus it is not a d-geometry in absence of matter coupling.

6 Vielbein and H-Connection in the Axion Basis

When the d-geometry is not only an homogeneous but a symmetric cosets G/H , the Vielbein Pµ

and H-connection ωµ in a solvable decomposition can be simply computed from the (g⊖ h)-valued

Maurer-Cartan 1-form L−1dL by standard methods

(L−1dL)s =
1

2

(
L−1dL+ (L−1dL)T

)
= Pµ ; (6.1)

(L−1dL)a =
1

2

(
L−1dL− (L−1dL)T

)
= ωµ , (6.2)

where subscripts “s” and “a” denote the symmetric and antisymmetric part, respectively.

The simplest example is provided by the axio-dilatonic coset G/H = SL(2,R)/SO(2) treated

above, whose coset representative is given by (5.5), with Maurer-Cartan 1-form

L−1dL =

(
−1

2dφ 0
−e−φda 1

2dφ

)
, (6.3)

leading to the Vielbein Pµ and U(1)-connection ωµ respectively given by

Pµ =

(
−1

2dφ −1
2e

−φda
−1

2e
−φda 1

2dφ

)
, ωµ =

(
0 1

2e
−φda

−1
2e

−φda 0

)
. (6.4)

11



In particular, one sees that the U(1) connection ωµ contains only the da differential. The kinetic term

for the nonlinear σ-model SL(2,R)/SO(2) therefore reads [36]

Tr
(
P TP

)
=

1

2

(
dφ2 + e−2φda2

)
. (6.5)

We now consider in particular N = 8 supergravity, where the Cartan decomposition for the D = 4

scalar manifold (2.16) reads

g = h⊕ k; (6.6)

g = e7(7); h = su(8); k = 70 of su(8). (6.7)

According to (2.18)-(2.18), the following usp(8)-covariant branchings take place:

k : 70 = 1k + 42k + 27k; (6.8)

h : 63h = 36h + 27h (6.9)

The coset Vielbein Pµ is given by the non-compact generators

1k : D−1∂D;

42k : [G−1∂G]s;
27k :

[
(DG)−1∂T (a)(DG)

]
s
, (6.10)

while the compact ones give the SU(8)-connection ωµ

36h → [G−1∂G]a;
27h →

[
(DG)−1∂T (a)(DG)

]
a
. (6.11)

The Maurer-Cartan 1-form gets generally decomposed as

L−1∂L = (DG)−1∂T (a)(DG) +D−1∂D + G−1∂G . (6.12)

From the definitions (2.10), (2.11) and (2.12), one can compute

D−1∂D =




−3 0 0 0
0 −1 0 0

0 0 3 0
0 0 0 1


 dφ =

(
D−1∂D

)
s
; (6.13)

G−1∂G =




0 0 0 0
0 E−1dE 0 0

0 0 0 0
0 0 0 −E−1dE


 ; (6.14)

(DG)−1∂T (a)(DG) = e−2φ




0 0 0 0

(a1/2)aIda
I 0 0 0

0 0 0 −(a1/2)bIda
I

0 dIJK(a−1/2)Ja (a
−1/2)Kb da

I 0 0


 . (6.15)

This implies that the Maurer-Cartan 1-form L−1∂L does not depend on the axions aI explicitly, but

only on their differential daI .
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According to (6.1) and (6.2), the Vielbein Pµ and SU(8)-connection ωµ for the coset (2.16) are the

symmetric and anti-symmetric part of (6.12), respectively. In particular, the component 27k of Pµ

and the component 27h of ωµ respectively read:

27k :
[
(DG)−1∂T (a)(DG)

]
s
=

=
1

2
e−2φ




0 (a1/2)bIda
I 0 0

(a1/2)aIda
I 0 0 dIJK(a−1/2)Ja (a

−1/2)Kb da
I

0 0 0 −(a1/2)bIda
I

0 dIJK(a−1/2)Ja (a
−1/2)Kb da

I −(a1/2)aIda
I 0


 ;

(6.16)

27h :
[
(DG)−1∂T (a)(DG)

]
a
=

=
1

2
e−2φ




0 −(a1/2)bIda
I 0 0

(a1/2)aIda
I 0 0 −dIJK(a−1/2)Ja (a

−1/2)Kb da
I

0 0 0 −(a1/2)bIda
I

0 dIJK(a−1/2)Ja (a
−1/2)Kb da

I (a1/2)aIda
I 0


 .

(6.17)

7 Flat Connections and Axion Basis

As shown in [16] and further investigated in [19], the defining identities of N = 2 special Kähler

geometry can be viewed as the flatness condition of a non-holomorphic connection AI and can be

encoded into a first-order matrix equation [19]

(∂i −Ai)U = 0 , (7.1)

where U is a non-holomorphic matrix (V,DiV,Dı̄V , V ) with V = (XΛ, FΛ). One can further choose

a gauge where Ai becomes holomorphic

Ai = 0 ⇒ Ai = Ai, ∂Ai = 0, (7.2)

such that (7.1) can be recast as follows:

(∂i − Ai)V = 0, (7.3)

with now an holomorphic solution matrix V containing V in the first row. In turn, the holomorphic

flat connection Ai can be decomposed as

Ai = Γi +Ci, (7.4)

where Γi is the diagonal part (which vanishes in special coordinates), and Ci generates an Abelian

subalgebra of sp(2n+ 2,R) that is nilpotent of order four:

CiCjCkCl = 0. (7.5)

The case of special Kähler d-geometry in the axion basis basis is analysed in App. C of [19]. In

particular, by recalling (2.8), one can compute the axionic generators of the solvable parametrization
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of the D = 4 scalar manifold treated above as

∂T (a)/∂ak =




0 0 0 0

δjk 0 0 0

0 0 0 −δik
0 dijk 0 0


 . (7.6)

Up to relabelling of rows and columns, (7.6) matches the expression of Ci (for n = 27) given by (3.6)

of [19].

For N = 2 special Kähler d-geometries (namely, for those special geometries admitting an uplift

to D = 5) in the axion basis, this highlights the relation between the solvable parametrization of the

D = 4 scalar manifold discussed in Sec. 2 and the nilpotent connection of the reformulation à la

Strominger in the holomorphic gauge (7.2).

8 N = 2 Special Kähler d-Geometry, Symplectic Sections and the

Unitary Matrix M

In this section we are going to make contact with N = 2 special Kähler d-geometries [3] in the

symplectic frame defined by the cubic prepotential (1.1). We recall for convenience some results of [7]

and we build on them. It has already been remarked that N = 2 special Kähler d-geometry differs

from the higher N -extended theories in that the nV 5D axions ai exactly combine with the 5D scalars

λi = λi(λx, φ) in order to give complex 4D scalar fields Xi

X0 = zi ≡ ai − iλi, where XΛ = X0,Xi.

Moreover, in N = 2 the central charge can be readily computed from the cubic prepotential F (X) of

eq. (1.1) by the usual formula (3.2)

Z = e
K(z,z̄)

2 (XΛqΛ − FΛp
Λ) (8.1)

For N = 2 cubic geometry one finds[7]

Z =
1√
8V

[q0 + qiz
i + p0f(z)− pifi(z)] ; (8.2)

DiZ = (∂i +
1

2
∂iK)Z =

1√
8V
[
q0∂iK + qj(δ

j
i + ∂iK zj) +

+p0 (fi(z) + ∂iK f(z))− pj(fij(z) + ∂iK fj(z))
]
, (8.3)

where

f(z) =
1

3!
dijkz

izjzk , fi(z) =
1

2
dijkz

jzk , fij(z) = dijkz
k , V =

1

3!
dijkλ

iλjλk = e6φ , (8.4)

with the (real) Kähler potential and its (purely imaginary) derivatives given by

K = − ln(8V) ; ∂iK = − i

4V dijkλ
jλk = −∂ı̄K . (8.5)

Notice that i is a curved index of the 5D U-duality group G5, and Λ = (0, i). The connection with the

universal basis is given by introducing nV 5D scalars as λ̂i = e−2φλi so that they satisfy dijkλ̂
iλ̂jλ̂k = 1.

The nV complex 4D scalar components are then (ai, φ, λ̂i) . The special Kähler metric is given by

gij =
1

4
(
1

4
κiκj − κij)V−2/3 =

1

4
V−2/3aij =

1

4
e−4φaij , (8.6)

κi = V−2/3dijkλ
jλk , κij = V−1/3dijkλ

k . (8.7)
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One can assemble Z and Dı̄Z into a symplectic central charge vector Zα with a curved lower index

Zα =

(
Z

Dı̄Z

)
≡ 〈Q,Vα〉 = QTΩVα = fΛαqΛ − hΛαp

Λ, (8.8)

Vα =

(
fΛα
hΛα

)
. (8.9)

Then, from Zα in (8.2) and (8.3) one can read off the components of Vα, which are

f ≡ fΛα = (fΛ0 , f
Λ
̄) =

1√
8V

(
1 ∂̄K
zi δı̄̄ + ∂̄K z̄ ı̄

)
; (8.10)

h ≡ hΛα = (hΛ0 , hΛ̄) =
1√
8V

(
−f(z) −f ̄(z̄)− ∂̄Kf(z̄)

fi(z) f̄ı̄ ̄(z̄) + ∂̄K f ı̄(z̄)

)
. (8.11)

While it can be checked that

i(f †h− h†f)αβ = Gαβ =

(
1 0
0 gij

)
, (8.12)

we should better consider the normalized symplectic sections with flat tangent indices A = (0, a), such

that

i(f †h− h†f)AB = δAB . (8.13)

They are the components of ZA = (Z,DaZ), and they can be obtained by flattening the curved indices

i by the G5- Vielbein eai
4so that the orthonormalized symplectic sections fΛA and hΛA are given by

fΛA = fΛα(G
−1/2)αA , hΛA = hΛα(G

−1/2)αA . (8.14)

It was emphasized in [9] that the symplectic sections f and h of (generalized) special geometry are

defined only up to the action

f → f ′ ≡ fM , h → h′ ≡ hM ⇔ M = f−1f ′ = h−1h′, (8.15)

of a unitary matrix M , which preserves the form of the kinetic vector matrix N = hf−1 and the

conditions (1.12) derived from symplectic invariance of L. Actually, the matrix M found in [9] to

connect N = 2 with N = 8 is exactly the necessary one to rotate the usual basis of special geometry

into the axion basis of any d-geometry. It can be written as

M =
1

2

(
1 (g−1/2) ̄ã∂̄K

−iV−1/3λi(a1/2) a
i

(
V−1/3δī + iV−1/3λi∂̄K

)
(a1/2) a

i (g−1/2)jã

)
; (8.16)

MM † = 11, (8.17)

where

∂̄K = 2iλigī ; (8.18)

gij =
1

4
V−2/3aij ; (8.19)

(g−1/2)̄a∂̄K = 2iλi(g1/2)biδab ; (8.20)

(g−1/2)ia = 2V1/3(a−1/2)ia . (8.21)

4Further below, in the explicit case of stu model, the Vielbein will be taken to be purely imaginary (cfr. App. C).
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By further rescaling the D = 4 dilatons as

λi ≡ V1/3λ̂i,
1

6!
dijkλ̂

iλ̂j λ̂k = 1. (8.22)

the matrix M (8.16) can be recast as follows:

M =
1

2

(
1 iλ̂i(a1/2)biδab

−iλ̂i(a1/2) a
i 2δaã − λ̂iλ̂j(a1/2) a

i (a1/2) b
j δãb

)
. (8.23)

Using (1.11), one can see that the action (8.15) of M induces the following transformation of the coset

representative L:

L → L′ = L

(
ReM −ImM
ImM ReM

)
≡ LY (ReM, ImM) , (8.24)

where the real symmetric and unitary matrix

Y =
1

2




1 0 0 −λ̂i(a1/2)biδab
0 2δab − λ̂iλ̂j(a1/2)ai (a

1/2)cjδbc λ̂
i(a1/2)ai 0

0 λ̂i(a1/2)biδab 1 0

−λ̂i(a1/2)ai 0 0 2δab − λ̂iλ̂j(a1/2)ai (a
1/2)cjδbc


 ;

(8.25)

Y∗ = Y† = YT = Y−1 ⇔ YY† = YYT = Y2 = 11, (8.26)

does not depend on the volume modulus V.
The symplecticity of L (and thus of L′) yields

L′TΩL′ = Ω → YTΩY = Ω , (8.27)

thus also Y is a symplectic matrix, as expected. Indeed, from its very definition (8.24), the symplectic

condition (8.27) becomes

ImM ReM +ReM ImM = 0 , ReM2 − ImM2 = 11 , (8.28)

which is identically satisfied sinceM is a unitary matrix, with ReMT = ReM , and ImMT = −ImM

(cfr. (8.16)-(8.17)).

The matrix Y (ReM, ImM) (8.24) provides a realization of the maximal symmetric embedding [10]

U(28) ⊂ Sp(56,R). (8.29)

Indeed, since L is symplectic, one has checked that also Y is symplectic, but given (8.26), this leads

to

[Y,Ω] = 0 . (8.30)

An explicit computation of the matrices M (8.23) and Y (8.25) for the t3 limit of the stu model is

presented in App. B.
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9 Unitarity Relations for M and Induced Relations on M̂

The residual freedom in the definition of the symplectic section was found in [9] to imply that the

symplectic vector ZA =
(
Z,DaZ

)T
of N = 2 special geometry, with a flat index A = (0, ā), differs by

a unitary transformation from the corresponding central charge vector ZA = (Z0, Za)
T of the N = 8,

D = 4 theory (3.19) in the E6(6)-covariant symplectic frame (with a = 1, ..., 27),

ZA = ZBM
B
A . (9.1)

This is obvious from the fact that the N = 2 sections in (8.10) are not lower triangular, as required

in the axion basis in (2.3) where the the symplectic section f is real. Notice that the E6(6) basis is

related to the usual de Wit and Nicolai symplectic frame by a symplectic transformation [8] . However,

under a change of symplectic basis, that is a duality transformation, the kinetic matrix transforms as

NΛΣ → (C +DN )(A+BN )−1, while the unitary transformation M leaves NΛΣ invariant.

M acts on the normalized sections, with a flat tangent index, as given by (8.15) (where now prime

refers to N = 8 sections and unprimed sections are the N = 2 ones in the axion basis, discussed in

Sec. 8). On the other hand, one can define a matrix M̂ acting on (un-normalized) sections with a

curved lower index as

f̂ ′ = f̂M̂ , ĥ′ = ĥM̂ ⇔ M̂ = f̂−1f̂ ′ = ĥ−1ĥ′ , (9.2)

They can be obtained from (2.3) and (2.4) by multiplication with the appropriate Vielbein, that is

f̂Λα = fΛA(A
1/2)Aα , ĥΛα = hΛA(A

1/2)Aα , (9.3)

with

A ≡




1 0...0

0
...
0

aIJ




(9.4)

where aIJ is the kinetic vector matrix of N = 8, D = 5 supergravity. In the E6(6)-frame of 4D N = 8

supergravity, the symplectic section with curved indices f̂ read [9]

f̂Λα =
1√
2




e−3φ 0

e−3φaJ e−φδJI




, (f̂−1) α
Λ =

√
2




e3φ 0

−eφaI eφδIJ




, (9.5)

where, in the symmetric gauge [8], Λ = 0, I and α = 0, I, where here I is a curved index spanning the

27 of E6(6).

From (8.10), (9.5) and (9.3), one can compute the matrix [9]

M̂β
α = (f̂−1) β

Λ f̂ ′Λα =
1

2

(
1 ∂̄K

−iλiV−1/3 V−1/3δij + iV−1/3λi∂̄K

)
, (9.6)
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which does not depend on the axion fields. Moreover, using (8.14), (9.3) and (8.15), the relation

between M̂ and M is given by

M̂ = f̂−1f̂ ′ = A−1/2f−1f ′G1/2 = A−1/2MG1/2 ⇔M = A1/2M̂G−1/2. (9.7)

The unitarity of M entails the following identities for M̂ , namely:

MM † = Id⇔ AM̂ G−1M̂ † = Id ; (9.8)

M †M = Id⇔ G−1 M̂ †AM̂ = Id . (9.9)

10 Axion Basis and the Fake Superpotential

In this section we show an interesting application of the axion basis to non-BPS extremal black holes.

The unitary transformation M that rotates the usual N = 2 basis of special geometry ZA into the

E6(6) basis ZA allows to make a precise connection with the N = 2 stu model, where the three complex

scalar fields zi = {s , t , u} span the rank-3 coset space
[
SU(1,1)
U(1)

]3
, with

f = stu , e−K = 8λ1λ2λ3 = 8V , (10.1)

viewed as a sub sector of the full N = 8 theory [14, 20, 21]. The aim is to illustrate the computation of

the fake superpotential for non-BPS solutions and (p0, q0) charge configuration in the stu-truncation

of N = 8 supergravity. This example was discussed from two different viewpoints: in [20] the fake

superpotential was computed for generic charges in terms of duality invariants of the underlying special

geometry, while in [24] Bossard, Michel and Pioline (BMP) provided a procedure based on nilpotent

orbits which lead to the fake superpotential as solution of a sixth order polynomial.

The virtue of the axion basis is that, while showing the equivalence of the derivation of [24] and [20],

we can read out the fake superpotential from the N = 8 central charge in the skew symmetric form.

Here we start from the formula for the central charge derived in [9] using 4D/5D special geometry

relations, and we look for a suitable SU(8) transformation that brings it to the form given by Eq.

(2.68) of [24]

ZCFG
AB

SU(8)−→ ZBMP
AB (10.2)

In particular, we study the effect of such a rotation with respect to the decomposition 28 →
1C + 27C, which is common to the central charge normal frame of both [9] and [24] . We identify this

transformation in the t3-truncation where it depends only on one angle χ, purely given in terms of

duality invariant quantities. When this rotation is used to match the central charge in [9] and that

of [24], we consistently retrieve the non-BPS fake superpotential for the N = 2 t3 model, within the

(p0, q0) charge configuration in presence of non zero axions. This is a non-trivial consistency check for

the 4D/5D formalism based on the matrices M̂ and M [9] detailed in previous Sections.

The key point of this analysis is that the 28 components of the N = 8 central charge matrix ZAB

can be traded for the symplectic vectors ZA (with flat lower index) or Zα (with a curved one) reflecting
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the splitting 28 = 1C+27C of the axion basis. Since ZAB can always be brought to the skew-diagonal

form

ZAB =




z1 0 0 0
0 z2 0 0
0 0 z3 0
0 0 0 z4


⊗ ǫ , (10.3)

one has to relate the eigenvalues z1, z2, z3, z4 with the complex components of Zα = (Z0, ZI) [9], with

I = 1, 2, 3,

Z0 =
1√
2
(Z

(e)
0 + iZ0

(m)) ,

ZI =
1√
2
(Z

(e)
I + iaIJZ

J
(m)) . (10.4)

In fact, in light of the previous discussion, Eqs. (8.15) and (9.2) yield

(Z ,Dı̄Z̄) = (Z0, Zi)M̂ , (10.5)

where Z and DiZ in the l.h.s. are given by (8.2) and (8.3). Using (9.2), one finds

Z =
1

2
(Z0 − iλiZiV−1/3) ; (10.6)

Dı̄Z =
1

2
(∂ı̄KZ0 + V−1/3Zı̄ + iV−1/3λjZj∂ı̄K) . (10.7)

In order to find the skew eigenvalues z1, z2, z3, z4 in (10.3), one needs the inverse metric, which in this

case is factorized as

gss̄ = −(s− s̄)2 , gtt̄ = −(t− t̄)2 , guū = −(u− ū)2 , (10.8)

as well as the purely imaginary Vielbein (see App. C)

(g−1/2)s̄1 = (s− s̄) , (g−1/2)t̄2 = (t− t̄) , (g−1/2)ū3 = (u− ū) , (10.9)

and the Kähler connection

∂ı̄K =

(
1

s− s̄
,

1

t− t̄
,

1

u− ū

)T

. (10.10)

Using (10.8)-(10.10) in (10.6)-(10.7), one obtains

Z =
1

2
(Z0 − iλ̂iZi) ; (10.11)

Ds̄Z̄ =
1

2

(
1

s− s̄
Z0 + V−1/3Z1 + iV−1/3λiZi

1

s− s̄

)
; (10.12)

Dt̄Z̄ =
1

2

(
1

t− t̄
Z0 + V−1/3Z2 + iV−1/3λiZi

1

t− t̄

)
; (10.13)

DūZ̄ =
1

2

(
1

u− ū
Z0 + V−1/3Z3 + iV−1/3λiZi

1

u− ū

)
. (10.14)

By recalling the definition λiV−1/3 = λie−2φ ≡ λ̂i (cfr. Sec. 8), and defining

e1 ≡ λ̂1Z1 , e2 ≡ λ̂2Z2 , e3 ≡ λ̂3Z3 , (10.15)
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one computes

gss̄Ds̄Z̄DsZ =
1

4

∣∣∣Z0 − iλ̂1Z1 + iλ̂2Z2 + iλ̂3Z3

∣∣∣
2
=

1

4
|Z0 + i (−e1 + e2 + e3)|2 ; (10.16)

gtt̄Dt̄Z̄DtZ =
1

4

∣∣∣Z0 + iλ̂1Z1 − iλ̂2Z2 + iλ̂3Z3

∣∣∣
2

=
1

4
|Z0 + i (e1 − e2 + e3)|2 ; (10.17)

guuDuZ̄DuZ =
1

4

∣∣∣Z0 + iλ̂1Z1 + iλ̂2Z2 − iλ̂3Z3

∣∣∣
2

=
1

4
|Z0 + i (e1 + e2 − e3)|2 , (10.18)

from which the entries of the ZAB matrix can be read off (in the conventions of e.g. (5.32) of [21])

z1 = Z =
i

2
[−(e1 + e2 + e3)− iZ0] , (10.19)

z2 = Ds̄Z̄(g
−1/2)s̄1 =

i

2

(
−iZ0 − λ̂1Z1 + λ̂2Z2 + λ3Z3

)
=

=
i

2
[(e2 + e3 − e1)− iZ0] , (10.20)

z3 = Dt̄Z̄(g
−1/2)t̄2 =

i

2

(
−iZ0 + λ̂1Z1 − λ̂2Z2 + λ3Z3

)
=

=
i

2
[(e1 + e3 − e2)− iZ0] , (10.21)

z4 = DūZ̄(g
−1/2)ū3 =

i

2

(
−iZ0 + λ̂1Z1 + λ̂2Z2 − λ3Z3

)
=

=
i

2
[(e1 + e2 − e3)− iZ0] . (10.22)

The 4D/5D covariant splitting is thus manifest in the following form of the central charge matrix5 [9]

ZAB =
i

2
ǫ⊗


−iZ0 id4 +




−e1 − e2 − e3 0 0 0
0 −e1 + e2 + e3 0 0
0 0 e1 − e2 + e3 0
0 0 0 e1 + e2 − e3





 .

(10.23)

This result, compared with formulæ (3.2) of [9], explains the definition

ZAB =
1

2

(
eAB − iZ0Ω

)
,

in which Ω = ǫ ⊗ id4, given in Eq. (4.7) of the same reference; notice that the overall phase i is

uninfluential.

10.1 Residual U(1)3 Symmetry of the Skew-Diagonal ZAB

The form of the central charge, as derived in the previous section, reflects the more general structure

of the 28 → 1C + 27C decomposition of SU(8) ⊃ USp(8) representation.

The central charge matrix for the p0, q0 configuration in N = 8 Supergravity has been given in [24],

in the same symplectic frame. The reason why this is a suitable frame to study the non-BPS orbit

is related to the choice of orbit representative. The moduli space of the non-BPS p0, q0 solution is

indeed the moduli space of the 5 dimensional theory, namely E6(6)/USp(8) . By solving a nonstandard

5idn denotes the n× n identity matrix throughout.
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diagonalization problem, the authors of [24] identify the fake-superpotential in the singlet of the axion-

base decomposition of the central charge matrix. However, the form of ZAB is unique up to SU(8)

transformations, and the choice of symplectic frame is not covariant with respect to the action of

SU(8), since the singlet is not left invariant by R-symmetry rotations.

Starting from the form of the central charge in (10.23), we look for the transformation that rotates

ZAB in such a way that the transformed matrix can be identified with the one of [24]. The goal is to

determine the SU(8) rotation in terms of the scalar fields, and then read from the transformed singlet

the explicit form of the fake superpotential.

Because of the residual USp(8) symmetry of the skew-diagonal central charge (10.3), we can restrict

the analysis to the transformations of U(1)3 ⊂ SU(8)/USp(8).

10.1.1 The
(
p0, q0

)
Configuration

In the non-BPS
(
p0, q0

)
charge configuration (corresponding to D0 − D6 in Type II language), the

dressed charges of the N = 8 theory read (3.17)

Z0 =
1√
2

(
e−3φq0 + e−3φp0a1a2a3 + ie3φp0

)
; (10.24)

Zi =
1√
2
p0


e−φ



λ̂1a2a3

λ̂2a1a3

λ̂3a1a2


− ieφ




a1

λ̂1

a2

λ̂2

a3

λ̂3





 . (10.25)

Thus, the N = 8 skew-diagonal ZAB (10.3) in the
(
p0, q0

)
charge configuration can then be written as

Z
(p0,q0)
AB =

1

2
√
2
ǫ⊗


(e

−3φq0 + α1α2α3 p
0e3φ + ip0e3φ)




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+ (10.26)

+ p0e3φ




−(α1 + α2 + α3) 0 0 0
0 −α1 + α2 + α3 0 0
0 0 α1 − α2 + α3 0
0 0 0 α1 + α2 − α3


 +

+ p0ie3φ(α1α2α3)




−( 1
α1

+ 1
α2

+ 1
α3
) 0 0 0

0 (− 1
α1

+ 1
α2

+ 1
α3
) 0 0

0 0 ( 1
α1

− 1
α2

+ 1
α3
) 0

0 0 0 ( 1
α1

+ 1
α2

− 1
α3
)





 ,

(10.27)

where αi ≡ ai/λi is the axion/dilaton ratio, with λi = e2φλ̂i, and λ̂1λ̂2λ̂3 = 1. When ai = 0, one

recovers the KK solution studied in [9].

To proceed further, it is convenient to define the following quantities:

Y0 =
1√
2
(q0 e

−3φ + α1α2α3 p
0e3φ) +

i√
2
p0e3φ; (10.28)

Yi = − 1√
2
p0e3φ

(
αi +

i

2
|ǫijk|αjαk

)
, (10.29)
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and

σ3 =

(
1 0
0 −1

)
. (10.30)

We can write

id2 ⊗ id2 = id4 , id2 ⊗ σ3 =




1 0
0 1

−1 0
0 −1


 , σ3 ⊗ id2 =




1 0
0 −1

1 0
0 −1


 ;

σ3 ⊗ σ3 =




1 0
0 −1

−1 0
0 1


 . (10.31)

Thus, by recalling (10.26), ZAB can be decomposed as

Z
(p0,q0)
AB ≡ ZAB(Y0, Yi) =

1

2
ǫ⊗ [Y0 id4 + Y1 id2 ⊗ σ3 + Y2 σ3 ⊗ id2 + Y3 σ3 ⊗ σ3] . (10.32)

This parametrization of the central charge matrix will allow us to perform the necessary rotation

to identify the fake superpotential.

10.1.2 U(1)3

The matrix ZAB (10.32) has a residual U(1)3 ⊂ SU(8)/USp(8) symmetry. More precisely, U(1)3 can

be considered as the Cartan subalgebra of the symmetric, rank-3 compact manifold SU(8)/USp(8)

(dimR = 27); indeed, U(1)3-transformations do not generate off-diagonal elements, and they leave the

skew-diagonal form of ZAB invariant. We choose to parametrize such a U(1)3 matrix as a 4×4 matrix

acting on the diagonal part of ZAB, namely (χi ∈ R)

U ≡




e−i(χ1+χ2+χ3)

ei(−χ1+χ2+χ3)

ei(χ1−χ2+χ3)

ei(χ1+χ2−χ3)


 ∈ U(1)3 ⊂ SU(8)/USp(8) . (10.33)

Note that, consistently, the sum of the four diagonal phases vanishes. Therefore, by the exponential

mapping, one obtains

U = exp




−i(χ1 + χ2 + χ3)
i(−χ1 + χ2 + χ3)

i(χ1 − χ2 + χ3)
i(χ1 + χ2 − χ3)


 , (10.34)

which, analogously to ZAB (10.32), enjoys the following decomposition :

U = exp [−i(χ1 id2 ⊗ σ3 + χ2 σ3 ⊗ id2 + χ3 σ3 ⊗ σ3)] =

= exp [−iχ1 id2 ⊗ σ3] · exp [−iχ2 σ3 ⊗ id2] · exp [−iχ3 σ3 ⊗ σ3] =

= U1 · U2 · U3 (10.35)

where all matrices are reciprocally commuting.
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Under U(1)3 (10.34), ZAB (10.32) transforms as

ZAB → UZABUT ≡ U2ZAB . (10.36)

Without loss of generality, one can therefore just redefine the χi’s by a factor of 2, and consider the

transformation

ZAB → UZAB. (10.37)

Each single Ui actually reads

U1 = exp [−iχ1 id2 ⊗ σ3] = cosχ1 id4 − i sinχ1 id2 ⊗ σ3;
U2 = exp [−iχ2 σ3 ⊗ id2] = cosχ2 id4 − i sinχ2 σ3 ⊗ id2;
U3 = exp [−iχ3 σ3 ⊗ σ3] = cosχ3 id4 − i sinχ3σ3 ⊗ σ3,

(10.38)

and induces the following transformation on ZAB (10.32):

U1 ZAB → cosχ1 ZAB − i sinχ1 ZAB · id2 ⊗ σ3;
U2 ZAB → cosχ2 ZAB − i sinχ2 ZAB · σ3 ⊗ id2;
U3 ZAB → cosχ3 ZAB − i sinχ3 ZAB · σ3 ⊗ σ3.

(10.39)

Consequently, U (10.35) has a well defined action on the coefficients of the matrices (10.31); for

example, by acting with only U1 gives rise to the following transformations of Y0 and Yi’s:

Y0 → γ0 ≡ cosχ1 Y0 − i sinχ1 Y1;
Y1 → γ1 ≡ cosχ1 Y1 − i sinχ1 Y0;
Y2 → γ2 ≡ cosχ1 Y2 − i sinχ1 Y3;
Y3 → γ3 ≡ cosχ1 Y3 − i sinχ1 Y2,

(10.40)

such that the U1-transformed central charge matrix (10.32) can be rewritten as

ZAB(Y0, Yi) → U1ZAB(Y0, Yi) = ZAB(γ0, γi) . (10.41)

The complete action of U (10.35) on (10.32) reads

ZAB(Y0, Yi) → ZAB(ζ0, ζi) = U3 U2 U1ZAB(Y0, Yi) , (10.42)

where the ζI ’s are defined as
ζ0 ≡ A Y0 +B Y1 + C Y2 +D Y3;
ζ1 ≡ B Y0 +AY1 +D Y2 + C Y3;
ζ2 ≡ C Y0 +D Y1 +A Y2 +B Y3;
ζ3 ≡ D Y0 + C Y1 +B Y2 +A Y3,

(10.43)

with (ci ≡ cosχi, si ≡ sinχi)
A ≡ (c1c2c3 − is1s2s3);
B ≡ (−c1s2s3 + is1c2c3);
C ≡ (−s1c2s3 + ic1s2c3);
D ≡ (−s1s2c3 + ic1c2s3).

(10.44)

Within the same
(
p0, q0

)
axionful charge configuration, it is interesting to compare the U(1)3-

transformed ZAB (10.42)-(10.44) with the “non-standard” skew-diagonalized Z
(BMP )
AB obtained by
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Bossard, Michel and Pioline (BMP) in [24]

Z
(BMP )
AB =

1

2
ǫ⊗


i(e

i(α−π/4) + sin 2αe−i(α−π/4))ρ




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




+e−i(α−π/4)




ξ1 + ξ2 + ξ3 0 0 0
0 −ξ1 0 0
0 0 −ξ2 0
0 0 0 −ξ3





 ,

(10.45)

which can equivalently be recast in the following form:

Z
(BMP )
AB =

1

2
ǫ⊗

[
i(eiη + cos 2η e−iη)ρ id4+

+e−iη




−µ1 − µ2 − µ3 0 0 0
0 −µ1 + µ2 + µ3 0 0
0 0 µ1 − µ2 + µ3 0
0 0 0 µ1 + µ2 − µ3





 =

=
1

2
ǫ⊗

[
µ0 id4 − e−iηµ1 id2 ⊗ σ3 − e−iηµ2 σ3 ⊗ id2 − e−iηµ3 σ3 ⊗ σ3

]

(10.46)

by introducing the quantities:

µ0 ≡ i(eiη + cos 2η e−iη)ρ , η ≡ α− π
4 ,

ξ1 ≡ µ1 − µ2 − µ3 , ξ2 ≡ −µ1 + µ2 − µ3 , ξ3 ≡ −µ1 − µ2 + µ3.
(10.47)

By comparing (10.32) and (10.46), in order to match (10.45) with (10.42)-(10.44), a transformation

U ∈U(1)3 should be found, such that

Y0 → ζ0 = µ0 , Yi → ζi = −e−iηµi , i = 1, 2, 3 . (10.48)

This amounts to solving the system composed by (10.43)-(10.44) and (10.47)-(10.48). For simplicity’s

sake, we will here confine ourselves to solve such a system within the “t3-degeneration” of the formalism

under consideration, which amounts to choosing three equal phases χi’s, corresponding to the diagonal

U(1)diag inside U(1)3.

10.1.3 t3 model

As mentioned, at the level of U -transformation, the “degeneration” procedure from stu to t3 model

amounts to identifying

χ1 = χ2 = χ3 ≡ χ. (10.49)

This corresponds to considering the action of U(1)diag ⊂ U(1)3 ⊂ SU(8)/USp(8), such that (recall

(10.35))

U = U1 · U2 · U3 ≡ Udiag = exp




−3iχ
iχ

iχ
iχ


 . (10.50)
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The central charge matrix given by (10.26) and (10.32) thus acquires the following structure6:

Z
(p0,q0),t3

AB =
1

2
√
2
ǫ⊗



(
e−3φq0 + p0e3φ(i+ α3)

)
id4 + p0αe3φ(1 + iα)




−3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







=
1

2
ǫ⊗ [Y0 id4 + Y (id2 ⊗ σ3 + σ3 ⊗ id2 + σ3 ⊗ σ3)] , (10.51)

where here (α1 = α2 = α3 ≡ α)

Y0 ≡ 1√
2

(
e−3φq0 + p0e3φ(i+ α3)

)
;

Y ≡ − 1√
2

(
p0e3φα(1 + iα)

)
.

(10.52)

On the other hand, the consistent “t3-degeneration” of the central charge matrix (10.46)-(10.47)

reads

Z
(BMP ),t3

AB =
1

2
ǫ⊗


i(e

iη + cos 2η e−iη)ρ id4 + e−iηµ




−3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





 =

=
1

2
ǫ⊗

[
µ0 id4 − e−iηµ( id2 ⊗ σ3 + σ3 ⊗ id2 + σ3 ⊗ σ3)

]
, (10.53)

where

µ0 ≡ i(eiη + cos 2η e−iη)ρ , η ≡ α− π

4
µ1 = µ2 = µ3 ≡ µ ≡ −ξ1 = −ξ2 = −ξ3 . (10.54)

We notice that, by denoting η0 the phase of µ0, it holds that

tan η0 = − 1

(tan η)3
. (10.55)

Thus, in order to match (10.51)-(10.52) with (10.53)-(10.54), a phase χ should be determined such

that it rotates the relevant quantities as follows (ζ1 = ζ2 = ζ3 ≡ ζ, Y1 = Y2 = Y3 ≡ Y )

Y0 → ζ0 = µ0 , Y → ζ = −e−iηµ . (10.56)

From the “t3-degeneration” of (10.43), one gets

ζ0 = AY0 + 3BY ; (10.57)

ζ = (A+ 2B)Y +BY0. (10.58)

However, now A and B respectively simplifies down to

A ≡ B + e−iχ, B ≡ i

2
sin(2χ)eiχ, (10.59)

thus allowing for the following re-writing of (10.57)-(10.58):

ζ0 = e−iχY0 +
i
2 sin(2χ)e

iχ(3Y + Y0);
ζ = e−iχY + i

2 sin(2χ)e
iχ(3Y + Y0) .

(10.60)

6In order to simplify the computation, we will henceforth choose p0 > 0 and q0 > 0. This does not imply any loss of
generality, since all other sign choices are related to this by a duality rotation along the non-BPS (ZH 6= 0) charge orbit
of the stu model .
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The action of U(1)diag ⊂ U(1)3 implies that

eiχ =
Y − Y0
ζ − ζ0

. (10.61)

As pointed out above, in order to match (10.51)-(10.52) with (10.53)-(10.54), we are interested in

finding the phases of these parameters in terms of χ entering (10.50). Therefore, we can solve for

tanχ, as we read from (10.55) and (10.56):

η0 = tanψ(ζ0) =
1

[tanψ(ζ)]3
, (10.62)

where ψ(ζ0) and ψ(ζ) respectively denote the phases of ζ0 and ζ.

From (10.60), one obtains

tanψ(ζ0) =
1

τ3
Y0I − τ3Y0R − 3τ2YI + 3τYR

Y0I +
1
τ3Y0R − 3

τ2YI − 3
τ YR

; (10.63)

tanψ(ζ) =
1

τ3
YI − τ3YR − τ2(2YI + Y0I) + τ(2YR + Y0R)

YI +
1
τ3
Y0R − 1

τ2
(2YI + Y0I)− 1

τ (2YR + Y0R)
, (10.64)

where

Y ≡ YR + iYI , Y0 ≡ Y0R + iY0I , τ ≡ tanχ. (10.65)

In order to find τ in terms of α, p0, q0, one needs to solve (10.62), which in virtue of (10.63)-(10.64)

can be made explicit as

Y0I − τ3Y0R − 3τ2YI + 3τYR

Y0I +
1
τ3
Y0R − 3

τ2
YI − 3

τ YR
= τ12

[
YI +

1
τ3
Y0R − 1

τ2
(2YI + Y0I)− 1

τ (2YR + Y0R)

YI − τ3YR − τ2(2YI + Y0I) + τ(2YR + Y0R)

]3
. (10.66)

Further simplifications are possible. Indeed, by recalling (10.52), the dependence of (10.63)-(10.64)

on α, eφ, p0, q0 can be made manifest:

η0 = tanψ(ζ0) =
−q0 tanχ3 + p0e6φ(1− tanχ α)3

q0 + p0e6φ(tanχ+ α)3

= − tanχ3
1− p0

q0
e6φ( 1

tanχ − α)3

1 + p0

q0
e6φ(tanχ+ α)3

; (10.67)

tanψ(ζ) =
−q0 tanχ+ p0e6φ(tanχ+ α)2(1− tanχ α)

q0 tanχ2 + p0e6φ(tanχ+ α)(1 − tanχ α)2

= − 1

tanχ

1− p0

q0
e6φ(tanχ+ α)2( 1

tanχ − α)

1 + p0

q0
e6φ(tanχ+ α)( 1

tan χ − α)2
. (10.68)

As a consequence, (10.62) can be recast as

1− x3

1 + y3
=

(1 + x2y)3

(1− x y2)3
, (10.69)

x ≡
(
p0

q0

)1/3

e2φ
(

1

tanχ
− α

)
, y ≡

(
p0

q0

)1/3

e2φ (tanχ+ α) , (10.70)

and therefore solved for

x = y or x 6= y , xy = −1 . (10.71)
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For real values of tanχ the case x = y is not allowed, so one is left with

xy = −1 ⇒
(
p0

q0

)2/3

e4φ
[
1− α2 +

2α

tan 2χ

]
= −1 . (10.72)

Thus, the angle χ, which provides the U(1)diag-rotation between the skew-eigenvalues of (10.51)

and (10.53), is given by

tanχ =
1

2ν2/3α

(
(1− ν2/3(α2 + 1))±

√
(1− ν2/3(α2 + 1))2 + 4ν2/3

)
, (10.73)

ν ≡ (p0/q0)e
6φ. (10.74)

For later convenience we explicite here the expression for χ

χ = −1

2
arctan

[
2α

( q0p0 )
2/3e4φ − 1 + α2

]
; (10.75)

we also recall the choice of q0 > 0, p0 > 0, in our computation.

10.1.4 Duality Invariants

One can also relate the parameters entering the solution (10.73) to the duality invariants I4, i1, i2 and

i3 defined e.g. in [37]. Using the relations (3.6)-(3.10) of [20], one finds

α =
b

3
√−I4

; (10.76)

(q0)2e−6φ =
1

(−I4)
(
4i3
√

−I4 ±
√
b6 − I4(3b4 + 16i33) + 3b2(−I4)2 − I3

4

)
, (10.77)

where i2 = b + 3i1, and the “±” choice has to be consistent with the positivity of e6φ. We notice

that α is a duality invariant quantity by itself, as well as the combinations q0e
−3φ and p0e3φ (recall

√−I4 = p0q0). Thus, the expression (10.73) is explicitly duality invariant.

10.2 Recovering the non-BPS Fake Superpotential

In [24] it is shown that the non-BPS fake superpotential is given by

W = 2ρ, (10.78)

where ρ enters the expression (10.46). From the same equation, one can also write µ0 as

µ0 = 2ρ(− sin η3 + i cos η3) , (10.79)

thus yielding

W = 2ρ =
Imµ0
cos η3

≡ Imζ0
cos η3

. (10.80)

Moreover, (10.52) and (10.60) imply

Imζ0 = − 1√
2
e−3φ cosχ3

(
q0 tanχ

3 − e6φp0(1− tanχα)3
)
=

= − 1√
2
e−3φq0 sinχ

3

(
1− ν

(
1

tanχ
− α

)3
)
. (10.81)
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By using

sinχ3 =
tanχ3

(1 + tanχ2)3/2
,

1

cos η3
= (1 + tan φ(ζ)2)3/2 , (10.82)

and (10.67)-(10.68), (10.62) and (10.71) yield

ν2/3(1/τ − α)(τ + α) = −1 , (10.83)

and one can rewrite

tanψ(ζ) = −1

τ

1 + ν1/3(τ + α)

1− ν1/3(1/τ − α)

⇓
1

cosφ(ζ)3
=

1

τ3

(
(1− ν1/3(1/τ − α))2 + (1 + ν1/3(τ + α))2

)3/2

(1− ν1/3(1/τ − α))3
=

=
(1 + τ2)3/2

τ3
(1 + 2αν1/3 + ν2/3(α2 + 1))3/2

(1− ν1/3(1/τ − α))3
; (10.84)

Imζ0 = −q0e−3φ τ3

(1 + τ2)3/2

(
1− ν (1/τ − α)3

)
. (10.85)

Therefore, the non-BPS fake superpotential W (10.80) is given by

W = − 1√
2
q0e

−3φ

(
1− ν (1/τ − α)3

)

(
1− ν1/3 (1/τ − α)

)3 (1 + 2αν1/3 + ν2/3(α2 + 1))3/2 . (10.86)

Substituting the expression of τ ≡ tanχ as in (10.73), one finds that
(
1− ν (1/τ − α)3

)

(
1− ν1/3 (1/τ − α)

)3 =
1− αν1/3 + ν2/3(α2 + 1)

1 + 2αν1/3 + ν2/3(α2 + 1)
, (10.87)

which yields the following explicit expression:

W = − 1√
2
q0e

−3φ
√

1 + 2αν1/3 + ν2/3(α2 + 1)
(
1− αν1/3 + ν2/3(α2 + 1)

)
=

= − 1√
2
e−3φ

√
(q

1/3
0 + (p0)1/3αe2φ)2 + e4φ(p0)2/3 ·

·
(
(q

1/3
0 + (p0)1/3αe2φ)2 + e4φ(p0)2/3 − 3(q0p

0)1/3αe2φ
)
. (10.88)

Notice that the overall minus in (10.88) is totally irrelevant, since it can be eliminated with a U(1)diag-

rotation through the matrix −ǫ⊗ id4 .

Equation (10.88), up to a factor of 1/2, coincides with the formula of the non-BPS fake superpo-

tential for the (p0, q0) configuration in the t3 model computed in [20]. The difference of a factor 1/2

is simply due to the different normalization used for the normal form central charge in our notation

(which coincides, for example, with the one in Eq. (3.13) of [14]) with respect to the one used in

[24], as one can read from Eq. (2.11) therein. This implies that the correct identification would be

Imµ0 =
1
2Imζ0. Consequently, the correctly normalized fake superpotential becomes finally

W =
1

2
√
2
e−3φ

√
(q

1/3
0 + (p0)1/3αe2φ)2 + e4φ(p0)2/3 ·

·
(
(q

1/3
0 + (p0)1/3αe2φ)2 + e4φ(p0)2/3 − 3(q0p

0)1/3αe2φ
)
. (10.89)
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This computation is a non-trivial consistency check for the formalism based on the axion-independent

matrices M and M̂ introduced in Secs. 8 and 9, as well as for the results on the phase χ obtained

above.
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J3
G4
H4

G5
H5

q N

JO

3

E7(7)

SU(8)

E6(6)

USp(8) 8 8

JOs

3

E7(−25)

E6(−78)×U(1)

E6(−26)

F4(−52)
8 2

JH
3

SO∗(12)
SU(6)×U(1)

SU∗(6)
USp(6) 4 2 or 6

JHs

3
SO(6,6)

SO(6)×SO(6)
SL(6,R)
SO(6) 4 0

JC
3

SU(3,3)
SU(3)×SU(3)×U(1)

SL(3,C)
SU(3) 2 2

JCs

3
SL(6,R)
SO(6)

[
SL(3,R)
SO(3)

]2
2 0

JR
3

Sp(6,R)
SU(3)×U(1)

SL(3,R)
SO(3) 1 2

R

(t3 model)

SL(2,R)
U(1) − −2/3 2

R⊕ Γm−1,n−1
SL(2,R)
U(1) × SO(m,n)

SO(m)×SO(n) SO(1, 1) × SO(m−1,n−1)
SO(m−1)×SO(n−1) (m+ n− 4) /3

2 (m or n = 2)
4 (m or n = 6)
0 otherwise

Table 1: Rank-3 Euclidean Jordan algebras J3, and corresponding symmetric scalar manifolds for
vector multiplets in D = 4 and D = 5, with the parameter q and the number of supersymmetries N .

A Some Results on Exponential Matrices

Let us recall the decomposition (4.2):

A =

(
11 0

ReN 11

)



1 0 0 0
aI 1 0 0

0 0 1 −aJ
0 0 0 1


 = (R)−1AD(a

I) , (A.1)

where A(a) = exp(T (a)) (cfr. (2.7)).

Thus, by defining

AD ≡ exp(TD), R ≡ exp(TR), (A.2)
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and

T (a) = TD(a) + Td(a, d); (A.3)

TD(a) ≡




0 0 0 0
aI 0 0 0

0 0 0 −aJ
0 0 0 0


 , Td(a, d) ≡




0 0 0 0
0 0 0 0

0 0 0 0
0 0 dIJ 0


 , (A.4)

one obtains that

A(a) = exp[Td + TD] = exp[−TR] · exp[TD] , (A.5)

with

TR(d) ≡
(

0 0
−ReN 0

)
. (A.6)

This allows us to describe how the matrix ReN is constructed from the algebra perspective, as
(

11 0
−ReN 11

)
≡ R = exp

[
aI(T̂D)I

]
exp

[
−aI((T̂D)I + (T̂d)I)

]
,

where the generators

(T̂D)I =
∂

∂aI
TD , (T̂d)I =

∂

∂aI
Td

do not depend on the axions, since

(T̂D)I ≡




0 0 0 0
δJI 0 0 0

0 0 0 −δJI
0 0 0 0


 , (T̂d)I ≡




0 0 0 0
0 0 0 0

0 0 0 0
0 0 dIJK 0


 .

B M and Y in the t
3 model

We now explicitly compute the matrices M (8.23) and Y (8.25) for the special geometry defined by

the holomorphic prepotential

F =
(X1)3

X0
, (B.1)

corresponding to the t3 model of N = 2, D = 4 supergravity, where the unique complex scalar field is

defined as
X1

X0
≡ t = a− iλ. (B.2)

In this model, which uplifts to N = 2, D = 5 “pure” supergravity (thus with no scalars in D = 5),

the matrices M (8.23) and Y (8.25) are simply numerical matrices.

From the analysis of [7], it follows that

∂iK = 6λ2 , gtt̄ = 12λ , (B.3)

with λ = e2φ. Since

att̄ =
1

4
gtt̄e

−4φ , (B.4)

it then follows that

(g1/2)t̄t = 2
√
3e2φ , (a1/2)t̄t =

√
3. (B.5)
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Thus, the matrices M (8.23) and Y (8.25) can be computed to be

M =
1

2

(
1

√
3i

−
√
3i −1

)
= sin (θt3) σ3 + cos (θt3)σ2; (B.6)

Y =
1

2




1 0 0 −
√
3

0 −1
√
3 0

0
√
3 1 0

−
√
3 0 0 −1


 , (B.7)

where σ2 and σ3 are the Pauli σ-matrices (such that the constraints (8.28) are trivially satisfied), and

θt3 =
π

6
, (B.8)

such that (cfr. (B.5))

(a−1/2)tt = tan (θt3) . (B.9)

C On the Complex Vielbein for the stu Parametrization of N = 8
Supergravity

The “stu parametrization” of N = 8, D = 4 supergravity is based on the following correspondence

between the skew-eigenvalues of the N = 8 central charge matrix ZAB and the (flattened) scalar-

dressed charges of the N = 2, D = 4 stu model, which is a common sector of all rank-3 symmetric

special Kähler geometries [14, 20, 21]:

ZAB =




z1ǫ 0 0 0
0 z2ǫ 0 0
0 0 z3ǫ 0
0 0 0 z4ǫ


 =

=




Zǫ 0 0 0

0 −i(gss̄)1/2D̄s̄Z̄ǫ 0 0

0 0 −i(gtt̄)1/2D̄t̄Z̄ǫ 0

0 0 0 −i(guū)1/2D̄ūZ̄ǫ


 . (C.1)

The square root of gī can in principle be chosen with real entries as

(gss̄)
1/2 = ± i

s− s̄
, (C.2)

and analogously for the tt̄ and uū components of g1/2. Thus, in this symplectic frame, the rank-3

C-tensor reads

Cstu =
i

(s− s̄)(t− t̄)(u− ū)
(C.3)

can be written as

Cstu = ∓ (gss̄)
1/2(gtt̄)

1/2(guū)
1/2 , (C.4)

consistent with the choice made in (C.2). This choice affects the attractor equations since

Z̄DtZ = −iCstug
ss̄guūD̄s̄Z̄D̄ūZ̄ =

= (∓)(−i)(gtt̄)1/2(gss̄)1/2(guū)1/2D̄s̄Z̄D̄ūZ̄ ,

⇓
Z(gtt̄)1/2D̄t̄Z̄ = ∓i(gss̄)1/2DsZ (guū)1/2DuZ , (C.5)
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which, using the notations of (C.1), can be recast as

z1z3 = ±z2z4 , (C.6)

where only the choice “−” allows the attractor equation from special geometry to be embedded into

the N = 8 theory. Thus, we are lead to choose the minus sign in (C.2), and correspondingly the

Vielbein is fixed to be purely imaginary:

e = −ig1/2 =




(s − s̄)−1 0 0
0 (t− t̄)−1 0
0 0 (u− ū)−1


 = −e. (C.7)

D U-duality Invariants for the D0−D6 i3 = 0 Configuration

Following the definitions in [37, 21], one can write the following U -duality invariant expressions in stu

model within the
(
p0, q0

)
configuration with i3 = 0 (recall (C.1) and (10.26)):

i1 = |Z|2 = 2e−6φq0

[
q0 + p0α1α2α3 − e4φp0(α1 + α2 + α3)

]
;

is2 = |DsZ|2 = 2e−6φq0

[
q0 + p0α1α2α3 + e4φp0(−α1 + α2 + α3)

]
;

it2 = |DtZ|2 = 2e−6φq0

[
q0 + p0α1α2α3 + e4φp0(α1 − α2 + α3)

]
;

iu2 = |DuZ|2 = 2e−6φq0

[
q0 + p0α1α2α3 + e4φp0(α1 + α2 − α3)

]
. (D.1)

It is worth remarking that that these four invariants collapse to a single one, in the axionless case

(αi ≡ ai/λi = 0).

The black hole potential for this system is given in terms of the invariants by

VBH = i1 + is2 + it2 + iu2 , (D.2)

and it admits the fake superpotential [38, 20, 24]

W =
1

2

(√
i1 +

√
is2 +

√
it2 +

√
iu2

)
; (D.3)

this case is usually referred to as the non-BPS “doubly-extremal” phase. Actually, one can show that

(D.3) satisfies

VBH =W 2 + 4gī∂iW∂ ̄W (D.4)

only in the case i3 = 0. Indeed, by their very definitions, using the special geometry relations (cfr.

e.g. Eqs. (2.24)-(2.26) of [21])

Dsi1 = Dsi
s
2 = Z̄DsZ ;

Dsi
t
2 = Dsi

u
2 = iCstug

tt̄guūDt̄Z̄DūZ̄ , (D.5)

as well as the analogous ones concerning derivatives with respect to the scalars t and u, and by recalling

that (recall (C.4))

Cstu
2 = gss̄ gtt̄ guū ,
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one can compute that

4DsWDs̄Wgss̄ =
1

4

[
(
√
i1 +

√
is2)

2 + (
√
it2 +

√
iu2)

2+

+i
(
√
i1 +

√
is2)(
√
it2 +

√
iu2 )√

i1is2i
t
2i

u
2

(z1z2z3z4 − z̄1z̄2z̄3z̄4)

]
. (D.6)

By definition (cfr. e.g. (1.12) of [20])

i(z1z2z3z4 − z̄1z̄2z̄3z̄4) = i4 ⇒ i4 = −
√
4i1is2i

t
2i

u
2 − i23, (D.7)

thus

VBH = W 2 + 4gī∂iW∂̄W +

−
(√

i1is2 +
√
i1it2 +

√
i1iu2 +

√
is2i

t
2 +

√
is2i

u
2 +

√
it2i

u
2

)(
1−

√
1− i23

4i1is2i
t
2i

u
2

)
, (D.8)

which gives the required relation (D.4) in the case i3 = 0. We also notice that the expression (D.8) is

non-singular, since none of the four invariants i1, i
s
2, i

t
2, i

u
2 vanishes for this solution.
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