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Contrary to popular belief conformality does not require zero beta functions. This follows from the

work of Jack and Osborn, and examples in non-supersymmetric theories were recently found by

some of us. In this note we show that such examples are absent in unitary N = 1 supersymmetric

four-dimensional field theories. More specifically, we show to all orders in perturbation theory that

the beta-function vector field of such theories does not admit limit cycles. A corollary of our result

is that unitary N = 1 supersymmetric four-dimensional theories cannot be superscale-invariant

without being superconformal.
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1. Introduction

In recent papers by some of us two independent methods were used to claim the existence of

unitary four-dimensional quantum field theories that are scale but not conformally invariant

(SFTs) [1–3]. A natural interpretation of the renormalization-group (RG) behavior of such theories

is that they live on RG limit cycles with a constant “number of degrees of freedom.” Neverthe-

less, the work of Jack and Osborn [4] (see also [5]), which we think is widely unappreciated in

the literature, has lead us to a new understanding of the conditions for conformal invariance.1

More specifically, it has become clear that a theory does not need to have zero beta functions in

order for it to be conformal, and that the claimed examples of non-conformal scale-invariant field

theories [1–3] are actually conformal.

We will not have much to say here about this new understanding—more details will be given

in a forthcoming publication [6]. Our aim in the present note is to show that unitary N = 1

supersymmetric theories in four dimensions cannot flow to a superconformal phase with nonzero

beta functions. In other words, we will show that the beta-function vector field of supersymmetric

theories does not admit limit cycles, in contrast to that of non-supersymmetric theories. (Let us

remark here that we use “limit cycles” loosely to mean recursive flows in the beta-function vector

field of a theory, that is, flows that may be cyclic or ergodic.) A corollary of this result is that

there are no unitary N = 1 supersymmetric SFTs in four dimensions.

The subject of scale without conformal invariance in unitary N = 1 supersymmetric theories

with an R-symmetry was investigated recently by Antoniadis and Buican [7]. Their treatment

relies on carefully analyzing constraints in the operator content of such theories, and relies on

various well motivated assumptions. A criterion is then given for a unitary supersymmetric

theory to contain a superscale-invariant phase: it has to contain at least two real nonconserved

dimension-two scalar singlet operators [7]. The most constraining assumption in the analysis of [7]

is perhaps that an R-symmetry is required along the RG flow.

The operator content of possible supersymmetric SFTs was also studied by Nakayama [8],

without the requirement of an R-symmetry. The so-called virial multiplet was constructed and its

implications for scale without conformal invariance in supersymmetric theories were explored. In

concrete examples difficulties were found in constructing a nontrivial virial multiplet in perturba-

tion theory. However, relaxing the constraint of unitarity produced non-conformal scale-invariant

field theories in a simple Wess–Zumino model.

With the recent work mentioned in the last two paragraphs in mind,2 it seems unlikely that

supersymmetric theories can host a superscale-invariant phase that is not superconformal. Still,

1We acknowledge helpful discussions on this point with Markus Luty, Joseph Polchinski and Riccardo Rattazzi,

as well as informative correspondence with Hugh Osborn.

2For other studies of superscale and superconformal invariance see [9].
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we think it is interesting to ponder the existence of supersymmetric limit cycles. Examples of

limit cycles in non-supersymmetric theories are more generic than previously thought: in addition

to a four-dimensional example, limit cycles in 4 − ǫ dimensions have also been found [1, 2, 10].

Thus, it is worthwhile to analyze the constraints supersymmetry imposes on such RG behavior.

The conclusion of our present note is that supersymmetry does not allow for limit cycles, and

thus it does not allow for SFTs. Our method of proof, as will become clear below, is very different

in spirit from that employed by Antoniadis and Buican, and by Nakayama. More specifically, in

order to reach our conclusion we analyze supersymmetric theories with superspace-dependent

couplings, and show that a quantity corresponding to the S of [4] (see also [6]) is constrained

to be zero by supersymmetry. The quantity S is related to the frequency with which a theory

traverses its putative limit cycle, and thus the fact that S = 0 in supersymmetry immediately

shows that supersymmetric limit cycles cannot occur.

Note Added: As this work was being finalized, Nakayama added an appendix to [8] where

he also showed that S must vanish to all orders in perturbation theory in N = 1 supersymmetric

field theories.

2. Preliminaries

In this section we give a brief review of material that is necessary for our arguments.

We are interested in four-dimensional theories that are classically scale-invariant. They are

parametrized by coupling constants gi. Following Jack and Osborn we promote these to spacetime-

dependent couplings, gi(x). This is useful in two ways. Firstly, the couplings now act as sources

for composite operators appearing in the Lagrangian. This allows us to define finite composite

operators as functional derivatives of the renormalized generating functional for Green functions,

W , with respect to the couplings. A similar method is used frequently to define the stress-energy

tensor: the theory is lifted to curved space and the stress-energy tensor is obtained as a functional

derivative of W with respect to the metric. Secondly, it allows us to obtain a local version of the

Callan–Symanzik equation, with terms involving derivatives of couplings interpreted as anomalies

and thus satisfying Wess–Zumino consistency conditions [11].

In order to render this theory finite one must include all possible dimension-four countert-

erms consistent with diffeomorphism invariance. In addition, the counterterms may be further

constrained by formal symmetries of the theory in which both quantum fields and couplings

transform. Consider, for example, a theory of real scalars with bare Lagrangian

L0 =
1

2
ηµν∂µφ0a∂νφ0a − 1

4!
g0abcdφ0aφ0bφ0cφ0d. (2.1)

This is written in terms of bare fields φ0. In the potential term the bare couplings g0abcd are com-

pletely symmetric under exchange of the indices a, b, c and d. The kinetic part of the Lagrangian
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exhibits a continuous symmetry under transformations of the fields δφ0a = −ωabφ0b, where ω is

in the Lie algebra of the flavor group GF = SO(nS). The whole Lagrangian is GF -symmetric if

we agree to transform, in addition, the couplings as

δg0abcd = −ωaeg
0
ebcd − ωbeg

0
aecd − ωceg

0
abed − ωdeg

0
abce,

or δg0I = −(ωg0)I for short, where, following Jack and Osborn, we use the compact notation

I = (abcd). For spacetime-independent couplings the theory is renormalized by including the

usual wave-function, φ0 = Zφ, and coupling constant, g0I = gI + LI(g), renormalization. But in

the presence of spacetime-dependent coupling constants one must introduce new counterterms.

Among them we are particularly interested in the counterterm of the form

Lc.t. = (∂µgI)(NI)abφ0b∂µφ0a, (2.2)

with (NI)ab = −(NI)ba, that is, in the Lie algebra of GF ; see [4] for a complete account of

counterterms required in the case of spacetime-dependent couplings in a curved background.

Finite operators corresponding to currents associated with generators of GF are most readily

introduced by introducing background gauge fields. We promote the Lagrangian (2.1) to

L̃0 =
1

2
gµνD0µφ0aD0νφ0a +

1

12
φ0aφ0aR− 1

4!
g0abcdφ0aφ0bφ0cφ0d ,

where the covariant derivative,

D0µφ0 = (∂µ +A0µ)φ0,

is introduced with an eye towards including the counterterm (2.2) through the renormalization of

A0µ,

A0µ = Aµ +NI(Dµg)I , Dµ = ∂µ +Aµ.

We have left implicit the Lie-algebra indices (so that NT
I = −NI and ATµ = −Aµ). Note that NI

is a function of the renormalized couplings that has an expansion in ǫ-poles starting at order 1/ǫ.

If the theory contains gauge fields and some of the scalars are charged under the gauge group

Gg ⊆ GF , it is straightforward to include an additional quantum gauge field in addition to the

background field Aµ.

The generating functional W is now a function of the background gauge field in addition to

the metric and couplings, and finite operators are defined by functional differentiation:

〈Tµν(x)〉 =
2√−g

δW

δgµν(x)
, 〈[Oi(x)]〉 =

1√−g

δW

δgi(x)
and 〈[φaDµφb]〉 =

1√−g

δW

δAµab(x)
.

With this formalism Jack and Osborn obtain the trace-anomaly equation [4, Eq. (6.15)]

T µµ = βI [OI ] + ∂µ[(∂µφ)
TSφ]− ((1 + γ)φ) · δ

δφ
S0,
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where S0 =
∫
d4x

√−gL0 and βI , and γ are, as usual, the beta function of the coupling gI and

the anomalous dimension of the field φ, respectively. We have specialized their result to the case

of flat metric, spacetime-independent couplings, and vanishing background vector field. The last

term, involving the functional derivative of the quantum action, vanishes by the equations of

motion. The surprising aspect of this result is the often neglected term that involves the total

divergence of the current [(∂µφ)
TSφ]. It is defined in terms of the GF -Lie algebra element

S ≡ −gIN
1
I ,

where NI =
∑∞

n=1
Nn
I /ǫ

n, so that N1
I is the residue of the simple ǫ-pole in NI . Moreover, using the

equation of motion (or the generalized symmetry under GF ) Jack and Osborn get [4, Eq. (6.23)]

T µµ = (βI − (Sg)I)[OI ]− ((1 + γ + S)φ) · δ

δφ
S0.

This shows that a theory is conformal provided βI − (Sg)I = 0. The account above is readily

generalized to the case of real scalars interacting with Weyl fermions in the presence of quantum

gauge fields.

In [6] we used Weyl consistency conditions [4, 5] and perturbation theory to show that S has

two important properties:

1. S vanishes at fixed points. That is, if βI = 0 then S = 0.

2. On cycles, defined by βI = (Qg)I for Q in the Lie algebra of GF , one has S = Q.

Perturbation theory is only needed to establish positivity of the natural metric in the space of

operators, χgIJ in the notation of [4]. It follows that in a theory for which S = 0 identically there

is no possibility of limit cycles, and that conformal invariance corresponds to fixed points. We

will show below this is precisely the case for supersymmetric theories.

3. Finding Limit Cycles

In this section we review how to determine whether the beta-function vector field of a theory

admits limit cycles [2, 3, 6], making the procedure manifestly supersymmetric whenever possible.

However, we often use what is known in the non-supersymmetric case to deduce what conditions

have to be satisfied in the supersymmetric case.

Consider a classically scale-invariant supersymmetric field theory in four dimensions with Nf

chiral superfields of mass dimension one. Classical scale invariance implies that the theory is

renormalizable. The part of the Lagrangian we are interested in is3

L =

∫
d4θΦ†

aΦa +

(∫
d2θ

1

3!
yabcΦaΦbΦc + h.c.

)
. (3.1)

3Lower case Roman letters are indices in flavor space for (anti-)chiral superfields.
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There may be vector superfields in addition to the chiral superfields in (3.1), interacting in through

a term Φ†
aeV Φa in the Kähler potential. However, we do not concern ourselves with vector

superfields: their trivial flavor structure renders them unable to play a role in determining whether

limit cycles exist.

The Kähler potential exhibits a continuous symmetry under transformations of the fields δΦa =

−ωabΦb, where ω is in the algebra of the “flavor” group GF = SU(Nf ). The Yukawa couplings in

the superpotential break GF . This flavor symmetry can be extended to the whole Lagrangian by

treating the coupling constants as spurions, non-dynamical fields that are allowed to transform

under GF . More specifically, the coupling constant yabc is promoted to a superspace-dependent

chiral superfield of mass dimension zero,

Yabc(z) = yabc(z) +
√
2θyψabc(z) + θ2yFabc(z),

where zµ = xµ + iθσµθ̄. The yψ and yF components of the spurion field are irrelevant and we

ignore them in what follows. The Lagrangian (3.1) is manifestly GF -symmetric if the Yukawa

couplings transform as

δYabc = −ωaa′Ya′bc − ωbb′Yab′c − ωcc′Yabc′ .

The theory also possesses a spurious U(1) R-symmetry in addition to the GF symmetry. The

fields and couplings transform under the R-symmetry as

Φ → eiαΦ, Φ† → e−iαΦ†, Y → e−iαY, Y → eiαY . (3.2)

The R-symmetry is non-anomalous because the R-charge of the fermionic component of Φ is zero.

We now look for a supersymmetric version of the new type of counterterm that is required in

the presence of superspace-dependent couplings, as in (2.2). In supersymmetric theories the only

candidate for this counterterm has the form

Lc.t. =

∫
d4θΦ†

aFabΦb, (3.3)

where Fab is a function of the couplings. If the theory is to be unitary, Fab must be Hermitian,

Fab(Y, Y ) = Fba(Y , Y ) = F ∗
ba(Y, Y ). One can readily check that one of the components of (3.3) is

of the form (2.2), that is, the product of the current associated with GF and the derivative of

the couplings

Lc.t. ⊃ ((NI)ab∂
µyI − (NI)

∗
ba∂

µy∗I ) (φ
∗
a∂µφb − ∂µφ

∗
a φb) ,

with I again a shorthand for contracted flavor indices. N can be expressed in terms of F as

(NI)ab =
∂Fab(y, y

∗)

∂yI
, (NI)

∗
ba =

∂Fab(y, y
∗)

∂y∗I
.

Both N and F−1 are functions of the renormalized couplings that have ǫ-pole expansions starting

at order 1/ǫ.
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4. Absence of Limit Cycles in Supersymmetric Theories

We are finally ready to prove at the quantum level that a unitary, N = 1 supersymmetric field

theory in four dimensions does not have limit cycles. Our strategy is to show that S is exactly

zero in supersymmetric theories with the aforementioned qualifications. This we can show without

recourse to perturbation theory. However, we are mindful that the proof in [6] that S = Q on

cycles and S = 0 at fixed points does rely on perturbation theory.

The expression for S in our case is

Sab ≡ −1

2
(N1

I )abyI − h.c., (4.1)

= −1

2

(
yI

∂F 1
ab(y, y

∗)

∂yI
− y∗I

∂F 1
ab(y, y

∗)

∂y∗I

)
, (4.2)

where F 1 is the residue of the simple 1/ǫ pole in F . The Hermitian conjugate is subtracted

in (4.1), as expected since S is anti-Hermitian. The quantum action is invariant under the R-

symmetry introduced in Section 3, see (3.2). Therefore

Fab(Y, Y ) = Fab(e
−iαY, eiαY ),

or, by taking α to be infinitesimal,

0 = YI
∂Fab(Y, Y )

∂YI
− Y I

∂Fab(Y, Y )

∂Y I

.

Comparing the scalar component of this equation with (4.2) shows S = 0. The theory cannot

exhibit renormalization group limit cycles. Furthermore, unitarity and superscale invariance imply

superconformal invariance in unitary four dimensional N = 1 supersymmetric field theories.

5. A Perturbative Proof and a Four-Loop Example

If S vanishes in supersymmetric theories non-perturbatively, the implication must also be true

to all orders in perturbation theory. In this section we illustrate the vanishing of S in pertur-

bation theory with a four-loop example. Remarkably, four-loop calculations in the Wess–Zumino

model exist in the literature [12]. For a diagram containing only chiral superfields, it is a simple

combinatoric exercise to convert the results of [12] to the model under consideration in this work.

In non-supersymmetric theories a scalar-propagator loop correction contributes to S if the

corresponding diagram is not symmetric under a ↔ b. Such diagrams first arise at the three-loop

level in ordinary field theories [6]. In N = 1 supersymmetric Wess–Zumino models asymmetric

diagrams arise at four loops, see e.g. Fig. 1. The four-loop contribution of the diagrams of Fig. 1
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Fig. 1: Four-loop diagrams that contribute to F that are asymmetric under exchange of the

external legs. The lines are superfield propagators.

to F 1 is

(16π2)4F 1
ab ⊃ 3

8
(ζ(3)− 1

2
ζ(4))(yacdy

∗
dkmyfkℓy

∗
befyejmy

∗
ijℓyghiy

∗
cgh

+ yacdy
∗
dkmyikℓy

∗
ghiyfghy

∗
befyejmy

∗
cjℓ),

where ζ is the Riemann zeta function. From this expression for F 1 we see that S vanishes by

(4.2). There are at least two ways to understand this diagrammatic result.

It is obvious from the form of (4.2) that S counts the difference in the number of y’s and y∗’s

in F . The non-renormalization of the superpotential guarantees that any diagram containing an

unequal number of y’s and y∗’s vanishes. Thus, the only diagrams that contribute to F contain

an equal number of y’s and y∗’s, and S must vanish to all orders in perturbation theory. In

contrast with the non-supersymmetric case, not even diagrams asymmetric under exchange of the

external legs can contribute to S.

The second way in which our result can be understood is as follows. In non-supersymmetric

theories momentum is allowed to flow into the diagram that gives N1 from an external leg and out

of the diagram through a coupling. If the diagram is asymmetric, then interchanging the external

lines of the diagram results in a different routing of the external momentum through the diagram,

and thus to a different numerical coefficient for the corresponding contribution to N1. This leads

to a nonzero contribution to S after antisymmetrization. In the supersymmetric case, however,

the coefficient of all diagrams contained in the θ-expansion of an asymmetric diagram—like the

one in Fig. 1—comes from the zeroth-order in θ diagram, which is calculated with no external

momentum flowing into the diagram. Thus, there is no possibility of a contribution to S. This

is true to all orders in perturbation theory.
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