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Abstract

We compute the scale dependence of fNL for models of multi-field inflation, allowing

for an arbitrary field space metric. We show that, in addition to multi-field effects and self

interactions, the curved field space metric provides another source of scale dependence,

which arises from the field-space Riemann curvature tensor and its derivatives. The scale

dependence may be detectable within the near future if the amplitude of fNL is not too

far from the current observational bounds.

1cbyrnes@cern.ch
2jinn-ouk.gong@cern.ch

http://arxiv.org/abs/1210.1851v2


1 Introduction

Inflation [1], the dominant paradigm of the early universe, successfully predicts the statistics
of the primordial perturbations, within the observational limits seen today. However many
fundamental questions remain, about the form of the inflation Lagrangian, how many fields
were involved, etc. The upcoming large gains in sensitivity mean that there is a realistic
chance to provide definite answers to some of them. In particular, non-Gaussianity contains far
more information than the power spectrum. Non-Gaussianity is most commonly parametrised
through the bispectrum and for a particular shape (e.g. local or equilateral) all information
is then contained in a single amplitude, fNL [2]. However, just as is the case for the power
spectrum, it is rather natural for fNL to be scale dependent. This scale dependence is not
strongly constrained and therefore could even be much stronger. Provided that the fiducial
value of fNL is large enough, there is a realistic chance for the Planck satellite to simultaneously
provide the first measurement of both fNL and its scale dependence parametrised by nfNL

in
the near future.

One of the aims of early universe physics is to test fundamental theories at far higher
energy scales than can ever be reached by terrestrial experiment. High energy theories such as
supersymmetry or string theory typically predict that there are multiple scalar fields, and that
the kinetic term involves a non-trivial field metric determined by e.g. Kähler potential [3]. This
field metric affects observable parameters but this topic has not been very extensively studied.
Most previous work was restricted to the power spectrum, i.e. to linear perturbations. In this
case it was shown that the field metric gives rise to a new term in the spectral index which
may easily be as large as the usual slow-roll terms [4, 5, 6]. Only very recently the first detailed
study of the bispectrum has been made, following the direction of [7], in the general case by
Elliston et al. [8]. They provided covariant formulae for the bispectrum of the field fluctuations
at horizon crossing and extended the δN formalism [4, 5, 6, 9] to provide a generalisation of
the well-known δN result for the trivial field space metric [10] to a curved one. There have
been previous studies of non-Gaussianity from a curved field space metric, but none so general
or providing explicitly covariant results, see for example [11].

Over the last few years, it has become clear that the scale dependence of local fNL is also
a sensitive probe of early universe physics, and that observations are sensitive to it. Often the
scale dependence, nfNL

, is of the same magnitude as the spectral index nR − 1, and in some
models it may be much larger, for example the self-interacting curvaton scenario [12]. Non-
Gaussianity may also change rapidly over a short range of scales from being zero on large scales
to large on smaller scales [13]. Scale dependence of equilateral fNL was first considered in [14]
and for the local model in [15] (for the specific case of two-field hybrid inflation), with a more
general formalism developed in [16, 17]. Numerous studies of the scale dependence have been
made for a large variety of models, for an incomplete selection see [18]. A general lesson is: any
detection of primordial local non-Gaussianity is very valuable since it can rule out all single
field models which predict a value of fNL in the squeezed limit proportional to the spectral
index [19] (see however [20]), but for most models in which fNL can be large its amplitude can
be tuned. Therefore a further observable, either the trispectrum or the scale dependence of
fNL, will still be required to help discriminate between the large number of models. In this
paper we will always focus on the local model of non-Gaussianity.

Sefussati et al. have forecasted that for (local) non-Gaussianity, Planck could reach a
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sensitivity of σnfNL

∼ 0.1 for a fiducial value of fNL = 50 [21]. This is not much larger than the
currently measured central value for the deviation of the spectral index from scale invariance,
nR − 1 ∼ −0.04 [22], and shows that there is a real possibility that Planck is able to measure
both fNL and nfNL

together, provided that the fiducial values are large enough. Numerous other
forecasts have been made especially for surveys including large scale structure (LSS) data [23]
and of course the tightest constraints may be expected to come from combining the cosmic
microwave background and LSS data [24]. This is a topical field and very recently the first real
constraints on nfNL

have been made in [25] (see also [26]).
This article is structured as follows. In Section 2 we study the evolution of the perturbations

and rederive the spectral index of the power spectrum as a warm up. In Section 3 we derive a
general formula for the scale-dependence of fNL, the main result of our paper, and we check our
result by showing that it reduces to the known result in the case of a trivial field space metric.
Finally we conclude in Section 4.

2 Evolution of field fluctuations

We study a period of inflation driven by an arbitrary number of scalar fields, labeled with
indices a, b, c, · · · , with Lagrangian density

L = −1

2
γabg

µν∂µφ
a∂νφ

b − V , (1)

where gµν is the usual space-time metric, and γab is the field metric, which is a function of the
field values. In the case of a trivial field space metric, γab = δab. The potential V is also an
arbitrary function of field values, except that we assume that it is sufficiently flat so that we
may use the slow-roll approximation around the time of horizon crossing.

We take ti to be a fixed, pivot time shortly after all the modes of observational interest have
crossed the horizon [4], while t0 < ti is the horizon crossing time of a certain mode k = (aH)0,
and hence k dependent. Hence for each mode we find the number of e-folds between t0 and ti,

∆Nk = log

(

ai
a0

)

≈ log

[

(aH)i
k

]

> 0 . (2)

This situation is depicted in Figure 1.
An important point to notice, in order to describe the field fluctuation on the flat slices

δφa ≡ φa(t, x)− φa
0(t) covariantly, is that in general it is coordinate dependent and thus is not

covariant. To keep covariance, we realise that φa and φa
0 are uniquely connected by a geodesic

parametrised by λ with respect to the field space metric γab. Then, δφ
a can be expressed, with

φa|λ=0 being identified with the background field, in terms of the vector Qa ≡ dφa/dλ|λ=0 which
lives in the tangent space at φa

0. That is,

φa − φa
0 ≡ δφa = Qa − 1

2
Γa
bcQ

bQc + · · · . (3)

Thus any tensor quantity written in terms of Qa is manifestly covariant by construction [7].
Then, on very large scales where the space-time metric is that of unperturbed Friedmann-
Robertson-Walker one, using the e-folds N as the time variable the equation of motion for Qa
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N0 Ni Nf

∆Nk

Figure 1: Schematic display of how we use the δN formalism. N0 is the horizon crossing time
of a mode, while Ni is the fixed “initial” time, which we choose to be shortly after all modes
of observational interest have crossed the horizon and hence is independent of k. ∆Nk is the
number of e-foldings between these two times, which obviously depends on k. The final time,
which we assume to be after all isocurvature modes have decayed and the curvature perturbation
is conserved, is denoted by Nf . The two early times, N0 and Ni are defined on spatially flat
hypersurfaces, while the final surface at Nf is comoving [4, 27].

is [8]

DNQ
a = wa

bQ
b +

1

2
wa

bcQ
bQc + · · · , (4)

wab = u(a;b) +
Rc(ab)d

3

φ̇c
0

H

φ̇d
0

H
, (5)

wa(bc) = u(a;bc) +
1

3

[

R(a|de|b;c)
φ̇d
0

H

φ̇e
0

H
− 4Ra(bc)d

φ̇d
0

H

]

, (6)

ua = − V;a

3H2
, (7)

where DN is a covariant derivative with respect to N , Ra
bcdV

b ≡ V a
;cd− V a

;dc and a semicolon
denotes a covariant derivative with respect to γab. The use of the parentheses around field
indices implies symmetrisation, and any terms between vertical bars are excluded from the
symmetrisation. This implies that

Qa(Ni = N0 +∆N) = Qa(N0) + ∆Nk

(

wa
bQ

b +
1

2
wa

bcQ
bQc + · · ·

)

+ · · · . (8)

Here as always in this text, we will work to leading order in ∆N , as this is all we need in
order to calculate the scale dependence of fNL. Note that ∆N itself is order of a few (i.e. of
order the range of scales which we can observe, which corresponds to 5 - 10 e-foldings), but all
(∆N)2 terms will be multiplied by a second order in slow-roll term, unless nfNL

is not small,
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in which case our formalism breaks down. This is analogous to the situation with the power
spectrum [5, 6], one may only treat the spectral index as being small and slowly varying if its
running is further suppressed.

From the covariantised version of the δN formalism [8], the comoving curvature perturbation
R is given by

Rk(tf ) = δN = Na(ti, tf)Q
a
k(ti) +

1

2
Nab(ti, tf )

[

Qa(ti) ⋆ Q
b(ti)

]

k
+ · · · , (9)

where star denotes a convolution, and the final time tf is assumed to be after all the isocurvature
perturbations have decayed and R is conserved, so we will drop it from future expressions. In
the case of a trivial field space metric, the δN coefficients follow from a direct Taylor series
expansion, Na = ∂N/∂φa and so on [10]. We will not consider the case of isocurvature modes
which persist until today in this paper. Note that based on our definition of ti, the derivatives
of N are scale independent. See Appendix B of [17] for more details, and alternative ways to
use the δN formalism.

Now with the k-dependent factor manifest in (8) that comes from the evolution from the
horizon crossing, which is different for each mode k, to the initial time for the δN formalism,
we first recapitulate the calculation of the power spectrum PR and the spectral index nR. For
the power spectrum it is sufficient to work to linear order in Qa (in which case it reduces to
δφa). It is given by

〈Rk(tf)Rq(tf )〉 =(2π)3δ(3)(k+ q)
2π2

k3
PR(k) = Na(ti)Nb(ti)

〈

Qa
k(ti)Q

b
q(ti)

〉

. (10)

Here, using (8) we can find

〈

Qa
k(ti)Q

b
q(ti)

〉

=
〈

Qa
k(t0)Q

b
q(t0)

〉

+ 2∆Nkw
a
c

〈

Qb
k(t0)Q

c
q(t0)

〉

, (11)

where close to horizon crossing

〈

Qa
kQ

b
q

〉

=
H2

2k3
δ(3)(k+ q)

(

γab + ǫab
)

, (12)

with ǫab being first order in slow-roll and slowly varying [4, 5], and can be found to arbitrary
higher order in slow-roll using the Green’s function approach [6, 28]. Hence its derivative with
respect to log k is second order in slow-roll. When taking the derivative of (12) we need to take
into account the scale dependence of H2(t0) which gives rise to −2ǫ in the spectral index, but
the covariant derivative of the metric is zero by definition, so this does not give rise to any scale
dependence. Similarly for calculating the scale dependence, we may raise and lower indices
using either γab(ti) or γ

ab(t0) when working to the same level of precision. Finally notice that
working to the same order, it is only necessary to specify the time dependence of background
terms, and not those which are multiplied by ∆N .

Hence we may straightforwardly calculate the spectral index from the above expressions,
and the result is

nR − 1 =
D logPR

d log k
= −2ǫ− 2

NaNbw
ab

NcN c
, (13)

which agrees with the known result [4].

4



Notice that this result, together with the observational constraint on the spectral index
does imply that at least the particular combinations of Rabcd which appear through wab in the
expression for the spectral index must be small, barring a chance cancellation between this
and another term. This provides some justification for our assumption that terms involving
derivatives of the field metric should be slow-roll suppressed.

3 Bispectrum and the running of fNL

The bispectrum of R is defined by

〈Rk1(tf )Rk2(tf )Rk3(tf )〉 ≡ (2π)3δ(3)(k1 + k2 + k3)BR(k1, k2, k3) . (14)

We will make the usual assumption that the bispectrum due to the non-Gaussianity of the fields
at horizon crossing [8] does not give rise to observable values of fNL, which may be the case
for DBI fields and non-Bunch-Davies vacuum. This is generally the case [29], although there
can be exceptions if the third derivative of the potential is large [30]. There is no analogous
proof in the case of a non-trivial field metric, but since we are assuming the Riemann tensor is
slow-roll suppressed this assumption is likely to remain valid, at least in the vast majority of
cases.

From (9), the three point function consists of two terms,

〈Rk1(tf )Rk2(tf )Rk3(tf )〉 =NaNbNc

〈

Qa
k1
Qb

k2
Qc

k3

〉

+
1

2

{

NabNcNd

〈

[

Qa ⋆ Qb
]

k1
Qc

k2
Qd

k3

〉

+ 2 perm
}

.

(15)

In the above, all terms on the right hand side (RHS) should be evaluated at ti. We first deal
with the first term on the RHS of (15). Using (8) and (12), we can easily find

Na(ti)Nb(ti)Nc(ti)
〈

Qa
k1
(ti)Q

b
k2
(ti)Q

c
k3
(ti)

〉

= Na(ti)Nb(ti)Nc(ti)

{

1

2
∆Nk1w

a
de

〈

[

Qd(t0) ⋆ Q
e(t0)

]

k1
Qb

k2
(t0)Q

c
k3
(t0)

〉

+ 2 perm

}

= (2π)3δ(3)(k1 + k2 + k3)Na(ti)Nb(ti)Nc(ti)
H4(t0)

4k3
1k

3
2k

3
3

wabc
(

k3
1∆Nk1 + 2 perm

)

. (16)

For the second term of the RHS of (15), it is useful to use (11) so it follows that

1

2
Nab(ti)Nc(ti)Nd(ti)

〈

[

Qa(ti) ⋆ Q
b(ti)

]

k1
Qc

k2
(ti)Q

d
k3
(ti)

〉

= (2π)3δ(3)(k1 + k2 + k3)Nab(ti)Nc(ti)Nd(ti)
H4(t0)

4k3
1k

3
2

(

γacγbd + 2∆Nk1w
acγbd + 2∆Nk2γ

acwbd
)

.

(17)

Putting both terms together, and specialising to an equilateral triangle, which is the only
case we need to consider in order to calculate nfNL

(for the justification see [17]), we find that
fNL is given by

6

5
fNL =

NabN
aN b

(NcN c)2

[

1 + ∆Nk

(

NdNeNfw
def

NghNgNh
+ 4

NdeN
dNfw

ef

NghNgNh
− 4

NdNew
de

NgNg

)]

. (18)
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Therefore nfNL
is simply the term multiplying ∆Nk in (18), i.e.

nfNL
≡ 1

fNL

DfNL

d log k
= −NaNbNcw

abc

NdeNdN e
+ 4wab

(

NaNb

NdNd
− NacNbN

c

NdeNdN e

)

. (19)

This general formula for the observable nfNL
is the main result of this paper. The first term in

(19) is due to the non-linearity of the field fluctuations which are generated between the time
t0 and ti, i.e. the correlator 〈δφ3(ti)〉. Meanwhile, the remaining term of (19) arises from the
effect of multiple fields contributing to R. Note that in the curved field space case, the effects
of γab enter into both terms, which makes their separation less clear in this case than in (20)
below.

As can be read from the coefficients wab and wabc, naively nfNL
= O(ǫ). However since the

derivative term does not appear in the formula for the spectral index, it could be larger and its
value is model dependent. It is possible to have a large value of nfNL

[31], which should be a
sharp prediction of such a model. It is estimated that for a fiducial value of fNL = 50, Planck
can reach a sensitivity of ∆nfNL

= 0.05 depending on the sky coverage [21].
As a check on our result (19), and to gain intuition, we demonstrate that our result reduces

to the known expression in the case of a trivial field space metric. From [17],

n
(flat)
fNL

= −F
(2)
abcN

aN bN c

NdNeNde
+ 4 (2

√
ǫaǫb − ηab)

(

NaN b

NdNd

− NaN b
cN

c

NdNdeN e

)

, (20)

where we have defined ǫa = (V,a/V )2/2, ηab = V,ab/V and

F
(2)
abc =

√
2

(

−4
√
ǫaǫbǫc + ηab

√
ǫc + ηbc

√
ǫa + ηca

√
ǫb −

1√
2

V,abc

3H2

)

. (21)

Using wab = −(V,a/V ),b = 2
√
ǫaǫd − ηad and wabc = F

(2)
abc it follows that (19) reduces to (20).

4 Conclusions

We have calculated a general formula for the scale dependence of fNL, for the first time allowing
for a curved field space metric. The non-trivial field space metric, which appears in the kinetic
term of the scalar field Lagrangian, gives rise to new terms in nfNL

depending on both the
Riemann curvature tensor and its derivative with respect to the fields. The derivative terms
do not appear in the analogous formula for the spectral index and hence could be significantly
larger, since they are not constrained by observations showing that the spectral index is close
to scale invariant.

Our work is motivated by the goal of connecting fundamental, high energy theories to the
rapidly improving cosmological observations. Fundamental theories often predict the existence
of large numbers of scalar fields, and of a curved field space metric. In 2013 the first relevant data
from the Planck satellite will be released, and it could lead to a discovery of non-Gaussianity.
In this case, constraints on not only its amplitude, but also its scale dependence will go a long
way towards discriminating between the many models of the early universe, especially when
combined with other measurements such as the spectral index and tensor-to-scalar ratio.
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