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Nonperturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are
reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass and in the presence
of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the
Yukawa coupling as well as at nonzero temperature.

1. Introduction

The Higgs-Yukawa sector of the standard model (SM) des-
cribes the generation of fermionmasses via the nonvanishing
vacuum expectation value (vev) acquired by the Higgs field
which couples through a Yukawa coupling to the fermions.
The essential element in this picture is that the coupling of the
fermions to the Higgs field is chirally invariant which leads
to the gauge invariant electroweak sector of the SM in the
presence of gauge fields.

There are two couplings in theHiggs-Yukawa sector.They
are associated with the Yukawa and the quartic scalar self-
interaction operators. These couplings are directly related to
the fermion and the Higgs boson masses, respectively. In the
scenario that these masses are large, the corresponding
couplings grow strong, and it becomes unclear whether the
theory can be analysed using perturbation theory or whether
nonperturbative methods must be employed. There are
indeed examples where the applicability of perturbation the-
ory is questionable. The first is the upper Higgs boson mass
bound which is based on triviality arguments [1]. Here, the

Higgs boson mass can become large, resulting in a strong
value of the quartic coupling such that perturbation theory
may not work anymore.The second is the lower Higgs boson
mass bound which is based on vacuum instability arguments
[2–5]. Here, it is unclear whether this instability is not an
artefact of perturbation theory applied at large values of the
Higgs field such that an expansion around the minimum of
the effective potential is not justified anymore.

It is important to stress that both the lower and the upper
Higgs boson mass bounds are intrinsically related to the
cutoff of the theory. Thus, a calculation of the Higgs boson
mass bounds can in turn be used to determine the cutoff up
to which the SM is valid, once the SM Higgs boson mass has
been determined. If, for example, the recent result for a
scalar particle at the Large Hadron Collider (LHC) [6, 7] is
confirmed as an SM Higgs boson with a mass of about
125GeV, the SM could be valid up to very high energies before
violating the Higgs boson mass bounds; see [8] for a recent
analysis at next-to-next leading order of perturbation theory.

Another example where nonperturbative calculations
are necessary is the possibility of a heavy fourth fermion
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generation [9, 10] whichwould lead to a large value of the cor-
responding Yukawa coupling. Besides these concrete exam-
ples, it is conceptually very important to study the Higgs-
Yukawa sector in a nonperturbative manner, since questions
such as the phase structure of the model or the spontaneous
breaking of the SU(2) ⊗ SU(2) symmetry which underlies
the Higgs mechanism are of intrinsically nonperturbative
nature.

Theneed for a nonperturbative investigation of theHiggs-
Yukawa sector of the SM has been realised already in the
early 1990s. A natural choice of a nonperturbative tool is, of
course, Euclidean lattice field theory. However, in these early
studies, the lattice formulations of the Higgs-Yukawa sector
were lacking a chirally symmetric form of the Yukawa coupl-
ing term.The absence of a chirally invariant Yukawa coupling
term in the Lagrangian led to severe difficulties in studying
Higgs-Yukawamodel on the lattice; see [11–17] and references
therein.

The situation changed, however, when it was realised
that—based on the Ginsparg-Wilson relation [18]—there
exists a consistent formulation of an exact lattice chiral sym-
metry [19], which allows the chiral character of the Higgs-
fermion coupling structure of the SM to be preserved on the
lattice in a conceptually fully controlled manner. This trig-
gered a number of lattice investigations of Higgs-Yukawa like
models [20–28].

In this paper, we report on the status of the lattice Higgs-
Yukawamodel using a lattice formulation that obeys an exact
lattice chiral symmetry as will be explained in Section 2. In
Section 3, we will provide results for the lower and upper
Higgs bosonmass bounds aswell as the resonance parameters
of the Higgs boson [26–29]. We also extend the study of the
Higgs boson mass bounds to the case of a fourth quark
generation [30]. This calculation will result in rather
severe constraints on the existence of a fourth fermion
generation.

This paper is organised as the following. In Section 2,
we describe the setting of our lattice simulations. Section 3
contains results of our work on the Higgs bosonmass bounds
in the Higgs-Yukawa model. In particular, we have investi-
gated the effects of the fermion mass on these bounds. In
Section 4, we present our study of the phase structure of
the model. These include the bulk phase transitions at small
values of the bare Yukawa coupling [23, 24], as well as in the
regime of strong-Yukawa coupling [31]. We also show results
and the status of our work on the finite-temperature phase
structure in Section 4.4. Finally, we conclude in Section 5.

All statistical errors we quote in this paper were obtained
with a jackknife or bootstrap analysis, taking possible effects
of autocorrelations fully into account. Statistical errors of the
results presented in Section 4.3 have also been cross-checked
using the method in [32].

2. Lattice Setting and Simulation Strategy

2.1. The Action. The Euclidean action of the continuum
Higgs-Yukawa model containing one doublet of fermions,

denoted as 𝑡(𝑐) and 𝑏(𝑐), and a complex scalar doublet, 𝜑(𝑐),
is
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𝜓
(𝑐)

𝐿 = 𝑃−𝜓
(𝑐)

= 𝑃− (
𝑡(𝑐)

𝑏(𝑐)
) = (

1 − 𝛾5

2
)(

𝑡
(𝑐)

𝑏(𝑐)
) ,

𝑡
(𝑐)

𝑅 = 𝑃+𝑡
(𝑐)

= (
1 + 𝛾5

2
) 𝑡
(𝑐)
, and similar for 𝑏(𝑐)𝑅 .

(2)

In the above equation,𝑚0 is the bare mass, 𝜆0 labels the bare
quartic coupling, and 𝑦𝑡0/𝑏0 denote the bare Yukawa cou-
plings. The superscript, (𝑐), in the scalar and spinor fields
indicates that these are dimensionful variables defined in the
continuum. Here, we stress that gauge fields are not included
in our study, and we perform calculations for only one dou-
blet of fermions throughout this work.Moreover, if not stated
otherwise, the Yukawa couplings 𝑦𝑡0 and 𝑦𝑏0 are set equal.

It is straightforward to discretise the pure-scalar compo-
nent of the above action to obtain
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where 𝑥 is a site on the space-time lattice. The symbol 𝜇̂
denotes the unit vector in the space-time direction 𝜇. The
mass parameter, 𝑚0 = 𝑎𝑚0 with 𝑎 being the lattice spacing,
is dimensionless. The real-valued field variables, {Φ𝛼𝑥}, are
rendered dimensionless by a proper rescaling with 𝑎 and are
defined on all lattice sites. These field variables are related to
the discretised version of the complex scalar doublet, 𝜑(𝑐), in
(1) through
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It is convenient to rewrite the scalar action in (3) as
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with the change of variables,
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For the fermions, we use the action
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where 𝑦̂𝑡/𝑏 = √2𝜅𝑦𝑡0/𝑏0 , and

𝜃1,2,3 = −𝑖𝜏1,2,3, 𝜃4 = 12 × 2, (8)

where a summation over 𝛼 is understood.The dimensionless
spinor field 𝜓 is
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with 𝑡(latt) and 𝑏(latt) being the lattice version of 𝑡(𝑐) and 𝑏(𝑐).
For the fermion kinetic term,we use the overlap operator [33–
35]:
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where 𝜌 is a free, dimensionless parameter, restricted to 0 <

𝜌 < 2𝑟. The locality properties of the overlap operator are
optimal for 𝜌 = 1 in the case of vanishing gauge couplings
[35], and therefore, we set 𝜌 to this value in this work. The
operator𝐷𝑊 denotes the Wilson Dirac operator defined as
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where ∇𝑓,𝑏,𝑠𝜇 are the (resp.) forward, backward, and sym-
metrised lattice nearest-neighbour difference operators in
direction 𝜇, and theWilson parameter 𝑟 is chosen to be 𝑟 = 1.
The modified chiral projectors are given by
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This action now obeys an exact global SU(2)𝐿 × U(1)𝑌 (with
𝑌 being the hypercharge) lattice chiral symmetry with the
transformations:
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for anyΩ𝐿 ∈ SU(2)𝐿 and 𝑈𝑌 ∈ U(1)𝑌.

2.2. Implementation. The actions in (5) and (7) are used
in our numerical simulations. We perform calculations on
asymmetric 4-dimensional lattice volumes

𝑉4 = 𝐿
3

𝑠 × 𝐿 𝑡, (14)

where 𝐿 𝑠 and 𝐿 𝑡 are dimensionless spatial and temporal lat-
tice sizes, respectively. In all our zero-temperature computa-
tions, we choose

𝐿 𝑡 = 2𝐿 𝑠 = 2𝐿, (15)

with 𝐿 typically ranging from 8 to 32.We stress that it is essen-
tial to perform computations for the Higgs-Yukawa models
on large volumes. This is because the Goldstone bosons are
(almost) massless and induce significant finite-size effects
proportional to 𝐿−2, in contrast to the exponential effects
known for a single-particle spectrum andmatrix elements for
theories such as QCD with massive quarks. Figure 1 shows
some examples of finite-volume effects that are present in
quantities investigated in this work. It is clear from these plots
that finite volume effects can be very large in the calculation
of the Higgs boson mass, while they may be mild in other
quantities.

We implement the polynomial Hybrid Monte Carlo
(pHMC) algorithm [36–38], with various improvements (see
[39] for a summary), to performnonperturbative calculations
of the path integral. When compared to simulations in QCD
using overlap fermions [40], it is the absence of gauge fields
that makes the application of the overlap operator numer-
ically feasible even on large lattices, as it is diagonal in
momentum space.

2.3. Basic Observables. As described in Section 2.1, our sim-
ulations are performed using only dimensionless variables in
the action. This is achieved by rescaling all the dimensionful
quantities with appropriate powers of the lattice spacing,
𝑎. Therefore, to make connection to the real world and to
have basic understanding of the spectrum of the theory, it
is essential to determine the lattice spacing. This is normally
carried out by computing the vev of the scalar field and
then setting it to the value of 246GeV. Before we describe
the details of this procedure, it should be noticed that the
scalar vev is always zero in a finite system. In principle, one
would have to introduce an external source, that couples to
the scalar field and breaks the O(4) symmetry explicitly, and
perform the infinite-volume extrapolation for every quantity
computed on the lattice, before taking the source to zero.
However, this procedure is numerically very demanding, and
we resort to an alternative method in which we “rotate” the
complex scalar doublet in every field configuration, such that
its ensemble average is given by

⟨𝜙̂rot⟩ = (
0

V
) , V = √2𝜅 ⟨𝑚⟩ , (16)
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Figure 1: Finite volume effects in the magnetisation as defined in (16) and (17) (a), the fermion mass (b), and the Higgs boson mass (c) at a
cutoff around 1.5 TeV.The data are obtained at infinite bare scalar-quartic coupling, 𝜆̂, and fermion masses in the range𝑚𝑓 ≈ 200 − 700GeV.
The lattice sizes used are 𝐿 = 𝐿 𝑠 = 12, 16, 20, 24, and 32. We show linear (solid lines) and quadratic (dotted lines) fits in 1/𝐿
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defined on each configuration. It can be shown that the

magnetisation, ⟨𝑚⟩, is equivalent to the scalar vev in the
infinite-volume limit [41–43].

The renormalised scalar vev is given by

V𝑟 =
V

√𝑍𝐺
, (18)
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where𝑍𝐺 is the Goldstone-bosonwavefunction renormalisa-
tion constant. This renormalisation constant and the Higgs-
field wavefunction renormalisation constant 𝑍𝐻 can be
extracted from the momentum-space Euclidean propagators
of the corresponding bosons [26, 28]:
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(19)
withO𝐺/𝐻 being the Goldstone and Higgs fields, respectively,
and all the masses and momenta are in lattice units.

Through the investigation of the momentum dependence
of the Goldstone boson propagator, 𝑍𝐺 can be determined.
This procedure can be improved by performing calculations
in one-loop lattice perturbation theory and obtaining the
propagators to this order [44]. The lattice spacing, which
is related to the inverse of the cutoff scale, Λ, can now be
obtained in natural units with

𝑎 = Λ
−1
, Λ =

246GeV
V𝑟

. (20)

The masses of the bosons are given by the pole of the Eucli-
dean propagators in (19). They can also be extracted from
the time dependence of the Euclidean correlators with zero
spatial momentum [26, 28]
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(21)
where 𝐴𝐺/𝐻 are constants that are proportional to 𝑍𝐺/𝐻.
This formula is valid when periodic boundary conditions are
imposed. Here, we stress that this method is applicable only
when the ground state is the target single-particle state.
Therefore, one has to be cautious when studying the Higgs
boson, since it may decay into even number of Goldstone
bosons. The unstable nature of the Higgs boson and the
calculation of its resonance parameters will be discussed in
more detail in Section 3.1.

Finally, to compute the masses of the fermions, we resort
to the correlator [26, 28]
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(22)
where the trace is over the spinor indices. By studying the
time dependence of this correlator,

𝐶𝑓 (Δ𝑡 ≫ 1) ∝ exp(
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2
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(23)
the fermion mass can be extracted.

3. Bounds on the Higgs Mass

The lattice techniques described in the last section can be
applied to the calculation of Higgs boson mass bounds [28,
30]. In what follows, we study the model in the broken phase,
that is, where the vev of the scalar field is nonzero. The
Higgs boson mass is bounded from above by the triviality
argument, which reflects the Gaussian nature of the fixed
point of the theory. This bound is not universal and depends
logarithmically on the UV cutoff of the theory. Indeed
variations in the triviality bound between different lattice
regularisations have been observed in the pure𝜙4 theory [45].

There is also an argument from perturbation theory
that the Higgs boson mass is bounded from below by a
vacuum-stability requirement. The picture for the lower
bound in perturbation theory arises by examining the effec-
tive potential. As the fermion fields contribute negatively to
the effective potential, they have a destabilising effect. By
demanding the stability of the theory, this leads then to lower
Higgs boson mass bounds. However, it is known that the
perturbative expansion breaks down for Yukawa couplings
near or less than the tree level unitarity bound [46], which is
roughly 500 to 600GeV [47, 48]. In addition, the perturbative
instability occurs at large values of the scalar field where an
expansion around the minimum of the effective potential
may not be trustworthy. Therefore, it is desirable to have a
nonperturbative calculation.

Although also the lower Higgs boson bound is nonuni-
versal, it is expected that it shows a much milder dependence
on effects of the regularisation employed, since a typical ratio
Λ/𝑚𝐻 is of O(10) for the lower bound, while Λ/𝑚𝐻 ∼ 0.5

for the upper bound. In the light of the recent discovery
of a scalar particle at the LHC, the lower bound becomes
very interesting: if this scalar particle will turn out to be the
Higgs boson, the lower mass bound can be used to estimate
the breakdown scale of the SM, that is, the scale where new
physics must enter to preserve the stability of the theory.

In this work, we compute the upper and lower bounds of
the Higgs boson mass from nonperturbative, direct calcula-
tions using lattice field theorywithout relying on assumptions
such as triviality or vacuum instability. From the study of the
pure 𝜙4 theory, it is known [49–52] that theHiggs bosonmass
is amonotonically increasing function of the quartic coupling
𝜆 at fixed lattice spacing. This feature has been demonstrated
to be present also in the Higgs-Yukawa theory [27] at fixed
value of 𝑚𝑓. Therefore, in this work the lower bounds for
particular values of𝑚𝑓 and Λ are determined at 𝜆̂ = 0, while
the upper bounds are obtained at 𝜆̂ = ∞.

3.1. Calculating the Higgs Boson Mass. As pointed out in
Section 2.3, calculating the mass of the Higgs boson is
challenging because of its unstable nature, as it decays into
even numbers of Goldstone bosons. Extracting the masses
and the widths of unstable states in lattice field theory
is subtle, because the theory is formulated in Euclidean
space. It is further complicated by the quantisation of spatial
momenta in finite volume, since the kinematics may prevent
a resonance state from decaying. Therefore, a state which is
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unstable in infinite volume can remain a stable eigenstate in
finite volume.

However, below the inelastic threshold, the infinite-
volume phase shift of two-particle scattering can be deter-
mined via the investigation of finite-size effects in the energy
spectrum [53]. Such finite-volume techniques for studying
scattering states, albeit very challenging to implement in
practice, can be used to extract resonance masses and widths
in Euclidean quantum field theory [54].

In this work, we first compute the mass of the Higgs
boson by assuming that its width is zero; therefore, it is a
stable particle in finite volume. To check this assumption, we
will later use the above-mentioned finite-volume method to
obtain results of the Higgs boson width and confirm that the
width is in fact small thus not affecting the results assuming
a stable Higgs boson. Under the zero width assumption,
we extract the Higgs boson mass using the two approaches
described in Section 2.3. Namely, we study the propagator
in (19) and the correlator in (21). We then extract the Higgs
bosonmass by a fit of the propagator to a perturbation theory
inspired formula [26, 28] and by a fit to an exponential form
of the correlator of (21). The Higgs boson masses obtained in
these two procedures are denoted 𝑚

𝑝

𝐻
and 𝑚𝑐𝐻, respectively.

An example of the two methods for determining 𝑚𝐻 is
illustrated in Figure 2. We extract the fitted values 𝑚𝑝

𝐻
and

𝑚𝑐𝐻 which agree within one standard deviation and both fits
provide a suitable description of the data. The plots in this
figure are for𝑚𝑓 = 195GeV.We note that we observe similar
agreement between𝑚𝑝

𝐻
and𝑚𝑐𝐻 for all our choices of simula-

tion parameters.
To check the validity of the assumption that the Higgs

boson is stable in our work, a calculation of the Higgs boson
resonance parameters has been performed in [29]. Since the
finite volume techniques proposed in [53, 54] are only appli-
cable below the inelastic threshold, external sources were
introduced which give a mass to the Goldstone bosons and
break the O(4) symmetry explicitly. In the calculation, the
Goldstone boson energies were computed at nonzero
momenta, using the original center of mass frame [53, 54] as
well as a moving frame [55, 56]. By adjusting the values of
the external source and the momenta, the Goldstone boson
energies were tuned such that

2𝐸𝐺 < 𝑚𝐻 < 4𝐸𝐺. (24)

The scattering phase shifts from which the resonance param-
eters were extracted are shown in Figure 3, along with the
position of the inelastic thresholds. These phase shifts are
used to fit the Breit-Wigner formula to determine the reso-
nance mass and width.

The results of the Higgs boson width and mass obtained
via the resonance analysis and perturbation theory, using the
time-slice correlator and employing the momentum space
Higgs boson propagator are shown in Table 1. Here, the top
quark mass has been set to its physical value. It is clear that
the Higgs boson mass determined by the resonance study
is consistent with that extracted from fits to the momentum
space propagator and the temporal correlation function. Fur-
thermore, we see that at 𝑚𝑓 = 𝑚𝑡, the width of the Higgs

resonance is narrow, that is, at most ∼10% of the resonance
mass in all cases. From the results presented in this table, it
is demonstrated that it is justifiable to assume that the Higgs
boson width is zero, since it turns out to be very narrow in
the resonance analysis such that the width has no effect on
the mass extraction.

3.2. Results of the Higgs Boson Mass Bounds. We now turn
to the results of the Higgs boson mass bound calculations
discussed in the previous section. We first discuss the results
of [28], where the upper and lower bounds were computed
at several choices of the cutoff scale, with the fermion masses
at the physical top-quark mass and also at 𝑚𝑓 ∼ 676GeV.
The main result from [28] is shown in Figure 4. In the left
graph, the situation for an SM top quark mass is shown. The
right graph shows the situation for a fermion mass of 𝑚𝑓 ∼

676GeV. It can be clearly seen that while the upper bound is
relatively unaffected when using a heavy fermion mass, the
lower bound increases substantially.

Apart from the cutoff dependence of the bounds at a
fixed value of𝑚𝑓, the dependence of the bounds on𝑚𝑓 itself
has also been examined at a fixed value of the lattice cutoff
[57], the results of which are shown in Figure 5(a). We clearly
observe the increase of the lower bound with increasing 𝑚𝑓
in this figure. In particular, Figure 5 suggests that with a
Higgs bosonmass of∼125GeV, themass of amass-degenerate
fourth generation of quarks is restricted to be less than ∼

350GeV.This is clearly already below the bounds from direct
experimental searches.

In addition to the numerical results, Figure 5 also con-
tains the estimate of the lower bound from an effective
potential calculation, which was performed using the same
lattice regularisation as in our Monte Carlo simulation. In
this calculation, the effective potential was computed to one-
loop order in the large-𝑁𝑓 limit. Operationally, the one-loop
calculations were carried out by numerically computing the
required momentum-mode summations in a series of finite
lattice volumes and then extrapolating to the infinite-volume
limit. From this one-loop effective potential, 𝑉, the Higgs
bosonmass is determined by solving for the scalar vev, V, and
the Higgs boson mass in the gap equations:

𝑑

𝑑𝜙
𝑉(𝜙)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜙=V
= 0,

𝑑2

𝑑𝜙2
𝑉(𝜙)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜙=V
= 𝑚

2

𝐻. (25)

To compare to the numerically computed lower Higgs boson
mass bound, in the effective potential calculation, the quartic
coupling has been set to zero. In addition, the cutoff and
the fermion mass were fixed to the same values as in the
simulations such that a direct comparison is possible. For a
standard model top quark mass, it has been demonstrated
in [26, 27] that the lattice effective potential provides an
excellent description for the numerical data for the lower
Higgs boson mass bound.

Figure 5(a) clearly demonstrates that the trend of an
increasingly higher value of the lower bound with increasing
fermion masses, as suggested by the perturbative calculation,
is realised by the data up to very large values of𝑚𝑓, although
the quantitative agreement is better at low 𝑚𝑓. Based on this
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Table 1:The results (taken from [29]) of a study comparing the resonance parameters of theHiggs bosonwith the results of fits to the temporal
correlation function and momentum space Higgs boson propagator. Errors are statistical only. Except for the cut-off scale, all the results are
in lattice units. The fermion mass is set to be the physical top-quark mass. Results from three values of the quartic coupling are presented.
Also shown are the resonance mass and width from Breit-Wigner fits to the scattering cross-section. Finally, a perturbative estimate of the
resonance width is included. We note that because of some data losses the error on𝑚

𝑝

𝐻 at 𝜆̂ = 1.0 is larger than that for the other parameters.

𝜆̂ Λ [GEV] 𝑚resonance
𝐻 Γresonance𝐻 Γ

pert
𝐻 𝑚

𝑝

𝐻 𝑚𝑐
𝐻

0.01 883(1) 0.278(3) 0.0018(14) 0.0054(1) 0.278(2) 0.274(4)
1.0 1503(5) 0.383(6) 0.0169(4) 0.036(8) 0.386(28) 0.372(4)
∞ 1598(2) 0.403(6) 0.037(9) 0.052(2) 0.405(4) 0.403(7)
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Figure 2: Examples of fits to the Higgs momentum space propagator and the Higgs temporal correlation function to obtain 𝑚
𝑝

𝐻 and 𝑚𝑐
𝐻,

respectively. The results are from a 24
3
× 48 lattice with 𝑚𝑓 = 195GeV, Λ = 1.5TeV. The fitted values are 𝑚

𝑝

𝐻 = 96.0 (4.3)GeV and
𝑚𝑐
𝐻 = 96.4 (6.9)GeVwhere the errors are statistical only and do not reflect the uncertainty in the scale determination which, however, affects

both values in the same way.

qualitative agreement, we can examine the effect of higher-
dimensional operators in the effective potential using the
same loop and 1/𝑁𝑓 expansion. To this end, we include
the contribution from the operator 𝜆6𝜙

6 in the effective
potential with 𝜆6 the coupling constant. The addition of such
an operator in the Lagrangian modifies the solution to (25),
and can, therefore, alter the lower bounds on theHiggs boson
mass in principle.

Here, we stress that the cutoff cannot be removed in
the Higgs-Yukawa model. Furthermore, any perturbative
expansion in this model is only valid in the regime where
the cutoff scale, Λ = 1/𝑎, is large enough compared to low-
energy scales such as theHiggs bosonmass and the scalar vev.
In [51], it was demonstrated that 𝑚/Λ < 0.5 (with 𝑚 being
a typical low-energy scale) is enough to ensure the applica-
bility of perturbation theory to the pure 𝜙4 scalar field theory.

Here, we impose the same condition, but on the value of the
scalar field, in our perturbative calculation for the effective
potential for the Higgs-Yukawa model including the 𝜆6𝜙

6

operator. This results in the stability criterion

𝑑2

𝑑𝜙2
𝑉 (𝜙) > 0, 𝜙 < 0.5, (26)

where 𝜙 has been properly rescaled to be in lattice units.
In Figure 5(b), we show the results of our investigation

of the lower bounds on the Higgs boson mass, using the
one-loop effective potential including the contribution from
the 𝜆6𝜙

6 operator. It is clear that, in the regime where the
perturbative expansion is valid, a wide range of values of 𝜆6
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Figure 3: Results for the scattering phase shifts at three values of 𝜆̂. From (a) to (c), the plots correspond to 𝜆̂ = 0.001, 10,∞, respectively.
In each plot, the vertical dotted line indicates the position of the four-Goldstone threshold, above which our analysis method is inapplicable.
Also, points obtained from both the centre of mass system (c.o.m.) and a system with one unit of total momentum (m.f.) are shown, taken
from [29].

lead to qualitatively very similar results. Finally, we also point
out that exploratory numerical Monte Carlo simulations
which include the 𝜙6 operator agree with the perturbative
results for a large range of bare Yukawa couplings [27].

4. Study of the Phase Structure

4.1. Purposes and Strategy of the Study. It is an important task
to explore the phase structure of the Higgs-Yukawa model
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Figure 4: The cutoff dependence of the upper and lower Higgs boson mass bounds for fermion mass at ∼173GeV (a) and ∼676GeV (b). All
data have been extrapolated to infinite volume.
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Figure 5: (a) The dependence on the fermion mass of the upper and lower Higgs boson mass bounds, at the cutoff scale Λ = 1.5TeV. Data
points from lattice calculations are shown. Results for the lower bound without infinite-volume extrapolation, using only 243 ×48 lattices, are
also shown for comparison. The solid line results from a one-loop calculation of the effective potential, as explained in the text. (b) Effects of
a 𝜙6 operator with coupling 𝜆6 for the lower bound of the Higgs boson mass, at various fermion masses and the cutoff scale Λ = 2TeV.Three
values of the coupling constant 𝜆6 are plotted.

to identify the phase structure of the theory and determine
the critical coupling constant values where a continuum limit
can be performed. In this section, we will discuss two aspects
concerning the phase structure of the Higgs-Yukawa model

considered here. The first is the locations of second-order
bulk phase transitions in the bare parameter space which can
be identified as the continuum limits of the lattice theory.
For weak values of the bare Yukawa coupling, the phase
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structure has been investigated in [23, 24] and its knowledge
was very helpful to identify the simulation parameters for
the desired physical situation, that is, a fixed value of the
cutoff and the physical values of the fermion masses. Here,
we remark that the bounds on the Higgs boson and fermion
masses as presented in Figure 5 in Section 3.2 are obtained
in this weak bare Yukawa coupling regime. In this section,
we focus now on the large bare Yukawa coupling region and
explore the phase structure of the theory in this regime of
the parameter space. The aim is to investigate whether the
phase transitions at large bare Yukawa coupling are governed
by the sameGaussian fixed point as at small Yukawa coupling.
If we would find deviations from the Gaussian fixed point
behaviour, this would open the possibility that the renor-
malised Yukawa coupling can remain strong up to a high
cutoff scale which could lead to heavy fermion masses and
even the existence of bound states. We have, therefore,
been performing simulations at large values of bare Yukawa
coupling (in [58, 59], it was demonstrated that in the limit,
where the bare Yukawa coupling becomes infinity, the Higgs-
Yukawa model is equivalent to the pure O(4) scalar model.
However, our simulations are performed away from this
limit.), and the exploratory results will be presented in
Section 4.3. As a second aspect, we will present an investiga-
tion of the finite-temperature phase transition in understand-
ing the role of, in particular, heavy fermion masses for the
electroweak phase transition, especially with respect to ques-
tions concerning baryogenesis [60].

Before detailing our ongoing studies of the bulk and
thermal phase transitions of the Higgs-Yukawa model in the
following two sections, here, we describe the general strategy
in this work.

It is natural to use the vev of the scalar field to probe the
phase structure.However, a naive computation of this vevwill
always lead to vanishing results in lattice calculations even in
the broken phase, because of the finite volume as used in the
simulations. As discussed in the beginning of Section 2.3, it is
appropriate to replace the scalar vev with the magnetisation
as defined in (16) and (17).

In order to probe the nature of phase transitions, we have
to determine anomalous dimensions of the operators allowed
by the symmetries. In finite volume, second-order phase tran-
sitions are washed out and become crossovers, and the cor-
relation length cannot exceed the size of the system. There-
fore, for the study of the phase structure, we resort to finite-
size scaling techniques.These techniques were developed ori-
ginally by solving the renormalisation group equation (RGE)
for finite-volume lattice systems in condensed matter physics
[61]. To draw analogy between field theory and statistical
mechanics, we also refer to these anomalous dimensions by
calling them critical exponents in this paper, as usually done
in statistical mechanics.

It is challenging to determine the anomalous dimension
of the operator corresponding to the Yukawa coupling term,
because of the presence of fermions and the flavour-changing
structure of the operator. We will postpone the discussion of
this operator for future reports. Here, we focus on critical
exponents in the scalar sector. To start, we calculate the

susceptibility,

𝜒𝑚 = 𝑉4 (⟨𝑚
2
⟩ − ⟨𝑚⟩

2
) , (27)

which is the connected two-point function in the scalar
sector. This quantity is proportional to the square of the cor-
relation length, 𝜉, and diverges at second-order phase tran-
sitions in the infinite-volume limit. Solving the RGE for this
correlator for a finite-size system at fixed cutoff scale (lattice
spacing) near a second-order phase transition, one obtains
the scaling law,

𝜒𝑚 (𝑡, 𝐿 𝑠) ⋅ 𝐿
−𝛾/𝜈

𝑠 = 𝑔 (𝑡𝐿
1/𝜈

𝑠 ) , with 𝑡 = (
𝑇

𝑇𝑐
− 1) , (28)

where 𝑔 is a universal scaling function, 𝐿 𝑠 is the spatial extent
of the lattice, and 𝑇𝑐 is the critical temperature in the infinite-
volume limit, which could also be represented by the critical
value of a particular coupling. The critical exponents, 𝛾 and
𝜈, are related to the anomalous dimensions of the scalar field
and themass operator,𝜙2.This scaling behaviour is exact near
the critical point for space-time dimension, 𝑑 < 3. Therefore,
it is an appropriate tool in our study of the finite-temperature
phase transition. However, in the investigation of the bulk
phase structure, we have a 𝑑 = 4 field theory, and the
above scaling relation should bemodified because of triviality
[62–66], if the transition is governed by a Gaussian fixed
point. These modifications appear as logarithmic corrections
in (28).They are not included in the analysis presented in this
paper, but are being considered in our ongoing work.

As will be discussed in the following, the scaling tests and
the extraction of anomalous dimensions using (28) are com-
plicated because of the number of free parameters that are
involved in the methods for modelling the unknown uni-
versal function, 𝑔. In particular, it is difficult to accurately
determine 𝜈 using this procedure. This complication can be
reduced by studying Binder’s cumulant [67]:

𝑄𝐿 = 1 −
⟨𝑚4⟩

3⟨𝑚2⟩
2
. (29)

This quantity is simply the connected four-point function,
normalised by the square of the two-point function, in the
scalar sector. Because of the normalisation,𝑄𝐿 is independent
of the critical exponent 𝛾. Furthermore, it is related to the
renormalised scalar quartic coupling in the infinite-volume
limit by a proportionality factor 𝑉4/𝜉

4 [68]. Since Binder’s
cumulant is normalised to be dimensionless, its values com-
puted on different (dimensionless) lattice sizes with the same
cutoff scale will coincide with each other at the critical point.
It is also expected to exhibit milder scaling violations result-
ing from higher-dimensional operators [69, 70].

In the next three sections, we discuss details of the inves-
tigation of the thermal and bulk phase structures using the
quantities defined in this section. Errors on all the numerical
results in this section are statistical only.

4.2. Bulk Phase Structure at Small Yukawa Couplings. Before
reporting the details of our ongoing investigation in the bulk
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phase structure of the Higgs-Yukawa model in the strong-
Yukawa regime, we briefly summarise the results obtained in
the region of weak-Yukawa coupling [24] in this section. The
order parameters characterising the different phases are the
magnetisation defined in (16) and (17) and the staggered
magnetisation

⟨𝑠⟩ = ⟨
1

𝑉4
∑
𝑥

(−1)
𝑥1+𝑥2+𝑥3+𝑥4(∑

𝛼

󵄨󵄨󵄨󵄨𝜙
𝛼

𝑥

󵄨󵄨󵄨󵄨
2
)

1/2

⟩. (30)

The staggered magnetisation is relevant for the breaking of
the symmetry,

𝜅 󳨀→ −𝜅,

𝜙
𝛼

𝑥 󳨀→ (−1)
𝑥1+𝑥2+𝑥3+𝑥4𝜙

𝛼

𝑥 ,
(31)

in the action in (5).
In the Higgs-Yukawa model, four phases have been

observed:
(1) a symmetric (SYM) phase with ⟨𝑚⟩ = ⟨𝑠⟩ = 0,
(2) a broken, or ferromagnetic (FM), phase with ⟨𝑚⟩ ̸= 0

but ⟨𝑠⟩ = 0,
(3) a staggered-broken, or antiferromagnetic (AFM),

phase with ⟨𝑚⟩ = 0 but ⟨𝑠⟩ ̸= 0,
(4) a ferrimagnetic (PI) phase with ⟨𝑚⟩ ̸= 0 and ⟨𝑠⟩ ̸= 0.

Our current knowledge of the phase structure of the Higgs-
Yukawa model in the weak-Yukawa regime is summarised in
Figure 6. To make it convenient in comparing results from
numerical simulations to a large-𝑁𝑓 analytic calculation [23],
we have performed the change of variables,

𝑦̂ =
𝑦̃𝑁

√𝑁𝑓

, 𝜅 = 𝜅̃𝑁, 𝜆̂ =
𝜆̃𝑁

𝑁𝑓
, Φ = √𝑁𝑓Φ̃,

(32)

in the plots in this figure. The large-𝑁𝑓 calculation was car-
ried out in the𝑁𝑓 → ∞ limit while keeping 𝑦̃𝑁, 𝜆̃𝑁, and Φ̃

fixed. Figure 6(a) is the result from the large-𝑁𝑓 calculation,
and Figure 6(b) is the comparison between this calculation
and the numerical results from lattice simulations at𝑁𝑓 = 10.
Figure 6(c) shows the𝑁𝑓 dependence on the critical values of
𝜅 at the SYM-FM and FM-AFM transitions in our numerical
calculation, with the Yukawa coupling set to 𝑦̃𝑁 = 0.1. It is
observed that the 𝑁𝑓 dependence appears to be mild. This
indicates that the large-𝑁𝑓 analytic calculationmay serve as a
reasonable, qualitative guide in choosing the simulation para-
meters for the numerical simulations. Although this analysis
has been performed in the weak Yukawa coupling region, the
good qualitative description makes it possible to also use the
large𝑁𝑓 expansion also in the strong-Yukawa regime, which
was indeed observed in [23].

In the weak Yukawa coupling region, we concentrated on
the study of the SYM-FM phase transition, which was con-
firmed to be second-order.This allowed us to study physically
interesting quantities, such as the Higgs boson mass bound
presented in Section 3, near this phase-transition with good
control of the cutoff dependence.

4.3. Bulk Phase Transition at Large Yukawa Couplings. It is
not well understood how the Higgs-Yukawa model at large
bare Yukawa couplings differs from that in the weak-coupling
regime. A first step in a detailed analysis and, hence, a deeper
understanding of the model in this region is the investigation
of the bulk phase transitions. It can be shown that the Higgs-
Yukawa model reduces to a pure scalar nonlinear 𝜎-model at
infinite bare Yukawa couplings [58, 59] and hence becomes
trivial at a certain cutoff scale. However, it is not clear what
happens at large but finite Yukawa couplings. To be able to
detect any differences from a Gaussian (trivial) theory, the
critical exponents of the phase transition have to be extracted
and compared with those of the O(4) model. If the strong-
coupling regime is indeed different from the weak-coupling
one and, hence, would be governed by a nontrivial fixed
point (There has been early lattice work on the 3-dimensional
Higgs-Yukawa model [71], attempting at finding fix points
that are different from those of the pure scalar field theory), it
would be very interesting to investigate the possibility of very
heavy fermions which give rise to a fourth generation, while
still maintaining a light Higgs boson in the theory. In such a
scenario, it is unclear whether an analysis, for example, [72]
is applicable and also whether the Higgs boson mass bounds
of Section 3 are valid.

The magnetisation, defined in (16) and (17), can act as an
order parameter to identify and determine the order of the
phase transition. In Figure 7, themagnetisation for theHiggs-
Yukawamodel obtained on different lattice volumes is shown
as a function of 𝑦 for two 𝜅 values. In addition, we show the
magnetisation as a function of 𝜅 for theO(4)model.The SYM
and FM phases can be clearly distinguished and the phase
transition is washed out because of finite volume effects as
previously discussed.

The absence of any discontinuities in the magnetisation
is strong evidence for a second-order phase transition in all
three depicted cases. In general, second-order phase transi-
tions are classified through their critical exponents and the
question arises if these exponents are different in the strong-
Yukawa and pure O(4) models. To answer this question,
a careful investigation of the susceptibility and Binder’s
cumulant will be presented in the following.

An alternative way of determining critical exponents is
via Binder’s cumulant, (29). One advantage of this quantity
over the susceptibility is its milder power-law scaling viola-
tion which is given by

𝑄𝐿 = 𝑔𝑄𝐿 (𝑡𝐿
1/𝜈

) , (33)

where 𝑔𝑄𝐿 is a universal function and 𝑡 is defined in (28).This
behaviour can be observed in Figure 10 where all volumes
intersect at the phase transition point in infinite volume
where 𝑡 = 0. Even for the Higgs-Yukawa model, no shift can
be observed, and hence, the parameters 𝐶 and 𝑏 can be com-
pletely neglected in the scaling variable.

The critical exponents can be calculated by using the
finite-size scaling of the susceptibility, (27).The susceptibility
is shown in Figure 8 for the Higgs-Yukawa and O(4) models.
This quantity diverges at the critical point in the infinite
volume limit. Such a divergence in infinite volume is reflected
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Figure 6:The phase structure analysis. (a) shows analytical predictions for the case of 𝐿 𝑠 = ∞,𝑁𝑓 = ∞ and 𝜆̃𝑁 = 0.1.The black line indicates
a first-order phase transition, while all other transitions are of second order. (b) demonstrates a numerical test of the transitions from the
SYM to both FM and AFM phases with𝑁𝑓 = 10. (c) displays the𝑁𝑓 dependence in the critical values of 𝜅 for the SYM-FM and SYM-AFM
transitions, at 𝜆̃𝑁 = 0.1 and 𝑦̃

𝑁
= 1.0. These critical 𝜅 values are denoted as 𝜅𝑚crit (>0) and 𝜅

𝑠
crit (<0), respectively. The squares and circles in

(b) and (c) come from direct numerical simulations on the indicated lattice sizes.
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Figure 7: Magnetisation, ⟨𝑚⟩, for the Higgs-Yukawa model at 𝜅 = 0.06 (a), 𝜅 = 0.00 (b), and the pure O(4) model (c) for various volumes.
For the O(4) ⟨𝑚⟩ is plotted as a function of decreasing 𝜅 to match optically with the Higgs-Yukawa model. The absence of discontinuities in
⟨𝑚⟩ is an evidence for a second-order phase transition.

in a bulk finite-size scaling behaviour in lattice calculations.
As mentioned before in (28), the finite-size scaling is pre-
dicted by renormalisation group theory, with modifications
resulting from scaling violation such as that discussed in [61],

𝜒𝑚 (𝑡, 𝐿) ⋅ 𝐿
−𝛾/𝜈

𝑠 = 𝑔 (𝑡̂𝐿
1/𝜈

𝑠 ) ,

with 𝑡̂ = [
𝑇

(𝑇
(𝐿=∞)
𝑐 − 𝐶 ⋅ 𝐿−𝑏𝑠 )

− 1] ,

(34)

where 𝐶 is a phenomenological parameter and 𝑏 is a shift
exponent [61].This modification comes from the fact that the
position of the maximum of 𝜒𝑚 is volume dependent. From
(28) the infinite-volume critical temperature can be extracted
directly. For the O(4) model we do not observe any shift of
the maximum and hence (28) is a good description of our
data in this case. It should be stressed that the temperature,
𝑇, in this section is the control parameter. In our work, it is
either the Yukawa coupling, 𝑦, in theHiggs-Yukawamodel or
the hopping parameter, 𝜅, in the pure O(4) model. To extract
the critical exponents from the susceptibility, we perform
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Figure 8: Susceptibility 𝜒𝑚 at 𝜅 = 0.06 (a), 𝜅 = 0.00 (b), and the O(4) model (c) for various volumes. The curves are the result of a fit to (35).
The right top boxes in (b) and (c) show 𝜒𝑚 for the largest volumes. For the Higgs-Yukawa model, a volume-dependent shift of 𝑦𝑐 towards
𝑦
(𝐿=∞)
𝑐 can be observed. This shift is not observed in the O(4) model.

a simultaneous fit of all data obtained at all volumes to the
partly empirical formula [73]:

𝜒𝑚 = 𝐴(𝐿
−2/𝜈

𝑠 + 𝐵[
𝑇

𝑇
(𝐿=∞)
𝑐

− 𝐶 ⋅ 𝐿
−𝑏

𝑠 − 1]

2

)

−𝛾/2

. (35)

This formula was also used for a fit to 𝜒𝑚 of the O(4)
model, but with themodification of excluding the parameters
𝐶 and 𝑏 because of the reasons mentioned above. The fit
results are summarised in Table 2 and will be discussed later.
Notice that there may be logarithmic corrections to the
scaling behaviour of the susceptibility because triviality may

still be present also in the strong-Yukawa model. These
corrections should, in principle, be included in (35) (these
logarithmic corrections are surely present in the finite-size
scaling behaviour of the susceptibility in the pure O(4)model
[62–66]. However, our exploratory numerical results show
that their inclusion produces minor changes in the results
of the critical exponents in the O(4) model). This is ongoing
work, and the result will be presented in a later publication.
Therefore, we consider our present values of the critical
exponents as preliminary, and they should be taken with
caution.

It is possible to rescale the susceptibility according to (34)
for the Higgs-Yukawa theory or (28) for the O(4) model,
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Figure 9: Scaling behaviour of susceptibility at 𝜅 = 0.06 (a), 𝜅 = 0.00 (b), and the O(4) model (c) for various volumes.

Table 2: Results of a correlated fit to the susceptibility according to (35) where the last column indicates the fit interval. The parameter 𝑇
stands either for 𝑦 in the Higgs-Yukawa model or for 𝜅 in the O(4) model. Since no volume-dependent shift can be observed in the O(4)
model for 𝜒𝑚, the parameters 𝐶 and 𝑏 have not been fitted here. All quoted errors are statistical only.

𝑇(𝐿=∞)𝑐 𝜈 𝛾 𝐶 𝑏 Fit interval
𝜅 = 0.06 18.119(67) 0.576(28) 1.038(30) 4.7(1.6) 1.95(18) 17.5, 20.0
𝜅 = 0.00 16.676(15) 0.541(22) 0.996(15) 10(2) 2.42(10) 15.0, 19.0
O(4) 0.304268(27) 0.499(12) 1.086(19) N/A N/A 0.300, 0.308

respectively.The fitted parameters extracted from (35) can be
used to construct 𝜒𝑚(𝑡, 𝐿 𝑠) ⋅ 𝐿

−𝛾/𝜈
𝑠 and test its scaling against

𝑡 ⋅ 𝐿1/𝜈𝑠 . This is shown in Figure 9. Points for all volumes
collapse on the same curve in each of the three cases shown.
This behaviour is typical for second-order phase transitions

and hence provides further evidence that such a second-order
transition happens in the regime of strong-Yukawa couplings.

The value of Binder’s cumulant in the broken phase comes
from the fact that ⟨𝑚4⟩ ≈ ⟨𝑚2⟩

2 and hence 𝑄𝐿 ≈ 2/3 [67].
Our results for 𝑄𝐿 at the critical point come close to this
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Figure 10: Binder’s cumulant𝑄𝐿 at 𝜅 = 0.06 (a), 𝜅 = 0.00 (b), and the O(4)model (c) for various volumes where the subscript 𝐿 indicates the
finite volume quantity. Note that the value of 𝑄𝐿 at the critical point is different in the Higgs-Yukawa and the O(4) models.

value for all setups considered here. Still, 𝑄𝐿 obtained in the
Higgs-Yukawamodel differs from the one in the O(4) model.
This may arise from effects of finite renormalisation because
of the inclusion of fermions. Its implication in the difference
of the O(4) model and the Higgs-Yukawa model is under
investigation now. Furthermore, it can be demonstrated that
for Binder’s cumulant, as contrary to the susceptibility, there
is no logarithmic corrections to the scaling behaviour arising
from triviality in the pure O(4) model [64]. Whether or not
such corrections can be present in the Higgs-Yukawa model
is being studied now.

The basic idea of extracting the critical exponent, 𝜈, from
Binder’s cumulant is the use of the curve collapse of (34). If

the scaling function 𝑔𝑄𝐿 is known, one will simply minimise
[74]:

𝑅𝑄𝐿 =
1

𝑁
∑

󵄨󵄨󵄨󵄨󵄨
𝑄𝐿 − 𝑔𝑄𝐿 (𝑡𝐿

1/𝜈
)
󵄨󵄨󵄨󵄨󵄨
,

(𝑁 = total number of data points)
(36)

which would allow to extract 𝜈 as a direct consequence of the
scaling behaviour. The sum is taken over all data points, and
𝑅𝑄𝐿 is minimal for the correct choice of the parameters 𝜈 and
𝑇𝐿=∞𝑐 . In the absence of any statistical and systematic errors
the function 𝑅𝑄𝐿 would become zero.
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The scaling function 𝑔𝑄𝐿 is unknown. However, this can
be overcome by the observation that any volume, in the fol-
lowing called 𝑝, can act as a reference function for the correct
choice of parameters, taking, thus, over the role of 𝑔𝑄𝐿 .
Instead of minimising (36), we minimise [74]

𝑃𝑏 =
[

[

1

𝑁over
∑
𝑝

∑
𝑗 ̸= 𝑝

∑
𝑖,over

󵄨󵄨󵄨󵄨󵄨󵄨
𝑄𝐿𝑗 −E𝑝 (𝑡𝑖𝑗𝐿

1/𝜈

𝑗 )
󵄨󵄨󵄨󵄨󵄨󵄨

2
]

]

1/2

. (37)

Here, the scaling function is replaced by the interpolating
function E𝑝 which is constructed by interpolating the data
points obtained on volume 𝑝 to volume 𝑗 for the values of the
scaling variable 𝑡𝑖𝑗𝐿

1/𝜈

𝑗
, with the index 𝑖 going through all data

points of volume 𝑗. In our case, E𝑝 is computed by picking a
point in 𝑗 and taking the four nearest points in 𝑝 as a basis for
a quadratic interpolation. The normalisation factor 𝑁over is
the total number of points used to evaluateE𝑝.The results are
summarised in Table 3, and the corresponding curve collapse
for Binder’s cumulant is shown in Figure 11.

In principle, this method could also be used for 𝜒𝑚, but
it would be necessary to minimise for five parameters. Our
investigation shows that this leads to numerical instabilities
and the extraction of critical exponents from the susceptibil-
ity using this method is not possible hitherto.

At this point, we can claim that we have found a second-
order phase transition between the SYM and the FM phases
in the strong Yukawa coupling regime. The absence of
discontinuities in ⟨𝑚⟩ and the second-order finite size scaling
of𝜒𝑚 are strong evidence for such a statement. It is interesting
to compare the critical exponents extracted from the sus-
ceptibility and Binder’s cumulant with the ones of the weak-
Yukawa model and the O(4) model.

To be able tomake a direct comparison of the O(4)model
with the Higgs-Yukawa model, the same strategy has been
used to compute observables in the pure scalar sector of the
theory. In particular, the same analysis techniques have been
used.The results of the correlated fit to 𝜒𝑚 are summarised in
Table 2. The errors quoted there are purely statistical. Inves-
tigation of the dependence of the results on the fit interval
leads to systematic uncertainties which are as large as the
statistical errors roughly. It is not possible to claim a signif-
icant difference in the critical exponents between the Higgs-
Yukawa model and the O(4) model from this method so far.

The curve collapse method, however, can only provide us
with information about one critical exponent, namely, 𝜈. The
advantage of thismethod is the significantly smaller statistical
error compared to the fit to 𝜒𝑚. However, it must be used
with care. The scaling behaviour described in (33) is only
truely close to the critical point. If this method is applied at
points too far away form the phase transition the result can
be affected by scaling-violation effects. One possibility to
achieve an impression of these effects is the dependence on
the interval in which the curve collapse method is applied. It
was found that the systematic uncertainty is roughly a factor
of five larger than the statistical error. However, in the case of
𝜅 = 0.06 and of the O(4) model, the total error is still a factor
of five smaller compared to the fitting procedure. In the case
of 𝜅 = 0.00, the total errors are compatible.

Table 3: Curve collapse results of Binder’s cumulant where the last
column indicates the interval of the control parameter in which the
procedure has been used. The parameter 𝑇 stands either for 𝑦 in
the Higgs-Yukawa model or for 𝜅 in the O(4) model. All errors are
statistical only.

𝑇
(𝐿=∞)
𝑐 𝜈 Interval

𝜅 = 0.06 18.147(24) 0.550(1) 17.4, 18.8
𝜅 = 0.00 16.667(27) 0.525(6) 16.0, 17.2
O(4) 0.3005(34) 0.50000(3) 0.294, 0.314

The results of the critical exponent, 𝜈, in Tables 2 and 3
indicate that the strong-Yukawa model and the O(4) model
may belong to different universality classes. However, in the
procedure of using (34) to determine this exponent, the
difference of the two models can be as small as two standard
deviations. We stress that it is also important to investigate
the scaling violation as pointed out in [62–66, 69, 70]. In
particular, the observation of the multiplicative logarithmic
scaling violation is directly related to the triviality of the
theory [62–66, 75]. Presently, we are exploring such analyses
and performing computations at additional parameter values.
In the near future, we will, therefore, be able to see whether
the value of 𝜈 in the strong bare Yukawa coupling regime is
indeed different from the one of pureO(4)model. If wewould
find a significant difference, then it will be important to inves-
tigate the strong-coupling regime closer, and, in particular, a
computation of the spectrum of the Higgs-Yukawa model in
the strong-coupling region will become most interesting.

4.4. Finite-Temperature Phase Transition. One important
subject in the study of the Higgs-Yukawa model is the finite-
temperature phase transition. In this section, we describe
the status of our investigation of this transition. We are par-
ticularly interested in determining the critical temperature
where the system undergoes a phase transition from the sym-
metric phase with vanishing scalar vev, V = 0, to the
broken phase with nonvanishing V. Further interest lies in the
determination of the order of the phase transition and the
critical exponents. Preliminary results reported in this paper
are obtained at two values of the fermion mass, 𝑚𝑓 ≈

175GeV and𝑚𝑓 ≈ 700GeV.
Choosing the boundary conditions in the Euclidean tem-

poral direction to be periodic for bosonic and antiperiodic for
fermion fields, the temperature 𝑇 on the lattice is given by

𝑇 =
1

𝑎𝐿 𝑡
=

Λ

𝐿 𝑡
, (38)

where 𝐿 𝑡 denotes the dimensionless temporal extent of the
lattice. For the study of the finite-temperature phase transi-
tion, we work at fixed bare Yukawa couplings which lead to
the desired fermion masses. Results presented here are from
lattice simulations performed at 𝜆̂ = ∞. To vary the tempera-
ture, we change the value of 𝜅 at fixed 𝐿 𝑡. This is equivalent to
adjusting the lattice spacingwhile fixing the number of points
in the temporal extent of the lattice corresponding then to a
change in the temperature.
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Figure 11: Scaling behaviour of Binder’s cumulant at 𝜅 = 0.06 (a), 𝜅 = 0.00 (b), and the O(4) model (c) for various volumes using the
parameters listed in Table 3.

Our study shows that the finite-temperature phase transi-
tions in the Higgs-Yukawa model are consistent with second
order..The order parameter is themagnetisation as defined in
(16) and (17). Since the correlation length is never divergent
because of finite-volume effects, we resort to finite-size
scaling techniques to investigate the second-order finite-tem-
perature phase transition in this work. In particular, we
analyse the scaling behaviour of the susceptibility of themag-
netisation, (27). As in [73], we fit the susceptibility according
to the partly phenomenologically motivated function

𝜒𝑚 (𝜅) = 𝐴(𝐿
−2/𝜈

𝑠 + 𝐵+/−(𝜅 − 𝜅𝑐)
2
)
−𝛾/2

,

𝜈 = 0.68, 𝛾 = 1.38,

(39)

where 𝐴, 𝐵+/−, and 𝜅𝑐 are free fit parameters (𝐵+/− are coef-
ficients in the broken and the symmetric phases, resp.), and
𝜈 and 𝛾 are the critical exponents of the three-dimensional
O(4) model which are expected to characterise the second-
order phase transition. Note that we use the fit function
of (39) with fixed values of the critical exponents only
to extract the critical value of 𝜅, denoted as 𝜅𝑐 which in
turn leads to the evaluation of the critical temperature. This
approach is different from that used for the investigation of
the strong-Yukawa model as described in Section 4.3. Since
𝜅𝑐 depends on the spatial volume, we perform simulations on
various spatial lattice sizes and perform an infinite volume
extrapolation using the formula (𝐷 is an unknown constant)

𝜅𝑐 (𝐿) = 𝜅𝑐 (∞) + 𝐷 ⋅ 𝐿
−𝜈
. (40)
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Having extracted 𝜅𝑐 in the infinite-volume limit, 𝜅𝑐(∞),
we can determine the lattice spacing at this 𝜅 value by per-
forming zero-temperature simulations at exactly the same
choice of couplings and using (20). This then allows us to
predict the critical temperature, 𝑇𝑐, through (38). In order to
estimate the systematic effects in 𝑇𝑐 arising from the uncer-
tainty in 𝜅𝑐, we also carry out two additional zero-tempera-
ture simulations with 𝜅 values chosen to reflect the error on
𝜅𝑐. In this procedure, it is very challenging to maintain a
constant Higgs boson mass, since it depends significantly on
the 𝜅 value. So far, we have not yet performed zero tempera-
ture runs for the presented results, but from the results found
in [28] it is possible to give a first estimate of the order of
magnitude for the critical temperature and the corresponding
Higgs boson masses in the case of a physical top quark mass.

4.4.1. Finite-Temperature Study at Physical Top-Quark Mass.
As the first step, we investigate the case of a degenerate fer-
mion doublet with the quark mass close to the physical top
quark mass. To this end, we fix the bare Yukawa coupling
according to the tree-level estimate of 𝑦 = 𝑚𝑡/V𝑟, which has
been shown to be a good approximation in this region of cou-
plings [28].We perform simulations at two different temporal
extents (𝐿 𝑡 = 4, 6) for estimating the discretisation effects.
In addition, three spatial extents, 𝐿 𝑠 = 16, 20, and 24, are
implemented in order to perform the infinite-volume extrap-
olation.

The results of the magnetisation at 𝐿 𝑡 = 4 and 6 are
plotted in Figures 12(a) and 12(d), respectively. It is obvious
that there is a transition from the symmetric to the broken
phase for each choice of 𝐿 𝑡. The corresponding susceptibili-
ties are shown in Figures 12(b) and 12(e). The 𝐿-dependence
of 𝜅𝑐(𝐿) is well described by (40), as can be seen in
Figures 12(c) and 12(f).

Our finite-temperature study at a fermion mass close to
physical top-quark mass is an ongoing project at an early
stage. Presently, the simulations using 𝐿 𝑡 = 4 and 6 both
result in the Higgs boson mass, 𝑚𝐻 ∼ 600GeV, and the
critical temperature,𝑇𝑐 ∼ 400GeV.Those values are obtained
from 𝜅𝑐:

𝜅𝑐 (∞, 𝐿 𝑡 = 4) = 30460 (29) ,

𝜅𝑐 (∞, 𝐿 𝑡 = 6) = 0.30003 (25) ,
(41)

by a comparison with the results shown in [28]. To make
our predictions more precise, we are performing additional
lattice computations. In particular, we are planning zero-
temperature simulations with larger spatial extent. This will
allow us to have better control of the infinite-volume extrap-
olation.

4.4.2. Status of Finite-Temperature Study at a Quark Mass
of about 700GeV. In this section we present the status of
our work on the critical temperature in the Higgs-Yukawa
model with one heavy fermion doublet with a mass of about
700GeV. We follow the same strategy as in the previous
section. Here, the zero-temperature simulations are still in

progress.Thus, the lattice spacings for this calculation are not
yet available to us.

Results of the susceptibility and the infinite-volume extra-
polation for 𝜅𝑐 can be found in Figure 13. From the phase
structure presented in Figure 6 and the value of 𝑦̂ ∼ 2.8, it
is clear that the critical value of 𝜅 is in the FM phase of the
zero temperature theory, as expected. We also notice that the
values of 𝜅𝑐 in the 𝐿 𝑡 = 6 calculation are smaller than those in
the𝐿 𝑡 = 4 analysis.Thismeans that the𝐿 𝑡 = 6 simulations are
carried out closer to the FM-SYM phase boundary and are
thus performed at larger values of the cutoff.

5. Outlook

In this paper we have provided an overview of nonpertur-
bative lattice calculations of the Higgs-Yukawa sector of the
Standard Model and its extension with a fourth fermion
generation.The phase diagramof themodel has been studied,
and a complex and interesting structure has been revealed. At
small values of the bare Yukawa coupling, the properties of
the phase transitions are consistent with the standard model
expectation [23, 24]. However, we also establish an additional
phase transition at very large values of the bare Yukawa cou-
pling [23, 24, 31].This offers the very interesting possibility to
investigate a strongly interacting Higgs-Yukawa model. We
performed a detailed study of the properties of the phase
transitions at strong bare Yukawa coupling and determined
the critical exponents characterising the phase transitions
through a finite size scaling analysis. Although there are
presently indications that these critical exponents may differ
from the standard model ones, at this stage of our investiga-
tions it is too early to say that in the strong bare Yukawa cou-
pling region indeed a nonstandard-model-like phase struc-
ture exists.

As an interesting direction, we have also examined the
Higgs-Yukawa model at nonzero temperature for fermion
masses ranging from 175GeV to 700GeV [57]. We find that
the transition is always of second order and that the critical
temperature is higher for increasing fermion mass.

For a standard model top-quark mass, we have estab-
lished lower and upper Higgs boson mass bounds as a func-
tion of the (lattice) cutoff of the theory [26–28]. We also
performed a detailed resonance analysis of the Higgs boson
which confirmed that the Higgs boson mass bounds which
assumed a stable Higgs boson are not affected by the reso-
nance character of the Higgs boson [29]. Furthermore, we
find that theHiggs boson decaywidth intomassiveGoldstone
bosons is never larger than 10% of the Higgs boson mass and
in good agreement with perturbative estimates. As a con-
sequence of our lattice study of the lower and upper Higgs
boson mass bounds within the Higgs-Yukawa sector at a
physical value of the top quark mass, we can, in principle,
estimate the energy scale at which the standard model has to
break down.

We extended the study of the Higgs bosonmass bound to
a possible fourth generation of quarks considering fermion
masses up to 700GeV [30]. We found that the upper Higgs
boson mass bound shows only a moderate shift by about
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Figure 12: Results of our finite-temperature study at the physical top-quark mass with the quartic coupling 𝜆̂ = ∞. Plots (a) and (d): the
magnetisation for temporal extents of 𝐿 𝑡 = 4 and 𝐿 𝑡 = 6. Plots (b) and (e): the corresponding susceptibilities with the fit function in (39).
Plot (c) and (f): infinite-volume extrapolation of 𝜅𝑐 using (40). Note that for the case of zero temperature 𝐿2 denotes√𝑉4 with𝑉4 = 𝐿3𝑠𝐿 𝑡 and
𝐿 𝑡 = 2𝐿 𝑠.
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Figure 13: Plots (a) and (b) show the susceptibility as function of 𝜅 at the large fermion mass of about 700GeV. Plot (c) is the infinite-volume
extrapolation for 𝜅𝑐.

20% at such a fermion mass when compared to the bound
for a standard model top quark mass. However, the lower
Higgs boson mass bound is altered significantly and can
be as high as 500GeV for a fermion mass of 700GeV. We
complemented our nonperturbative lattice simulations with
a lattice perturbative calculation of the lower Higgs boson
mass bound from the effective potential. We found very good
agreement with the lattice simulation data. This enabled us
to test the stability of the lower bound against additions of
higher dimensional operators. As a result, we observed that
the lower bound is not affected by including such additional
operators. This finding puts severe constraints on the fourth
generation if the particle with a mass of 125GeV seen at the
LHC is the standard model Higgs boson.

Let us discuss the consequences of our lattice study of the
Higgs-Yukawa sector of the standard model and its exten-
sion to a fourth fermion generation, assuming that the
particle detected at the LHC [6, 7] is a Higgs boson with
a mass of 125GeV. For the standard model such a Higgs
boson mass leads to rather small values of the renormalised
quartic and Yukawa couplings, and it seems, therefore,
that the electroweak sector of the standard model can be
described perfectly within perturbation theory. Therefore,
the perturbative analysis of [8] provides the result that the
energy scale, up to which the Standard Model can be valid,
is very high. Considering the extension of a fourth fermion
generation, the lower Higgs boson mass bound together with
the phenomenological lower bound of the fourth generation
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fermion mass provides very severe constraints on the exis-
tence of the fourth generation.

As a conclusion, our findings suggest that the electroweak
theory of the standard model is a perfect description of
particle interaction up to very high energies as discussed in
[8]. Furthermore, a simple extension of the standard model
by adding only a fourth fermion generation is most likely not
realised. However, as discussed in [76], the addition of a sin-
glet scalar field could change the situation. As shown in [76],
the lower Higgs boson mass bound can be lowered signifi-
cantly in the presence of such an additional scalar field. Of
course, in [76], only a perturbative calculation has been per-
formed for the scenario of adding such a singlet scalar field,
and nonperturbative calculations, such as the ones presented
here, to scrutinise this picture are highly desirable.

We have demonstrated that with lattice field theory tech-
niques generic strongly interacting Higgs-Yukawa theories
can be studied in a controlled and accurate way. This became
possible through a conceptual breakthrough of formulating
chiral invariant theories on the lattice together with a much
improved understanding of systematic effects such as finite
size effects or determining resonance parameters. Since in
addition the existing computing power of present super com-
puters is clearly adequate to perform calculations of Higgs-
Yukawa models, lattice computations can contribute to our
understanding of Higgs-Yukawa models, in particular in the
strongly interacting regime.
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