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1 Introduction

Moduli stabilization is a fundamental problem when constructing realistic models of particle

physics in string theory. In IIB string theory (or F-theory), the closed string moduli in the

Kähler sector are stabilized by non-perturbative contributions to the superpotential. There

are various promising scenarios in which non-perturbative effects, in the form of D-brane

instantons, give rise to moduli stabilization, see e.g. [1, 2].

When studying contributions to the superpotential, a natural class of candidate in-

stantons arises from D-branes wrapping rigid cycles. These cycles are often non-Spin, and

in particular del Pezzo surfaces occur frequently. For non-Spin cycles one needs to con-

sider a Spinc structure for the worldvolume degrees of freedom instead of an ordinary Spin

structure [3].

In the case of ordinary line bundles this is commonly phrased as introducing a “half-

quantized bundle” on the instanton. However, this half-quantized bundle necessarily

clashes with the requirement of invariance under the orientifold involution. It is well know

how to restore invariance under the orientifold by introducing a half-quantized B-field (see

for example [4, 5]).

Nevertheless, whether there is a non-perturbative contribution in the original B = 0

case remains an open question. In this paper we show that when B = 0 there does exist

an invariant rank 2 instanton with the right properties to contribute to the superpotential.

2 Invariant instantons and Spinc structures

We will use the sheaf description of D-branes, see [6] for a good review. In our case these

sheaves will be ordinary vector bundles with support on the instanton divisor. Consider the

case of a surface S in an ambient Calabi-Yau space X, with inclusion map i : S ↪→ X, and
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take a sheaf i∗E describing the instanton wrapping S. This corresponds to an instanton

with bundle E ⊗
√
K∨S [6, 7]. In particular, this construction automatically gives rise to a

well-defined Spinc structure on the D-brane. A necessary condition, when B = 0, for the

instanton to be invariant under the orientifold involution is [8]:

σ∗(E∨)⊗KS = E , (2.1)

where σ is the orientifold involution. A solution to this equation is given by E = Ω,

where Ω is the dual of the holomorphic tangent bundle of S, or equivalently the sheaf of

holomorphic one-forms. In the remainder of this paper we show in a particular example that

the corresponding instanton has the right structure to contribute to the non-perturbative

superpotential.

3 An invariant instanton on P2

For concreteness we focus on (the complex Calabi-Yau cone over) P2, the simplest example

of a non-Spin manifold, and return to the general case in the conclusions. We parameterize

X, our Calabi-Yau manifold, by the coordinates (s, t, u, w), identified under the rescalings

(s, t, u, w) ∼ (λs, λt, λu, λ−3w), for all λ ∈ C∗. The P2 wrapped by the instanton is located

at z = 0, and the orientifold involution that fixes the O7− plane acts geometrically as

σ : s↔ −s . (3.1)

Since we are interested in contributions to the superpotential, our task is to show that

the instanton only has the two universal zero modes θα, with every other possible zero mode

absent, see [9] for a review of D-brane instanton physics. These zero modes can be either

neutral τ α̇ modes, coming from the instanton being non-invariant, neutral deformation

modes coming from the instanton not being rigid, or charged zero modes coming from

massless strings between the instanton and the background D-branes.

3.1 Neutral zero modes

The absence of neutral zero modes (i.e., those of deformation and τ α̇ types) can be

rephrased as the instanton being rigid and of O(1) type, and can be shown as follows.

First of all, since P2 is rigid, there are no deformation modes. By explicitly writing the

transition functions it is not difficult to see that Ω is invariant under the orientifold in-

volution (3.1), i.e. it satisfies (2.1). In order to prove that the instanton is of O(1) type

we need to show that the gauge symmetry on the instanton in the absence of the orien-

tifold is U(1), and that the orientifold projects this to the O(1) component (as opposed to

projecting down to USp). The fact that the rank 2 bundle preserves a U(1) gauge group

can be understood by noting that the structure group of P2, being Kähler, is U(2), while

the local symmetry on the rank 2 bundle is also U(2). The preserved gauge group is the

commutant of both factors, and it is thus U(1). A more formal but also more systematic

way of showing this comes from simply computing Extp(i∗Ω, i∗Ω), which is the space of

massless adjoint fermions [10]. For this particular bundle we have Ext0(i∗Ω, i∗Ω) = C, and
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by Serre duality on X we also have Ext3(i∗Ω, i∗Ω) = C. The Ext groups can be shown

to vanish for all other values of p. The fact that the projection induced by the orientifold

involution is of type O(1) can be seen by a local argument of monodromy around the ori-

entifold locus [11], which shows that the τ α̇ modes are the ones projected out. A different

way of understanding these last two facts will be given below when we study the instanton

at small volume.

3.2 Charged zero modes

We are left to show that the charged zero modes — massless strings stretching between the

instanton and background D-branes — are absent. In our particular configuration the latter

correspond to the D7 branes required to cancel the tadpole induced on the hyperplane of

the P2 by the O7−. We perform the zero mode computation at a particular point in the

moduli space of the D7 branes where they restrict to a stack of 4 D7 branes wrapping

a quadratic curve on P2. If there is a non-vanishing superpotential at this particular

point in moduli space, by continuity of the superpotential this shows that generically the

superpotential is non-vanishing.

The spectrum of charged zero modes in our particular configuration is counted by [7]:

Extp(j∗F , i∗Ω) = Hp−1(C,Ω|C ⊗F∨|C ⊗NC|P2) . (3.2)

Here C denotes the curve (a quadratic P1 ⊂ P2) where the D7 branes and the instanton

worldvolume intersect, NC|P2 is the normal bundle of this P1 in P2, given by O(4) and F
is the bundle of the D7 flavor brane stack, with j the embedding of the D7 stack into

X. (We will only need the restriction of j to C, given in eq. (3.4) below.) In order to

calculate the spectrum (3.2) we thus need to compute the restrictions of the appropriate

cotangent bundles to C. Since C is just a P1, by a well-known result due to Grothendieck

we have that Ω, being of rank 2, splits into a sum of two line bundles when restricted to

C: Ω|C = O(m)⊕O(n). In addition, the sums of the individual degrees of the line bundles

are constrained by the following relation:

n+m =

∫
C
c1(Ω|C) =

∫
P2

c1(Ω) ∧ 2` = −6 . (3.3)

To determine m and n separately we follow the approach in [12]. Let us focus on

the local neighborhood of P2, the instanton cycle. We take C, the quadratic curve in P2

wrapped by the D7 branes, to be given by s2− tu = 0. We can also parameterize C by the

projective coordinates (x1, x2) with an embedding in X given by

(x1, x2) 7→ (s, t, u, w) = (x1x2, x
2
1, x

2
2, 0). (3.4)

Let us first compute the restriction TX |C of the tangent bundle of the Calabi-Yau X

to C, using the toric Euler sequence restricted to C:

0→ OC
i−→ (OX(1)⊕3 ⊕OX(−3))|C

f−→ TX |C → 0 . (3.5)
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It is easy to see that OX(n)|C = OC(2n), for instance by computing the following integral:

k =

∫
C
c1(OC(k)) =

∫
C
c1(OX(n)|C)

=

∫
P2

n` ∧ 2` = 2n .

(3.6)

The exact sequence to study is thus:

0→ OC
i−→ OC(2)⊕3 ⊕OC(−6)

f−→ TX |C → 0 . (3.7)

The map i is given by the inclusion of C into X, which acts on the sections as:

i =


x1x2
x21
x22
0

 . (3.8)

The map f is defined by imposing exactness of (3.7), i.e., f ◦ i = t(0 0 0), and it is thus

given by:

f =

x1 −x2 0 0

x2 0 −x1 0

0 0 0 1

 . (3.9)

Imposing that the degrees of the bundles in (3.7) make sense, we thus obtain TX |C =

OC(3)⊕OC(3)⊕OC(−6).

In order to find the restriction of TS from the restriction of TX we use the adjunction

formula:

0→ TD|C
K−→ TX |C

L−→ OX(D)|C → 0 , (3.10)

where D = P2 is the divisor of interest. In our particular case this becomes

0→ TD|C
K−→ OC(3)⊕ OC(3)⊕OC(−6)

L−→ OX(D)|C → 0 , (3.11)

with D given by w = 0. In general, if D is defined by a homogeneous polynomial equation

P = 0, we have that the map (in the exact sequence before restriction) L̂ : TX → O(D)

is given by
∑
pi

∂
∂ti
→
∑
pi
∂P
∂ti

, where ti are the toric coordinates (s, t, u, w), and pi a

homogeneous polynomial of the same degree as ti. Let us perform explicitly the restriction

of the tangent bundle to P2. In this case P = w. The map L = (a1 a2 a3) is then given by

the solution to:

(a1 a2 a3)

s −t 0 0

t 0 −s 0

0 0 0 1

 =
(

0 0 0 1
)
. (3.12)

Solving these equations, we have (a1 a2 a3) = (0 0 1), which is compatible with the fact

that OX(D)|C = OC(−6). This tells us that the map L is simply picking the last component
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in the OC(3)⊕OC(3)⊕OC(−6) bundle, discarding the rest. From exactness of (3.11), this

implies that TP2 |C = OC(3)⊕OC(3), or equivalently by dualization Ω|C = OC(−3)⊕OC(−3).

We also need to find the restriction to C of the bundle F on the D7 flavor brane stack.

The situation here is less well defined, as in principle in order to specify the bundle one

needs to consider the whole compact divisor wrapped by the flavor brane. However, at

least locally it makes sense to choose a trivial bundle. In particular, the total space O

of the O(−3) fiber over the quadratic P1 curve C has the structure of a toric space with

coordinates (x1, x2, p), identified under the rescaling (x1, x2, p) ∼ (λx1, λx2, λ
−6p), with

λ ∈ C∗. The local intersections are given by x1 · p = x2 · p = 1, p · p = −6. We identify

p = 0 with C. The canonical class of the space is then given by KO = −D1 − D2 − Dp,

and we immediately see that locally the cycle wrapped by the flavor brane is Spin, since

the intersection of KO with the local class Dp is even. So, locally we can choose a trivial

(physical) flux on the flavor brane. In the conventions used in this paper, where we work

in terms of the sheaves defining the D-branes, we have that F =
√
KO (so F ⊗

√
K∨O is

trivial). In particular, we have the restriction F|C =
√
KO|C = OC(2), since KO|C = OC(4).

As one may expect, this choice is also invariant under the orientifold action [8]:

F|C = OC(2) −→ F∨|C ⊗KO|C
= OC(−2)⊗OC(4) = OC(2)

(3.13)

where we have again restricted to the curve, in order to not have to involve global infor-

mation.

Now that we have obtained the restriction of the gauge bundles to the curves, we can

easily compute the full spectrum by plugging F|C and Ω|C into (3.2):

Ext1(j∗F , i∗E) = H0(C,OC(−3)⊕2 ⊗OC(−2)⊗OC(4))

= H0(C,OC(−1)⊕2) = 0 .
(3.14)

Similarly, using Serre duality and the fact thatX is Calabi-Yau we have that Ext1(i∗E , j∗F) =

Ext2(j∗F , i∗E) = H1(C,OC(−1)⊕4) = 0. So, there are no charged zero modes, and

we see that the instanton does give rise to a non-vanishing superpotential Wnon−pert =

A1−loop e
−Sinst , where A1−loop is the non-zero one-loop determinant and Sinst is the instan-

ton action. In general we have that Re (Sinst) = |Z(i∗Ω)|/gs, with Z(i∗Ω) the central charge

of the instanton. At large volume this reduces to Re (Sinst) = 2 Vol(D)/gs, with Vol(D) the

volume of the P2 on which we are wrapping the instanton. Notice in particular the factor

of 2 multiplying the volume, coming from the fact that we are considering a rank two stack.

So at large volume there is an extra suppression of the non-perturbative effect compared

to the case of a hypothetical rank one instanton on the same cycle which — had there been

such a contribution to the superpotential — would have gone as Re (Sinst) = Vol(D)/gs.
1

As we go towards small volumes α′ corrections to the large volume expression for Z(i∗Ω)

become important, and the suppression due to the rank of the bundle is less pronounced.

(A couple of particularly interesting points in Kähler moduli space are the quiver point

1We would like to thank the referee for pointing out a missing factor of two in the expression for the

instanton action given in the original version of this paper, and emphasizing the resulting suppression.
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analyzed in the next section, in which Z(i∗Ω) coincides with the central charge for certain

rank one branes wrapping the same cycle, and deep in the orbifold phase, where one can

even have Z(i∗Ω) = 0 [10].)

Note that the instanton contribution to the superpotential may vanish if F is another

vector bundle on the D7 flavor brane stack. For example, a different natural choice is F =

ΩO, the cotangent bundle for the divisor O, with F invariant under the orientifold action

and the Freed-Witten anomaly cancellation conditions satisfied. It is a simple exercise

using the technology described above to show that ΩO|C = OC(−2) ⊕ OC(6). Computing

the zero modes in this case we obtain:

Ext1(j∗F , i∗E) = H0(C,OC(−3)⊕2⊗
(OC(2)⊕OC(−6))⊗OC(4))

= H0(C,OC(3)⊕2 ⊕OC(−5)⊕2)

= C8 ,

(3.15)

and similarly Ext1(i∗E , j∗F) = C8. Thus, there are eight pairs of vector-like zero modes,

and the contribution to the superpotential vanishes. There is no contradiction between this

result and the one above, since both bundles live in different components of the moduli

space. In particular, the two bundles induce different amounts of D3 charge, and thus

are connected by emission/absorption of mobile D3 branes. Thus, this provides partial

information about the dependence of the instanton action on the moduli of (mobile) D3

branes. In particular, it shows the existence of zeros in the one-loop determinant of the

instanton contribution to the superpotential when the D3 branes hit the instanton [13].

4 Small volume interpretation

With the contribution of the instanton described by i∗Ω to the superpotential established,

let us present an alternative viewpoint that arises when we take the configuration to the

quiver point. Specifically, let the volume of the P2 be zero, which turns the smooth space

X into the well-known C3/Z3 orbifold.

We also momentarily forget about the instanton, and instead consider 2N regular D3

branes probing the singularity of the C3/Z3 orbifold, in addition to the O7−/D7 stack.

Since we are setting B = 0 this is the quiver point for the D3 branes [10], and the D3

branes decompose into fractional branes as they hit the singularity. The resulting spectrum

is obtained using CFT methods, or more generally dimer model methods [14]. One obtains

a theory with USp(2N) × U(2N) gauge group and U(4) flavor group, with the following

matter content:

USp(2N) U(2N) [U(4)]

Xi (i ∈ 1, 2, 3) 1

Aj (j ∈ 1, 2) 1 1

S 1 1

Q 1 4

(4.1)
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The same result can also be derived using large volume language. The three elementary

fractional branes can be described by the objects i∗O(−1)[0], i∗Ω[1] and i∗O(−2)[2]. (Here

the numbers in square brackets denote the position of the given sheaf in the associated

sheaf complex describing the brane [10], and will not be essential in what follows.) The

main point is that the orientifold action (3.1) leaves the i∗Ω[1] brane invariant, leading

to the USp(2N) factor, while it exchanges i∗O(−1)[0] and i∗O(−2)[2], giving rise to the

U(2N) factor (once we take 2N such objects). The matter content can be determined by

computing Ext groups between the fractional branes, and the U(4) global symmetry factor

comes from the D7 brane stack wrapped on the quadratic divisor.

The most important part of this discussion for our purposes is the gauge group

USp(2N) associated to the invariant node. Gauge instantons for USp(2N) field theories

have gauge symmetry O(1). In particular, the euclidean D3 brane describing the field the-

ory instanton will be of type O(1), i.e., given by the same sheaf as the field theory brane.

Since the USp stack is associated with i∗Ω the gauge instanton in this node is precisely

the instanton we have been studying. In fact, it is not necessary to have N 6= 0. If N = 0

the invariant node gives a USp(0) “gauge group”, which also gives rise to non-perturbative

string theory dynamics [15–17], due to O(1) D-brane instantons [18].

5 Conclusions

We have shown the existence of an O(1) type instanton i∗Ω, invariant under the orientifold

involution, in the particular case of the complex Calabi-Yau cone over P2. Although the

discussion focused on a particular example, it is clear that the analysis holds for essentially

any rigid cycle, and that the basic phenomenon will be ubiquitous in type IIB string

compactifications.

A natural extension of this work would be to consider higher rank instantons, ideally

classifying all bundles satisfying (2.1). Furthermore, even rigidity is not a necessary con-

dition for instanton contributions when worldvolume fluxes are taken into account [19].

It would be interesting to study the general conditions under which non-rigid, non-Spin

cycles contribute to the superpotential once one considers all solutions to (2.1).

Finally, we expect the non-perturbative effects discussed in here to play an important

role in the stabilization of Kähler moduli in type IIB compactifications. As an example,

in [20] we show how the O(1) instanton discussed in this paper can be used to stabilize the

Kähler moduli in a model introduced in [21].
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