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Abstract

A search for exclusive or semi-exclusive γγ production, pp→ p(∗)+γγ+p(∗) (where
p∗ stands for a diffractively-dissociated proton), and the observation of exclusive and
semi-exclusive e+e− production, pp→ p(∗)+ e+e−+p(∗), in proton-proton collisions
at
√

s = 7 TeV, are presented. The analysis is based on a data sample corresponding
to an integrated luminosity of 36 pb−1 recorded by the CMS experiment at the LHC at
low instantaneous luminosities. Candidate γγ or e+e− events are selected by requir-
ing the presence of two photons or a positron and an electron, each with transverse
energy ET > 5.5 GeV and pseudorapidity |η| < 2.5, and no other particles in the re-
gion |η| < 5.2. No exclusive or semi-exclusive diphoton candidates are found in the
data. An upper limit on the cross section for the reaction pp → p(∗) + γγ + p(∗),
within the above kinematic selections, is set at 1.18 pb at 95% confidence level. Sev-
enteen exclusive or semi-exclusive dielectron candidates are observed, with an es-
timated background of 0.85 ± 0.28 (stat.) events, in agreement with the QED-based
prediction of 16.3± 1.3 (syst.) events.

Submitted to the Journal of High Energy Physics

c© 2013 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

∗See Appendix A for the list of collaboration members

ar
X

iv
:1

20
9.

16
66

v2
  [

he
p-

ex
] 

 1
3 

M
ar

 2
01

3

http://creativecommons.org/licenses/by/3.0




1

1 Introduction
In central exclusive (hereafter referred to as “exclusive”, for brevity) production in pp colli-
sions, pp → p + X + p, the colliding protons emerge intact from the interaction, carrying
small transverse momentum (.2 GeV), and all the energy transferred from the protons goes
into a color-singlet system at central rapidities. No other particles are produced aside from the
central system, and large rapidity gaps, i.e. wide regions of rapidity devoid of particles, are
present. The three main types of exclusive processes are due to γγ interactions (e.g. exclusive
e+e− or µ+µ− production [1]), γIP fusion (e.g. exclusive Υ production [2]) and IPIP exchange
(e.g. exclusive γγ or Higgs boson production [3]), where IP denotes the pomeron, a strongly
interacting color-singlet t-channel exchange with the vacuum quantum numbers [4, 5].
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Figure 1: The dominant diagrams for (a) exclusive diphoton production and (b) exclusive Higgs
boson production in pp collisions. Note the screening gluon that cancels the color flow from the
interacting gluons and therefore allows the protons to stay intact. For exclusive γγ production,
the contributions from qq → γγ and γγ → γγ are both theoretically estimated to be less than
1% of gg→ γγ [6].

At the Large Hadron Collider (LHC), exclusive γγ (hereafter referred to as “diphoton”) events
can be produced by means of IPIP exchange, interpreted in partonic terms as gg → γγ via a
quark loop, with an additional “screening” gluon exchanged to cancel the color of the inter-
acting gluons, as shown in Fig. 1(a). The quantum chromodynamics (QCD) calculation of this
diagram is difficult because the screening gluon has low four-momentum-transfer squared,
Q2. Furthermore, additional inelastic interactions between the protons may produce particles
that destroy the rapidity gaps; this effect is taken into account by introducing the so-called
rapidity-gap survival probability [7], which is poorly known theoretically. The study of ex-
clusive diphoton production may shed light on diffraction and the dynamics of pomeron ex-
change. In addition, exclusive diphoton production is closely related to exclusive Higgs boson
production (Fig. 1(b)), where the Higgs boson is produced via gg fusion dominantly through
a top-quark loop [8–15]. Since the QCD part of the calculation, from which most theoretical
uncertainties originate, is the same for H and γγ production, and only the calculable matrix
elements gg → γγ and gg → H are different, exclusive γγ production provides an excellent
test of the theoretical predictions for exclusive Higgs boson production.

Exclusive e+e− (hereafter referred to as “dielectron”) production via γγ interactions is a quan-
tum electrodynamics (QED) process (Fig. 2(a)), and the cross section is known with an accuracy
better than about 1%; the uncertainty is dominated by that on the proton electromagnetic form
factor [16–18]. Detailed theoretical studies have shown that in this case the correction due to the
rapidity-gap survival probability is well below 1% and can be safely neglected [19]. Exclusive
e+e− events provide an excellent control sample for other exclusive processes with less certain
theoretical predictions, such as exclusive γγ production.

Semi-exclusive γγ and e+e− production, involving single- or double-proton dissociation (Figs. 2(b)
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Figure 2: The Feynman diagrams for (a) exclusive e+e− production and semi-exclusive e+e−

production with (b) either or (c) both protons dissociating in pp collisions.

and 2(c) for the dielectron case), is also considered as signal in this analysis, as long as no par-
ticles from the proton dissociation have pseudorapidity |η| < 5.2. The pseudorapidity η is
defined as η = − ln(tan θ

2 ), where θ is the polar angle. This process has larger theoretical un-
certainties. In the rest of this paper, exclusive events will be referred to as “el-el” events, while
semi-exclusive events with either or both protons dissociated will be referred to as “inel-el”
and “inel-inel” events, respectively. The term “non-exclusive events” will be used to indicate
all other events with two photons or two electrons and additional activity.

Results on exclusive γγ production in pp collisions at a center-of-mass energy of 1.96 TeV were
obtained by the CDF collaboration [20, 21], and the measured cross sections are consistent
with the KMR [22] predictions. The CDF experiment also measured the exclusive e+e− and
µ+µ− production cross sections [23–25], and the results are in agreement with theory. Exclusive
µ+µ− production, which proceeds via the same mechanisms as exclusive e+e− production,
was also measured by the Compact Muon Solenoid (CMS) experiment in pp collisions at

√
s =

7 TeV [26], and the result agrees with the QED-based prediction.

This paper presents a search for exclusive or semi-exclusive γγ production, and the observa-
tion of exclusive and semi-exclusive e+e− production in pp collisions at

√
s = 7 TeV. Since

any other inelastic pp collision occurring in the same bunch crossing as the exclusive inter-
action (“pileup” events) would destroy the rapidity gaps and make the exclusive interaction
unobservable, only a data sample with low pileup contamination is used. The data sample
was collected in 2010 by the CMS experiment at the LHC, and corresponds to an integrated
luminosity of 36 pb−1. The signal diphoton or dielectron event selection requires the presence
of two photons or two electrons of opposite charge, each with transverse energy ET > 5.5 GeV
and pseudorapidity |η| < 2.5, and no other particles in the region |η| < 5.2. The two photons
or electrons are expected to be balanced in ET (∆ET ∼ 0) and to be back-to-back in azimuthal
angle φ (∆φ ∼ π), a consequence of the very small Q2 of the exchanged pomerons or photons.

2 The CMS detector
A detailed description of the CMS detector can be found in Ref. [27]. The central feature of
the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a field
of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromag-
netic calorimeter (ECAL) and the brass/scintillator hadron calorimeter (HCAL). Muons are
measured in gas-ionization detectors made by using three technologies: drift tubes (DT), cath-
ode strip chambers (CSC), and resistive plate chambers. In addition to the barrel and endcap
detectors, CMS has extensive forward calorimetry. CMS uses a right-handed coordinate sys-
tem, with the origin at the nominal interaction point, the x axis pointing to the center of the
LHC ring, the y axis pointing up (perpendicular to the plane of the LHC ring), and the z axis
along the counterclockwise-beam direction. The polar angle, θ, is measured from the positive
z axis and the azimuthal angle, φ, is measured in the x-y plane. The inner tracker measures
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charged particle trajectories with transverse momentum pT from less than 100 MeV, and within
the pseudorapidity range |η| < 2.5. The ECAL provides coverage in the pseudorapidity range
|η| < 1.479 in the barrel region (EB) and 1.479 < |η| < 3.0 in the two endcap regions (EE).
The HCAL provides coverage for |η| < 1.3 in the barrel region (HB) and 1.3 < |η| < 3.0 in
the two endcap regions (HE). The two hadronic forward calorimeters (HF) cover the region of
2.9 < |η| < 5.2. The CMS experiment selects data by using a two-level trigger system. The first
level consists of custom hardware processors and uses information from the calorimeters and
muon systems. The high-level trigger processor farm further decreases the event rate before
data storage.

3 Simulation and reconstruction
The EXHUME 1.34 Monte Carlo (MC) event generator [28] is used to simulate exclusive dipho-
ton events and to calculate their production cross section σ. The EXHUME package is an im-
plementation of the KMR model [22]. In this model, the two gluons couple perturbatively to
the protons, and produce the γγ system through a quark loop. The calculation includes the
Sudakov factor, which accounts for the probability that no partons are emitted by the inter-
acting gluons in the evolution up to the hard scale. The cross section is further suppressed
by the rapidity-gap survival probability. A variety of parton distribution function (PDF) sets
have been used, so as to assess the sensitivity of the cross section calculation to the low-x gluon
density g(x) (σ ∼ [g(x)]4, where x is the gluon fractional momentum) [29], which changes
significantly in different PDF sets. Semi-exclusive diphoton production is not well known the-
oretically, and is not simulated in this analysis.

The LPAIR 4.0 event generator [30] is used to simulate both exclusive and semi-exclusive e+e−

events and to calculate their production cross sections. For exclusive events, the cross section
depends on the proton electromagnetic form factor. In the case of proton dissociation, the cross
section calculation requires the knowledge of the proton structure function and the rapidity-
gap survival probability. The latter is not included in LPAIR and is taken as 1 in this analysis.
In order to simulate the fragmentation of the excited protons, LPAIR is interfaced to the JET-
SET 7.408 package [31], where the LUND fragmentation model [32] is implemented.

The generated events are further processed through a detailed simulation of the CMS detector
based on GEANT4 [33] and are reconstructed in the same way as the collision data.

Photon candidates are reconstructed [34] from clusters of ECAL channels around significant
energy deposits, which are merged into so-called superclusters. The clustering algorithm re-
sults in an almost complete recovery of the energy of photons converting in the material in
front of the ECAL. In the barrel region, superclusters are formed from 5-crystal-wide strips in
η centered on the locally most energetic crystal (seed), and have a variable extension in φ (up
to ±17 crystals from the seed). In the endcap, matrices of 5× 5 crystals (which may partially
overlap) around the most energetic crystals are merged if they lie within a narrow road in η
(∆η = 0.14, ∆φ = 0.6 rad).

The reconstruction of electrons [35] combines the ECAL and inner-tracker information. It starts
with clusters of energy deposits in the ECAL, which include the energy due to electron-induced
electromagnetic showers and that of the bremsstrahlung photons emitted along the electron
trajectory. The clusters drive the search for hits in the pixel detector, which are then used to seed
electron tracks. This is complemented by the usage of the tracker for the seeding, to improve
the reconstruction efficiency at low pT and in the transition regions between the ECAL detector
elements. Trajectories in the tracker volume are reconstructed by using a dedicated model of
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the electron energy loss, and are fitted with a Gaussian sum filter (GSF) [35]. The four-momenta
of electrons are obtained by using the angle from the associated GSF track and the energy from
the combination of the tracker and ECAL information.

4 Event selection
The selection of signal events proceeds in three steps. Exactly two photons or two electrons of
opposite charge, each with ET > 5.5 GeV and |η| < 2.5, are required to be present in the trig-
gered events. Then, the events are required to satisfy the cosmic-ray rejection criteria. Finally,
the exclusivity selection is performed, based on the information from the tracker, the electro-
magnetic calorimeter, the hadron calorimeter, and the muon chambers; this selection requires
no additional particles reconstructed in these subdetectors, and thus suppresses the contribu-
tion from semi-exclusive events and rejects non-exclusive events as well as pileup events.

4.1 Photon and electron selection

Both diphoton and dielectron candidate events were selected online by two different triggers
corresponding to two subsequent data acquisition periods. Both triggers required the presence
of two electromagnetic showers with ET > 5 GeV. In the second data acquisition period with
higher instantaneous luminosities, the two showers were also required to be separated in az-
imuthal angle by at least 2.5 rad, and a low-activity requirement of less than 10 hadronic towers
with energy above 5 GeV and |η| < 5.2 was applied.

The first offline selection step is to require the presence of exactly two photon candidates or two
electron candidates of opposite charge, each with ET > 5.5 GeV and |η| < 2.5, for the diphoton
and the dielectron analyses, respectively. These photon or electron candidates are subsequently
required to satisfy the identification criteria described below.

For photons, the energy detected in the HCAL behind the photon cluster is required to be
less than 2% of the ECAL energy, and the ECAL cluster-shape parameter [34] is required to be
consistent with that of a photon. The photons are required to be isolated from other activity
in the detector. The isolation parameter is defined as the scalar sum of the transverse energies
of tracks or calorimeter deposits within ∆R =

√
(∆η)2 + (∆φ)2 = 0.4 of the direction of the

photon, after excluding the contribution from the candidate itself. The isolation parameter is
required to be less than 0.001× ET + 1.0 GeV, 0.006× ET + 2.5 GeV, and 0.0025× ET + 2.0 GeV
for the tracker, ECAL, and HCAL, respectively, where ET is the photon transverse energy in
GeV. The absence of any hit patterns in the pixel tracker consistent with those of an electron
track is also required in order to discriminate photons from electrons. No explicit attempt is
made to distinguish between photons and neutral pions when the showers of the two decay
photons merge.

For electrons, the same requirements on the HCAL energy and the cluster shape are applied
as in the photon case. The ratio between the isolation parameter described above (but with
∆R = 0.3) and the electron pT is required to be less than 0.05, 0.3, and 0.2 (barrel) or 0.1 (endcap),
for the tracker, ECAL, and HCAL, respectively. The difference between the azimuthal angle of
the cluster and that of the direction of the electron track at its vertex is required to be less than
0.3 rad; the corresponding difference in pseudorapidity is required to be less than 0.02 (EB)
or 0.03 (EE). The number of missing hits in front of the first valid hit of the electron track is
required to be ≤1 in order to reject electrons from photon conversions.
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4.2 Cosmic-ray rejection

In order to remove cosmic-ray events, the timing of the two photons or electrons, as measured
by the ECAL, is required to be consistent with that of particles originating from a collision, i.e.
|t1| < 2 ns, |t2| < 2 ns, and |t1 − t2| < 2 ns, where ti is the timing of the i-th photon or electron.
Furthermore, the two photon or electron candidates are required to be separated by more than
2.5 rad in φ, in order to reject the remaining cosmic-ray events in which the cosmic ray is far
away from the interaction point in the x-y plane.

4.3 Exclusivity selection

Exclusivity selection criteria are designed to reject events with particles in the range |η| < 5.2
not associated with the two photon or electron candidates. More specifically, it is required
that there should be no additional tracks in the tracker, no additional towers above the noise
thresholds in the calorimeters (EB, EE, HB, HE, and HF), and no track segments in the DTs and
CSCs. An additional track is defined as any track outside a region of ∆η < 0.15 and ∆φ <
0.7 rad of the photons or the electrons. An additional tower in the EB is defined as a tower
above the noise threshold and outside a region of ∆η < 0.15 and ∆φ < 0.7 rad of the photons
or the electrons, while in the EE the region is ∆η < 0.15 and ∆φ < 0.4 rad. An additional tower
in the HB, HE, and HF is defined as any tower above the noise thresholds. The noise thresholds
are determined from non-interaction events. The values of the noise thresholds are 0.52 GeV,
2.18 GeV, 1.18 GeV, 1.95 GeV, and 9.0 GeV for the EB, EE, HB, HE, and HF, respectively, and are
applied in energy rather than ET.

The numbers of diphoton and dielectron candidates in the data sample remaining after each
selection step are listed in Table 1.

Table 1: Numbers of diphoton and dielectron candidates remaining after each selection step.

Diphoton analysis Dielectron analysis
Selection criterion Events remaining Selection criterion Events remaining
Trigger 3 023 496 Trigger 3 023 496
Photon reconstruction 1 683 526 Electron reconstruction 132 271
Photon identification 40 692 Electron identification 1 668
Cosmic-ray rejection 34 234 Cosmic-ray rejection 1 321
Exclusivity requirement 0 Exclusivity requirement 17

5 Efficiencies
The overall selection efficiency ε is defined as ε = εγγ(e+e−) · εcos · εfsr · εexc, where εγγ(e+e−)
is the efficiency for identifying the two photons or electrons; εcos is the efficiency for a signal
event to pass the cosmic-ray rejection criteria; εfsr is the probability for a signal event not to
be rejected by the exclusivity selection criteria because of final-state radiation; and εexc is the
probability for a signal event not to be rejected by the exclusivity selection criteria because of
pileup, calorimeter noise, or beam background.

5.1 Photon and electron efficiency

The diphoton efficiency εγγ is split into three parts: the reconstruction efficiency εreco, the iden-
tification efficiency εid, and the trigger efficiency εtrig, i.e. εγγ = εγγ, reco · ε2

γ, id · εγγ, trig. The
reconstruction and trigger efficiencies are both denoted by the subscript “γγ”, rather than just
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“γ”, to reflect the fact that these efficiencies must be calculated per event, rather than per pho-
ton, due to the strong ET and φ correlations between the two photons (balanced in ET and
back-to-back in φ). All these efficiencies are calculated by using signal MC samples. The sys-
tematic uncertainty of the reconstruction efficiency is evaluated by shifting the ET threshold
by ±5%, motivated by the energy scale uncertainty for low-ET photons and electrons. The
systematic uncertainty of the identification efficiency is evaluated by shifting the thresholds
of the identification parameters by ±10%. The systematic uncertainty of the trigger efficiency
is estimated from the difference of the single-photon trigger efficiency calculated from inter-
action (minimum-bias) events in the data and in the MC samples. A summary of the photon
efficiencies for exclusive diphoton events is listed in Table 2.

For the dielectron analysis, the same procedure as in the diphoton analysis is used to determine
the electron efficiencies and the corresponding systematic uncertainties. The results are listed
in Table 2 for both exclusive and semi-exclusive e+e− events.

Table 2: Summary of the photon and electron efficiencies with systematic uncertainties.

Diphoton analysis Dielectron analysis
el-el inel-el inel-inel

εγγ, reco 0.724±0.087 εe+e−, reco 0.606±0.055 0.663±0.050 0.683±0.045
εγ, id 0.941±0.003 εe, id 0.967±0.005 0.966±0.005 0.960±0.005
εγγ, trig 0.757±0.050 εe+e−, trig 0.655±0.024 0.708±0.018 0.683±0.013
εγγ 0.485±0.067 εe+e− 0.371±0.037 0.438±0.035 0.430±0.030

5.2 Cosmic-ray rejection efficiency

For exclusive γγ and e+e− events, since the efficiency for the requirement of ∆φ > 2.5 rad is
100%, the cosmic-ray rejection efficiency εcos is equal to the efficiency for the timing require-
ments mentioned in Section 4.2. This efficiency is determined by applying the timing require-
ments to a data sample of J/ψ → e+e− events with invariant mass 3.0 < M(e+e−) < 3.2 GeV,
which has a negligible cosmic-ray contamination. This yields εcos = 0.979± 0.009 for exclusive
γγ and e+e− events. The quoted systematic uncertainty is evaluated by shifting the thresholds
of the timing requirements by±5%, motivated by the uncertainty of the timing measurement of
less than 100 ps. For semi-exclusive e+e− events, the efficiency for the ∆φ requirement is deter-
mined from MC to be 0.858 and 0.701 for inel-el and inel-inel events, respectively. A correction
factor of 0.979 and 0.932 is subsequently applied for inel-el and inel-inel e+e− events in order
to take into account the ∆φ requirement at the trigger level. The cosmic-ray rejection efficiency
for inel-el and inel-inel e+e− events is then estimated to be 0.822 ± 0.008 and 0.639 ± 0.006,
respectively.

5.3 Final-state-radiation efficiency

As a consequence of the exclusivity requirements, signal diphoton events with either or both
photons converting into e+e− pairs, as well as events that produce electrons in the tracker
detector by Compton scattering, are vetoed if there are energy deposits above the noise thresh-
olds outside the regions defined in Section 4.3. The corresponding efficiency is the final-state-
radiation efficiency εfsr, and is estimated by applying the exclusivity selection criteria to sim-
ulated signal events. The systematic uncertainty is evaluated by shifting the noise thresholds
of the exclusivity selection criteria by the energy scale uncertainty for each subdetector. The
uncertainty due to the tracker-material budget is negligible and is evaluated by using a set of
realistic tracker-material modifications [36] in the simulation.



5.4 Exclusivity efficiency 7

Likewise, for both exclusive and semi-exclusive dielectron production, if a final-state electron
emits a high-energy bremsstrahlung photon, the event is vetoed by the exclusivity selection
criteria. For the semi-exclusive case, the probability that a semi-exclusive event is not vetoed
because of the particles from the proton dissociation is also folded into this efficiency, which
results in a much lower final-state-radiation efficiency than for the exclusive case. The same
procedure as in the diphoton analysis is used to determine the efficiencies and the uncertainties
due to the energy scale. For the semi-exclusive case, the additional uncertainty coming from
the proton fragmentation model is dominant, and is evaluated by using different programs to
simulate the dissociation of the excited protons. The programs considered are PHOJET 1.12 [37,
38], PYTHIA 6.422 [39], PYTHIA 8.142 [40], and PYTHIA 8.165 with MBR [41].
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Figure 3: Exclusivity efficiency as a function of the bunch-by-bunch luminosity.

The exclusivity efficiency is the probability that a signal event is not rejected by the exclusivity
selection criteria because of pileup, calorimeter noise, or beam background in the same bunch
crossing, and is determined by using zero-bias events. Zero-bias events are those triggered
solely on the bunch-crossing time. Since the number of inelastic proton-proton interactions in
a given bunch crossing follows a Poisson distribution and the exclusivity efficiency is approx-
imately equal to the probability of having no inelastic collision, the exclusivity efficiency is an
exponential function of the bunch-by-bunch instantaneous luminosity:

εexc(Lbunch) =
Nexc

zero-bias(Lbunch)

Nzero-bias(Lbunch)
≈ e−n = e−Lbunch·σinelastic/ f

where N(exc)
zero-bias is the number of zero-bias events with (exc) or without the exclusivity require-

ments, n is the average number of inelastic interactions per bunch crossing for a given bunch-
by-bunch luminosity Lbunch, and f = 11 246 Hz is the LHC revolution frequency. The exclu-
sivity efficiency is shown in Fig. 3 as a function of the bunch-by-bunch luminosity, calculated
with a zero-bias data sample taken during the same data acquisition period as that of the signal
sample.

The average exclusivity efficiency is calculated by using the following equation [23]:
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εexc =

∫ dNzero-bias
dLbunch

· Lbunch · εexc(Lbunch) · dLbunch∫ dNzero-bias
dLbunch

· Lbunch · dLbunch

where the weight Lbunch in the integrations reflects the fact that the probability of a process
taking place in a given bunch crossing is proportional to the corresponding bunch-by-bunch
luminosity. The average exclusivity efficiency is εexc = 0.145± 0.008, where the uncertainty
is evaluated by varying the noise thresholds of the exclusivity selection criteria by ±5%. This
efficiency is dominated by the losses due to pileup.

Table 3 lists a summary of the efficiencies for both the diphoton and the dielectron analyses.

Table 3: Summary of the efficiencies for both the diphoton and the dielectron analyses. The
quoted uncertainties are systematic.

Diphoton analysis Dielectron analysis
el-el inel-el inel-inel

εγγ 0.485 ± 0.067 εe+e− 0.371 ± 0.037 0.438 ± 0.035 0.430 ± 0.030
εcos 0.979 ± 0.009 εcos 0.979 ± 0.009 0.822 ± 0.008 0.639 ± 0.006
εfsr 0.972 ± 0.005 εfsr 0.927 ± 0.005 0.666 ± 0.049 0.299 ± 0.041
εexc 0.143 ± 0.008 εexc 0.143 ± 0.008 0.143 ± 0.008 0.143 ± 0.008
ε 0.0660 ± 0.0099 ε 0.0481±0.0055 0.0343±0.0042 0.0117 ±0.0019

6 Backgrounds
For diphoton production, the following background processes are considered: non-exclusive
events, exclusive e+e− production, cosmic-ray events, and exclusive π0π0 production.

The non-exclusive background consists of non-exclusive events with particles passing through
the cracks between the calorimeter elements, or with energy deposits below the noise thresh-
olds, so that they appear exclusive. In order to estimate the amount of this background, the
two-dimensional distribution of the numbers of additional tracks and additional towers for
diphoton events, with all selection criteria applied except the exclusivity requirements, is fitted
and then extrapolated to the signal region, i.e. the bin with no additional tracks or towers. This
yields a non-exclusive background of 1.68± 0.40 events.

Exclusive e+e− events can be misidentified as diphoton events if neither electron track is re-
constructed or both electrons undergo hard bremsstrahlung. This contribution is estimated by
assuming a single-electron misidentification probability of 8%, as determined from simulated
exclusive e+e− events, for the 17 e+e− candidates found in the data (Table 1), which results in
a background of 0.11± 0.03 events.

The background from cosmic-ray events is evaluated by measuring the density of cosmic-ray
events outside the signal region described in Section 4.2 and then extrapolating that density
into the signal region. This results in a probability of 0.46% that a diphoton candidate is due to
a cosmic ray.

Exclusive π0π0 production (π0 → γγ) [42] can be a background to diphoton production if
the two pions are both misidentified as photons. A simulation carried out with the SUPER-
CHIC 1.41 event generator [43] is used to calculate the cross section and derive the selec-
tion efficiency. Fewer than 10−4 exclusive diphoton candidates are expected to originate from



9

π0π0 events. Therefore, the background from exclusive π0π0 production, even with conserva-
tive theoretical uncertainties, is negligible. The background from exclusive pair production
of other mesons, e.g. pp → p + ηη + p (η → γγ), is also estimated to be negligible be-
cause of the low production cross sections (which are similar to that of exclusive π0π0 pro-
duction). Exclusive γπ0 or γη production is forbidden by C-parity conservation. Exclusive
single-meson production, e.g. pp → p + η + p → p + γγ + p, is completely removed by the
requirement ET(γ) > 5.5 GeV, complemented by ∆φ(γγ) > 2.5 rad, which selects events with
M(γγ) & 11 GeV.

For dielectron production, the following background processes are considered: non-exclusive
events, exclusive Υ production, cosmic-ray events, and exclusive π+π− production.

The non-exclusive background is estimated by using the distribution of the numbers of addi-
tional tracks and additional towers for dielectron events with all selection criteria applied ex-
cept the exclusivity requirements, after subtracting the contributions from both exclusive and
semi-exclusive e+e− production expected from the simulation. This background is estimated
to be of 0.80± 0.28 events.

The background from exclusive Υ production via γIP fusion (γIP→ Υ(1S,2S,3S) → e+e−) [2] is
completely removed by the ET > 5.5 GeV requirement on the electrons, which corresponds to
M(e+e−) & 11 GeV, well above the Υ(3S) mass (10.36 GeV) even taking into account the e+e−

mass resolution of ∼150 MeV.

The cosmic-ray background contamination, estimated with the same method as for the dipho-
ton analysis, is 0.3%, i.e. 0.05± 0.01 events.

Exclusive π+π− production via IPIP exchange [42] can be a background to e+e− production
if the two pions are both misidentified as electrons. The cross section, calculated with SUPER-
CHIC, is less than 0.1% of that for exclusive e+e− production, which translates into a negligible
background. This is consistent with the fact that no additional candidates are found, after re-
moving the requirement of no HCAL energy behind the electron shower (a high-energy deposit
in the HCAL is the signature of a pion).

A summary of the background processes for both the diphoton and the dielectron analyses is
listed in Table 4. The non-exclusive background is the largest contribution in both analyses.

Table 4: Background event yields expected for both the diphoton and the dielectron analyses.
The quoted uncertainties are statistical.

Diphoton analysis Dielectron analysis
Background Events Background Events
Non-exclusive 1.68± 0.40 Non-exclusive 0.80± 0.28
Exclusive e+e− 0.11± 0.03 Exclusive Υ(1S,2S,3S)→ e+e− Negligible
Cosmic ray Negligible Cosmic ray 0.05± 0.01
Exclusive π0π0 Negligible Exclusive π+π− Negligible
Total 1.79± 0.40 Total 0.85± 0.28

7 Results
No diphoton events survive the selection criteria. An upper limit on the production cross
section is set employing a CLs approach [44, 45], taking into account the integrated luminosity,
the selection efficiency, the background contributions, and their uncertainties. A log-normal
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prior is used for the integration over the nuisance parameters. This gives an upper limit on the
production cross section at 95% confidence level (CL):

σ(ET(γ) > 5.5 GeV, |η(γ)| < 2.5) < 1.18 pb.

The upper limit is on the sum of the exclusive (el-el) and semi-exclusive (inel-el and inel-inel)
γγ production cross sections, with no particles from the proton dissociation having |η| < 5.2
for the semi-exclusive case. Figure 4 shows the comparison between the present upper limit
and the predicted cross sections (el-el only) calculated with the EXHUME generator. Two dif-
ferent PDF sets, MRST01 [46, 47] and MSTW08 [48], from both leading-order (LO) and next-
to-leading-order (NLO) fits, are considered. The difference between LO and NLO predictions
reflects mostly the difference in the low-x gluon density. The uncertainties in these theoretical
predictions (in addition to those due to the PDFs) are estimated to be a factor of about 2 [49], as
shown in Fig. 4. The upper limit measured in this analysis is an order of magnitude above the
predicted cross sections with NLO PDFs, while it provides some constraint on the predictions
with LO PDFs. If the MSTW08-LO PDF is used, the probability of finding no candidate in the
present data is less than 23%. The semi-exclusive γγ production cross section has larger the-
oretical uncertainties, but is expected to be of magnitude similar to that of the fully exclusive
process [49].
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Figure 4: Comparison of the upper limit (at 95% CL) derived with the present data and four
theoretical predictions. The upper limit is on the sum of the exclusive and semi-exclusive γγ
production cross sections (where it is required that no particles from the proton dissociation
have |η| < 5.2), while the theoretical predictions are for exclusive γγ production only. If the
contributions from semi-exclusive production are included, the predictions increase by a factor
of ∼2 [49].

Table 5: Predicted e+e− yields for both exclusive and semi-exclusive e+e− production. The
relative uncertainty of the integrated luminosity L is 4% [50]. The production cross sections σ
are calculated with the LPAIR generator.

Process L ( pb−1) σ (pb) ε Yield (events)
el-el 3.74 0.0481±0.0055 6.51±0.79 (syst.)
inel-el 36.2±1.4 6.68 0.0343±0.0042 8.29±1.07 (syst.)
inel-inel 3.52 0.0117±0.0019 1.49±0.25 (syst.)
Total 16.3±1.3 (syst.)
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Seventeen exclusive or semi-exclusive e+e− candidates are observed, with an expected back-
ground of 0.85± 0.28 (stat.) events, consistent with the theoretical prediction for the combined
el-el, inel-el and inel-inel e+e− yield of 16.3± 1.3 (syst.) events (Table 5). Figure 5 shows the
comparison of the measured and simulated invariant-mass and pT distributions of the e+e−

pairs, while Fig. 6 shows that for the ∆pT and ∆φ distributions. Both the yield and the kine-
matic distributions are consistent with the assumption of exclusive and semi-exclusive e+e−

production via the γγ → e+e− process, which validates the analysis technique, notably the
exclusivity selection.
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Figure 5: Distributions of (a) the invariant mass and (b) the transverse momentum of the e+e−

pairs, compared to the LPAIR predictions (histograms) for the three processes contributing to
exclusive and semi-exclusive γγ→ e+e− production, passed through the full detector simula-
tion and reconstruction. The simulation is normalized to the integrated luminosity of the data
sample (36 pb−1), and does not include the estimated 0.85± 0.28 background events.

8 Summary
A search for exclusive or semi-exclusive γγ production and the observation of exclusive and
semi-exclusive e+e− production have been presented, based on a sample of pp collisions at√

s = 7 TeV corresponding to an integrated luminosity of 36 pb−1. Exclusive γγ production
helps improve the understanding of diffraction and provides a test of the theoretical predic-
tions for exclusive Higgs boson production. Exclusive e+e− production is dominantly a QED
process and provides a means to check the selection procedure for other exclusive processes.
No diphoton events satisfy the selection criteria. An upper limit on the cross section for the
exclusive reaction pp→ p+ γγ + p and the corresponding semi-exclusive processes (in which
either or both protons diffractively dissociate and no particles from the proton dissociation
have |η| < 5.2), with ET(γ) > 5.5 GeV and |η(γ)| < 2.5, is set at 1.18 pb at 95% confidence
level. Using a similar technique, 17 exclusive or semi-exclusive e+e− candidates are observed,
with an expected background of 0.85± 0.28 (stat.) events, consistent with the LPAIR prediction
of 16.3± 1.3 (syst.) events. Both the number of candidates and the kinematic distributions are
in agreement with the expectation for exclusive and semi-exclusive e+e− production via the
γγ→ e+e− process.
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Figure 6: Distributions of the difference of (a) the transverse momentum and (b) the azimuthal
angle of the e+e− pairs, compared to the LPAIR predictions (histograms) for the three processes
contributing to exclusive and semi-exclusive γγ → e+e− production, passed through the full
detector simulation and reconstruction. The simulation is normalized to the integrated lumi-
nosity of the data sample (36 pb−1), and does not include the estimated 0.85± 0.28 background
events.
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