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The pT-differential inclusive production cross section of the prompt charm-strange meson D+
s in the

rapidity range |y| < 0.5 was measured in proton–proton collisions at
√

s = 7 TeV at the LHC using
the ALICE detector. The analysis was performed on a data sample of 2.98 × 108 events collected with
a minimum-bias trigger. The corresponding integrated luminosity is Lint = 4.8 nb−1. Reconstructing the
decay D+

s → φπ+, with φ → K−K+, and its charge conjugate, about 480 D±
s mesons were counted,

after selection cuts, in the transverse momentum range 2 < pT < 12 GeV/c. The results are compared
with predictions from models based on perturbative QCD. The ratios of the cross sections of four D
meson species (namely D0, D+, D∗+ and D+

s ) were determined both as a function of pT and integrated
over pT after extrapolating to full pT range, together with the strangeness suppression factor in charm
fragmentation. The obtained values are found to be compatible within uncertainties with those measured
by other experiments in e+e−, ep and pp interactions at various centre-of-mass energies.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

The measurement of open charm production in proton–proton
(pp) collisions at the Large Hadron Collider (LHC) provides a way
to test predictions of quantum chromodynamics (QCD) at the high-
est available collision energies. Charm and beauty production cross
sections can be computed in perturbative QCD (pQCD) using the
factorization approach [1,2]. In this scheme, cross sections are
computed as a convolution of three terms: the parton distribu-
tion functions of the incoming protons, the partonic hard scat-
tering cross section, and the fragmentation process. The partonic
hard scattering cross section is computed through a perturbative
calculation [1,2], while the parton distribution functions and the
fragmentation process are parametrized on experimental data. In
particular, the fragmentation describes the non-perturbative tran-
sition of a charm quark to a hadron. It is modelled by a fragmen-
tation function, which parametrizes the fraction of quark energy
transferred to the produced hadron, and by the fragmentation frac-
tions, f (c → D), which describe the probability of a charm quark
to hadronize into a particular hadron species.

The production of prompt D0, D+ and D∗+ mesons in pp col-
lisions at

√
s = 7 TeV was measured with the ALICE detector at

two centre-of-mass energies, namely 7 and 2.76 TeV [3,4]. Here,
‘prompt’ indicates D mesons produced at the pp interaction point,
either directly in the hadronization of the charm quark or in strong
decays of excited charm resonances. The contribution from weak

✩ © CERN for the benefit of the ALICE Collaboration.

decays of beauty mesons, which give rise to feed-down D mesons
displaced from the interaction vertex, was subtracted. The mea-
sured pT-differential cross sections for prompt D0, D+ and D∗+ are
described within uncertainties by theoretical predictions based on
pQCD at next-to-leading order (e.g. in the general-mass variable-
flavour-number scheme, GM-VFNS [5]) or at fixed order with next-
to-leading-log resummation (FONLL [6]). The central value of the
GM-VFNS predictions for these three mesons lies systematically
above the data. On the other hand, the data tend to be higher
than the central value of the FONLL predictions, as it was ob-
served at lower collision energies, namely at the Tevatron [7,8],
where hadronic decays of D mesons were reconstructed, and at
RHIC, where measurements of electrons from semileptonic D and
B decays were performed [9,10].

Heavy flavour production in hadronic collisions can be calcu-
lated also in the framework of kT-factorization with unintegrated
gluon distributions (UGDFs) to account for the transverse momenta
of the initial partons [11–14]. Calculations of inclusive production
cross section of D mesons based on this approach in the leading
order (LO) approximation were recently published for LHC energy
and compared to experimental results [15,16].

The measurement of the pT-differential prompt D+
s meson pro-

duction is of particular interest due to its strange valence quark
content. The D+

s production cross section in hadronic collisions
was measured at lower energies at the Tevatron collider in the
transverse momentum (pT) range 8 < pT < 12 GeV/c [7]. Prelimi-
nary results for D+

s production at the LHC were reported by the
LHCb Collaboration for prompt mesons at forward rapidity [17]
and by the ATLAS Collaboration at central rapidity [18]. The LHCb
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Collaboration also measured the asymmetry between prompt D+
s

and D−
s production in the rapidity region 2 < y < 4.5 and for

transverse momenta pT > 2 GeV/c, observing a small excess of
D−

s mesons: AP = (σ (D+
s ) − σ(D−

s ))/(σ (D+
s ) + σ(D−

s )) = (−0.33 ±
0.22 ± 0.10)% [19]. Such a particle–antiparticle production asym-
metry is understood in phenomenological models as due to the
effect of the beam remnants on the heavy-quark hadronization, see
e.g. [20].

Charm production has been measured in ep interactions at the
HERA collider by the ZEUS [21] and H1 [22] Collaborations, as well
as in e+e− annihilations, at the Z0 resonance, by the ALEPH [23],
DELPHI [24] and OPAL [25] Collaborations, and at centre-of-mass
energies of about 10 GeV by the CLEO [26] and ARGUS [27] Col-
laborations.

As far as theoretical models are concerned, a calculation of the
D+

s production cross section within the FONLL framework is not
available, because of the poor knowledge of the parton fragmenta-
tion function. The measured data points can be compared with the
GM-VFNS prediction that uses meson specific fragmentation func-
tions [28], and to the calculation based on kT-factorization at LO
[15,16].

From the differential production cross section of prompt D0,
D+ , D∗+ and D+

s mesons, the relative production yields of the
D meson species can be studied as a function of transverse mo-
mentum. A pT dependence is expected for these ratios, due to
differences in the fragmentation function of the charm quark in the
four considered meson species, and because of the different con-
tributions from decays of higher excited states. In this sense, the
measurement of the ratios between the D meson species can pro-
vide information on the fragmentation functions that can be used
in the pQCD models based on the factorization approach. The sup-
pression of strange meson production in the charm fragmentation
is quantified by the strangeness suppression factor, γs, which is
computed from the measured D0, D+ and D+

s cross sections ex-
trapolated to full pT range, as defined in Section 6. The values
measured at the LHC can be compared with those measured for
different energies and different colliding systems [29].

Furthermore, the measurement of D+
s in pp collisions pro-

vides a reference for the studies of charm production in heavy-
ion collisions. According to QCD calculations on the lattice, un-
der the conditions of high energy-density and temperature that
are reached in these collisions, the confinement of quarks and
gluons into hadrons vanishes and a transition to a Quark–Gluon
Plasma (QGP) occurs [30]. Charm hadrons are a powerful tool
to study the properties of the QCD medium created in these
collisions [31–33]. In particular, the D+

s meson is sensitive to
strangeness production in heavy-ion collisions. Strange quarks are
abundant in the QGP, resulting in an enhanced production of
strange particles with respect to pp collisions [34–37]. Hence, at
low momentum, the relative yield of D+

s mesons with respect to
non-strange charm mesons (such as D0 and D+) is predicted to be
enhanced in nucleus–nucleus collisions [38–40], if the dominant
mechanism for D meson formation at low/intermediate momenta
is in-medium hadronization of charm quarks via coalescence with
strange quarks [41–43].

In this Letter, we report on the measurement of D+
s produc-

tion cross section in pp collisions at
√

s = 7 TeV with the ALICE
detector at the LHC. D+

s mesons were reconstructed through their
hadronic decay channel D+

s → φπ+ with a subsequent decay φ →
K−K+ . The pT-differential cross section is measured over a range
of transverse momentum extending from 2 GeV/c up to 12 GeV/c
at central rapidity, |y| < 0.5. In Section 2, the detector layout and
the data sample are described. This is followed, in Section 3, by the
description of the D+

s meson reconstruction strategy, the selection
cuts, and the raw yield extraction from the invariant mass distri-

butions. The various corrections applied to obtain the production
cross sections are illustrated in Section 4. This also includes the es-
timation of the fraction of promptly produced D+

s mesons. The var-
ious sources of systematic uncertainties are discussed in detail in
Section 5. The results on the pT-differential cross section compared
with pQCD theoretical predictions, the D meson production ratios,
and the strangeness suppression factor are presented in Section 6.

2. Detector layout and data collection

The ALICE detector is described in detail in [44]. It is com-
posed of a central barrel, a forward muon spectrometer, and a set
of forward detectors for triggering and event characterization. The
detectors of the central barrel are located inside a large solenoid
magnet that provides a magnetic field B = 0.5 T, parallel to the
beam line.

D+
s mesons, and their charge conjugates, were reconstructed in

the central rapidity region from their decays into three charged
hadrons (K−K+π+), utilizing the tracking, vertexing and particle
identification capabilities of the central barrel detectors.

The trajectories of the decay particles were reconstructed from
their hits in the Inner Tracking System (ITS) and in the Time
Projection Chamber (TPC) detectors in the pseudo-rapidity range
|η| < 0.8. The ITS [45] consists of six cylindrical layers of silicon
detectors with radii in the range between 3.9 cm and 43.0 cm.
The two innermost layers are equipped with Silicon Pixel Detectors
(SPD), Silicon Drift Detectors (SDD) are used in the two inter-
mediate layers, while the two outermost layers are composed of
double-sided Silicon Strip Detectors (SSD). The ITS, thanks to the
high spatial resolution of the reconstructed hits, the low material
budget (on average 7.7% of a radiation length for tracks at η = 0),
and the small distance of the innermost layer from the beam vac-
uum tube, provides the capability to detect the secondary vertices
originating from heavy flavour decays. For this purpose, a key role
is played by the two layers of SPD detectors, which are located at
radial positions of 3.9 and 7.6 cm from the beam line and cover
the pseudo-rapidity ranges |η| < 2.0 and |η| < 1.4, respectively.
The TPC [46] provides track reconstruction with up to 159 space
points per track in a cylindrical active volume of about 90 m3. The
active volume has an inner radius of about 85 cm, an outer radius
of about 250 cm, and an overall length along the beam direction
of 500 cm.

Particle identification (PID) is provided by the measurement of
the specific ionization energy loss, dE/dx, in the TPC and of the
flight time in the time-of-flight (TOF) detector. The dE/dx samples
measured by the TPC are reduced, by means of a truncated mean,
to a Gaussian distribution with a resolution of σdE/dx/(dE/dx) ≈
5.5% [46]. The TOF detector is positioned at 370–399 cm from
the beam axis and covers the full azimuth for the pseudo-rapidity
range |η| < 0.9. The particle identification is based on the differ-
ence between the measured time-of-flight and its expected value,
computed for each mass hypothesis from the track momentum and
length. The overall resolution on this difference is about 160 ps
and it includes the detector intrinsic resolution, the contribution
from the electronics and the calibration, the uncertainty on the
start time of the event (i.e. the time of the collision), and the
tracking and momentum resolution. The start time of the event is
defined as the weighted average between the one estimated using
the particle arrival times at the TOF [47] and the one measured
by the T0 detector. The T0 detector is composed of two arrays
of Cherenkov counters located on either side of the interaction
point at +350 cm and −70 cm from the nominal vertex position
along the beam line. In this analysis, the time-of-flight measure-
ment provides kaon/pion separation up to a momentum of about
1.5 GeV/c.
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The data sample used for the analysis consists of 298 million
minimum-bias (MB) pp collisions at

√
s = 7 TeV, corresponding

to an integrated luminosity Lint = 4.8 nb−1, collected during the
2010 LHC run period. The minimum-bias trigger was based on
the information of the SPD and the VZERO detectors. The VZERO
detector is composed of two arrays of scintillator tiles with full az-
imuthal coverage in the pseudo-rapidity regions 2.8 < η < 5.1 and
−3.7 < η < −1.7. Minimum-bias collisions were triggered by re-
quiring at least one hit in either of the VZERO counters or in the
SPD (|η| < 2), in coincidence with the arrival of proton bunches
from both directions. This trigger was estimated to be sensitive to
about 87% of the pp inelastic cross section [48,49]. It was verified
by means of Monte Carlo simulations based on the PYTHIA 6.4.21
event generator [50] (with Perugia-0 tune [51]) that the minimum-
bias trigger is 100% efficient for events containing D mesons with
pT > 1 GeV/c and |y| < 0.5 [3]. Events were further selected of-
fline to remove the contamination from beam-induced background
using the timing information from the VZERO and the correlation
between the number of hits and track segments (tracklets) in the
SPD detector.

During the pp run, the luminosity in the ALICE experiment was
limited to 0.6–1.2 × 1029 cm−2 s−1 by displacing the beams in the
transverse plane by 3.8 times the r.m.s. of their transverse pro-
file, thus keeping the probability of collision pile-up below 4% per
triggered event. The luminous region, measured from the distribu-
tion of the reconstructed interaction vertices, had an r.m.s. width
of about 4–6 cm along the beam direction and 35–50 μm in the
transverse plane (the quoted ranges originate from the variations
of the beam conditions during the data taking). Only events with
a vertex found within ±10 cm from the centre of the detector
along the beam line were used for the analysis. This requirement
selects a region where the vertex reconstruction efficiency is inde-
pendent of its position along the beam line and it provides almost
uniform acceptance for particles within the pseudo-rapidity range
|η| < 0.8 for all events in the analyzed sample. Pile-up events were
identified by the presence of more than one interaction vertex
reconstructed by matching hits in the two SPD layers (tracklets).
An event was rejected from the analyzed data sample if a second
interaction vertex was found, it had at least 3 associated track-
lets, and it was separated from the first one by more than 8 mm.
The remaining undetected pile-up is negligible for the analysis de-
scribed in this Letter.

3. D+
s meson reconstruction and selection

D+
s mesons and their antiparticles were reconstructed in the

decay chain D+
s → φπ+ (and its charge conjugate) followed by

φ → K−K+ . The branching ratio (BR) of the chain D+
s → φπ+ →

K−K+π+ is 2.28 ± 0.12% [52]. It should be noted that other D+
s

meson decay channels can give rise to the same K−K+π+ fi-
nal state. Among them, those with larger BR are D+

s → K∗0K+
and D+

s → f0(980)π+ , with BR into the K−K+π+ final state of
2.63 ± 0.13% and 1.16 ± 0.32%, respectively. However, as it will
be discussed in the following, the selection efficiency for these de-
cay modes is strongly suppressed by the cuts applied to select the
signal candidates,1 and therefore the measured yield is dominated
by the D+

s → φπ+ → K−K+π+ decays.
D+

s mesons have a mean proper decay length cτ = 150 ±
2 μm [52], which makes it possible to resolve their decay ver-

1 To reduce the combinatorial background, a selection exploiting the mass of the
intermediate resonant state was applied. Since the width of the φ peak is narrower
than those of the K∗0 and the f0(980), the decay channel through the φ resonance,
being the one that provides the best discrimination between signal and background,
was used in the analysis.

tex from the interaction (primary) vertex. The analysis strategy
for the extraction of the signal from the large combinatorial back-
ground can therefore be based on the reconstruction and selection
of secondary vertex topologies with significant separation from the
primary vertex.

D+
s meson candidates were defined from triplets of tracks with

proper charge sign combination. Tracks were selected requiring
|η| < 0.8, pT > 0.4 GeV/c, a minimum of 70 associated space
points in the TPC, χ2/ndf < 2 for the track momentum fit in the
TPC, and at least 2 associated hits in the ITS, out of which at
least one has to be in either of the two SPD layers. For tracks that
satisfy these TPC and ITS selection criteria, the transverse momen-
tum resolution is better than 1% at pT = 1 GeV/c and about 2% at
pT = 10 GeV/c. The resolution on the track impact parameter (i.e.
the distance of closest approach of the track to the primary inter-
action vertex) in the bending plane (rφ) is better than 75 μm for
pT > 1 GeV/c, well reproduced in Monte Carlo simulations [3].

For each D+
s candidate, in order to have an unbiased estimate

of the interaction vertex, the event primary vertex was recalcu-
lated from the reconstructed tracks after excluding the candidate
decay tracks. The secondary vertex was reconstructed from the
decay tracks with the same algorithm used to compute the pri-
mary vertex [3]. The position resolution on the D+

s decay vertices
was estimated via Monte Carlo simulations to be of the order of
100 μm for each of the three coordinates with little dependence
on pT. The resolution on the position of the primary vertex de-
pends on the event multiplicity: for the transverse coordinates,
where the information on the position and spread of the luminous
region is used to constrain the vertex fit, it ranges from 40 μm in
low-multiplicity events to about 10 μm in events with 40 charged
particles per unit of rapidity.

Candidates were then filtered by applying kinematical and
topological cuts together with particle identification criteria. With
the track selection described above, the acceptance in rapidity
for D mesons drops steeply to zero for |y| � 0.5 at low pT and
|y| � 0.8 at pT � 5 GeV/c. A pT-dependent fiducial acceptance
cut was therefore applied on the D meson rapidity, |y| < yfid(pT),
where pT is the D+

s transverse momentum. The cut value, yfid(pT),
increases from 0.5 to 0.8 in the transverse momentum range 0 <

pT < 5 GeV/c according to a second-order polynomial function and
it takes a constant value of 0.8 for pT > 5 GeV/c.

The topological selections were tuned to have a large statistical
significance of the signal, while keeping the selection efficiency as
high as possible. It was also checked that background fluctuations
were not causing a distortion in the signal line shape by verifying
that the D+

s meson mass and its resolution were in agreement with
the Particle Data Group (PDG) value (1.969 GeV/c2 [52]) and the
simulation results, respectively. The resulting cut values depend on
the transverse momentum of the candidate.

The candidates were selected according to the decay length
and the cosine of the pointing angle, θpointing, which is the an-
gle between the reconstructed D meson momentum and the line
connecting the primary and secondary vertex. The three tracks
composing the candidate triplet were required to have small dis-
tance to the reconstructed decay vertex. In addition, D+

s candidates
were selected by requiring that one of the two pairs of opposite-
charged tracks has an invariant mass compatible with the PDG
world average for the φ mass (1.019 GeV/c2 [52]). To further sup-
press the combinatorial background, the angles θ∗(π) and θ ′(K)

were exploited. θ∗(π) is the angle between the pion in the KKπ
rest frame and the KKπ flight line, which is defined by the po-
sitions of the primary and secondary vertices in the laboratory
frame. θ ′(K) is the angle between one of the kaons and the pion
in the KK rest frame. The cut values used for the D+

s mesons
with 2 < pT < 4 GeV/c were: decay length larger than 350 μm,
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Fig. 1. Invariant mass distributions for D+
s candidates and charge conjugates in the four considered pT intervals. The fit functions described in the text are also shown. The

values of mean (μ) and width (σ ) of the signal peak are reported together with the signal counts (S) integrated in ±3σ around the centroid of the Gaussian.
cos θpointing > 0.94, |M inv
K+K− − MPDG

φ | < 8 MeV/c2, cos θ∗(π) < 0.95,

and |cos3 θ ′(K)| > 0.1. A looser selection was applied at higher pT
due to the lower combinatorial background, resulting in a selection
efficiency that increases with increasing pT.

Particle identification selections, based on the specific energy
loss, dE/dx, from the TPC and the time-of-flight from the TOF de-
tector, were used to obtain further reduction of the background.
Compatibility cuts were applied to the difference between the
measured signals and those expected for a pion or a kaon. A track
was considered compatible with the kaon or pion hypothesis if
both its dE/dx and time-of-flight were within 3σ from the ex-
pected values, with at least one of them within 2σ . Tracks without
a TOF signal were identified using only the TPC information and
requiring a 2σ compatibility with the expected dE/dx. Candidate
triplets were required to have two tracks compatible with the kaon
hypothesis and one with the pion hypothesis. In addition, since
the decay particle with opposite charge sign has to be a kaon,
a triplet was rejected if the opposite-sign track was not compatible
with the kaon hypothesis. This particle identification strategy pre-
serves more than 90% of the D+

s signal and provides a reduction
of the combinatorial background under the D+

s peak by a factor
of 10 in the lowest pT interval (2 < pT < 4 GeV/c), a factor of 5
in 4 < pT < 6 GeV/c and a factor of 2 at higher transverse mo-
menta.

For each candidate, two values of invariant mass can be com-
puted, corresponding to the two possible assignments of the kaon
and pion mass to the two same-sign tracks. Signal candidates with
wrong mass assignment to the same-sign tracks would give rise to
a contribution to the invariant mass distributions that could po-
tentially introduce a bias in the measured raw yield of D+

s mesons.
It was verified, both in data and in simulations, that this contri-
bution is reduced to a negligible level by the particle identifica-
tion selection and by the requirement that the invariant mass of
the two tracks identified as kaons is compatible with the φ PDG
mass.

The raw signal yields were extracted by fitting the invariant
mass distributions in each pT interval as shown in Fig. 1. The fit-
ting function consists of a sum of a Gaussian and an exponential
function to describe the signal and the background, respectively.
For all pT intervals, the invariant mass range used for the fit was
1.88 < M inv

KKπ < 2.16 GeV/c2, chosen in order to exclude the re-
gion where the background shape is affected by D+ → K−K+π+
decays (BR = 0.265% [52]) that give rise to a bump at the D+
invariant mass (1.870 GeV/c2 [52]). The mean values of the Gaus-
sian functions in all transverse momentum intervals were found to
be compatible within the uncertainties with the PDG world aver-
age for the D+

s mass. The Gaussian widths are well reproduced in

Monte Carlo simulations. The raw yield ND±
s raw (sum of particles
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Fig. 2. Acceptance × efficiency for D+
s mesons as a function of pT, for prompt and feed-down D+

s mesons (left panel) and decays through φ and K∗0 intermediate resonant
state (right panel).
Table 1
Measured raw yields (ND±

s raw), signal (S) over background (B) and statistical signif-
icance (S/

√
S + B) for D+

s and their antiparticles in the four considered pT intervals.
The estimation of the systematic uncertainty on the raw yield is described in Sec-
tion 5.

pT interval (GeV/c) ND±
s raw ± stat. ± syst. S/B (3σ ) Significance (3σ )

2–4 125 ±36 ± 25 0.12 3.6
4–6 190 ±35 ± 28 0.26 6.3
6–8 79 ±19 ± 12 0.40 4.8
8–12 85 ±16 ± 17 0.58 5.6

and antiparticles) was defined as the integral of the Gaussian. The
values of ND±

s raw are reported in Table 1 for the different pT in-
tervals, together with the signal-over-background (S/B) ratios and
the statistical significance, S/

√
S + B. For the latter two quantities,

signal (S) and background (B) were evaluated by integrating the fit
functions in ±3σ around the centroid of the Gaussian.

4. Corrections

In order to obtain the pT-differential cross section for prompt
(i.e. not coming from weak decays of beauty mesons) D+

s mesons,

the raw yields obtained from the invariant mass analysis (ND±
s raw)

were corrected for the experimental acceptance, the reconstruction
and selection efficiency, and for the contribution to the D+

s mea-
sured yield from B meson decay feed-down. The production cross
section of prompt D+

s mesons was computed as

dσ D+
s

dpT

∣∣∣∣|y|<0.5
= 1

2

1


y
pT

fprompt · ND±
s raw||y|<yfid

(Acc × ε)prompt · BR · Lint
, (1)

where 
pT is the width of the pT interval, 
y (= 2yfid(pT)) is
the width of the fiducial rapidity coverage (see Section 3) and BR
is the decay branching ratio (2.28% [52]). The factor fprompt is the
prompt fraction of the raw yield; (Acc×ε)prompt is the acceptance-
times-efficiency of promptly produced D+

s mesons. The efficiency ε
accounts for vertex reconstruction, track reconstruction and se-
lection, and for D+

s candidate selection with the topological and
particle identification criteria described in Section 3. The factor 1/2
accounts for the fact that the measured raw yields are the sum of
D+

s and D−
s , while the cross section is given for particles only, ne-

glecting the small particle–antiparticle production asymmetry ob-
served by LHCb [19]. The integrated luminosity, Lint = 4.8 nb−1,
was computed from the number of analyzed events and the cross

section of pp collisions passing the minimum-bias trigger condi-
tion defined in Section 2, σpp,MB = 62.2 mb [49,53]. The value of
σpp,MB was derived from a van der Meer scan [54] measurement,
which has an uncertainty of 3.5%, mainly due to the uncertainties
on the beam intensities.

The acceptance and efficiency correction factors were deter-
mined using pp collisions simulated with the PYTHIA 6.4.21 event
generator [50] with the Perugia-0 tune [51]. Only events contain-
ing D mesons were transported through the apparatus (using the
GEANT3 transport code [55]) and reconstructed. The luminous re-
gion distribution and the conditions (active channels, gain, noise
level, and alignment) of all the ALICE detectors were included in
the simulations, considering also their evolution with time during
the 2010 LHC run.

The acceptance-times-efficiency for D+
s → φπ+ → K−K+π+

decays in the fiducial rapidity range described in Section 3 are
shown in the left panel of Fig. 2 for prompt and feed-down D+

s
mesons. The acceptance-times-efficiency for the prompt mesons
increases from about 1% in the lowest considered pT interval up
to 10–15% at high pT. For D+

s mesons from B decays, the efficiency
is larger by a factor 1.5–2 (depending on pT) because the decay
vertices of the feed-down D mesons are more displaced from the
primary vertex and, therefore, they are more efficiently selected
by the topological cuts. The difference between the prompt and
feed-down efficiencies decreases with increasing pT, because the
applied selections are looser in the higher transverse momentum
intervals. The acceptance-times-efficiency for prompt D+

s mesons
obtained without applying the particle identification selection is
also shown to single out the PID contribution to the overall ef-
ficiency. The used particle identification strategy preserves more
than 90% of the signal and does not show any significant depen-
dence on D+

s meson pT in the range considered in this analy-
sis.

As discussed in Section 3, the decay of the D+
s meson into

the K−K+π+ final state occurs via different intermediate resonant
states. The selection strategy used in this analysis requires that one
of the opposite-sign pairs of tracks composing the candidate triplet
has an invariant mass compatible with the φ meson. The decays
D+

s → φπ+ → K−K+π+ are therefore preferentially selected by
the applied cuts. Nevertheless, a fraction of the D+

s decaying via
another resonant state can pass the selection cuts. In the right
panel of Fig. 2, the acceptance-times-efficiencies for prompt D+

s
decaying to K−K+π+ final state via a φ and a K∗0 in the inter-
mediate state are compared. The acceptance-times-efficiency for
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Table 2
Relative systematic uncertainties for the four considered pT intervals.

pT interval (GeV/c)

2–4 4–6 6–8 8–12

Raw yield extraction 20% 15% 15% 20%
Tracking efficiency 12% 12% 12% 12%
Topological selection efficiency 15% 15% 15% 15%
PID efficiency 7% 7% 7% 7%
MC pT shape 3% 3% 2% 2%
Other resonant channels <1% <1% <1% <1%

Feed-down from B +4
−18% +4

−17% +6
−15% +5

−17%

Branching ratio 5.3%

Normalization 3.5%

the decay chain D+
s → K∗0K+ → K−K+π+ is smaller by a factor

≈100 with respect to the decay through φ, and it is further re-
duced when applying the PID selection. Indeed, the PID allows the
rejection of D+

s decaying via a K∗0 that would pass the selection
on the invariant mass of the φ in case of wrong assignment of the
mass (kaon/pion) to the two same-sign tracks.

The contribution to the inclusive raw yields due to D+
s from B

feed-down was subtracted using the beauty production cross sec-
tion from the FONLL calculation [1,6], the B → D+

s decay kinemat-
ics from the EvtGen package [56], and the Monte Carlo efficiencies
for feed-down D+

s mesons. Before running the EvtGen decayer,
the B admixture cross section predicted by FONLL was split into
that of B0, B+ , B0

s and Λb by assuming the same pT shape for
all hadrons and the production fractions from [52], namely 40.1%
of B0, 40.1% of B+ , 10.5% of B0

s and 9.3% of beauty baryons. The
resulting fraction of prompt D+

s mesons, fprompt, depends on the
pT interval, on the applied selection cuts, and on the parame-
ters used in the FONLL calculation for the B meson cross section.
It ranges from 0.93 in the lowest transverse momentum interval
(2 < pT < 4 GeV/c) to ≈0.87 at high pT (>6 GeV/c).

5. Systematic uncertainties

The systematic uncertainties on the D+
s cross section are sum-

marized in Table 2 for the considered pT intervals.
The systematic uncertainty on the yield extraction was defined

as the full spread of the D+
s yield values obtained with different

techniques to analyze the invariant mass distributions in each pT
interval. The fit was repeated in different mass ranges and by vary-
ing the function used to describe the background. In particular,
first- and second-order polynomials were used instead of an expo-
nential for the background. In case of fitting in an extended mass
range, a second Gaussian signal was included in the fit function
to account for the D+ → K−K+π+ decays. Furthermore, the yield
extraction was repeated using a method based on bin counting af-
ter subtraction of the background estimated from a fit in the mass
side bands. The resulting uncertainty amounts to 15–20% depend-
ing on the pT interval, as detailed in Table 2.

The systematic uncertainty on the tracking efficiency (including
the effect of the track selection) was evaluated by comparing the
probability of track finding in the TPC and track prolongation from
the TPC to the ITS in the data with those in the simulation, and
by varying the track quality selections. The estimated uncertainty
is 4% per track, which results in 12% for the three-body decay of
D+

s mesons.
Another source of systematic uncertainty originates from the

residual discrepancies between data and simulation for the vari-
ables used to select the D+

s candidates. The distributions of these
variables were compared for candidates passing loose topological
cuts, i.e. essentially background candidates, and found to be well

described in the simulation. The effect of the imperfect implemen-
tation of the detector description in the Monte Carlo simulations
was estimated by repeating the analysis with different sets of cuts.
The cut values were changed in order to vary the efficiency of
signal selection by at least 20% in all pT intervals. A systematic
uncertainty of 15% was estimated from the spread of the resulting
corrected yields. Part of this uncertainty is due to residual detector
misalignment effects not fully described in the simulation. To es-
timate this contribution, the secondary vertices in the simulation
were reconstructed also after a track-by-track scaling of the impact
parameter residuals with respect to their true value. In particular,
a scaling factor of 1.08, tuned to reproduce the impact parameter
resolution observed in the data (see [3]), was used. The resulting
variation of the efficiency was found to be 4% in the lowest pT
interval used in this analysis and less than 1% for pT > 6 GeV/c.
This contribution was not included explicitly in the systematic un-
certainty, because it is already accounted for in the cut variation
study.

Due to the limited statistics, it was not possible to analyze
separately D+

s and D−
s candidates to verify the absence of bi-

ases coming from a different reconstruction efficiency for tracks
with positive and negative charge sign not properly described in
the simulation.2 This check was carried out for other D meson
species [3] without observing any significant difference between
particle and antiparticle.

The systematic uncertainty induced by a different efficiency for
particle identification in data and simulation was evaluated by
comparing the resulting pT-differential cross section with that ob-
tained using a different PID approach based on 3σ (instead of 2σ )
cuts on TPC dE/dx and time-of-flight signals, which preserves al-
most 100% of the signal. In addition, the PID efficiency, was esti-
mated by comparing the reduction of signal yield due to the PID
selection in data and in simulation, when the same topological cuts
are applied. Due to the limited statistical significance, this check
could be performed in data only for D+

s candidates integrated over
the transverse momentum range 4 < pT < 12 GeV/c. From these
studies, a systematic uncertainty of 7%, independent of pT, was as-
signed to the PID selection.

The contribution to the measured yield from D+
s decaying into

the K−K+π+ final state via other resonant channels (i.e. not via a
φ meson) was found to be less than 1% due to the much lower se-
lection efficiency, as shown in the right panel of Fig. 2 for the case
of the decay through a K∗0. The contamination from other decay
chains (all having smaller branching ratios than the two reported
in Fig. 2) was also found to be negligible.

The effect on the selection efficiency due to the shape of the D+
s

pT spectrum used in the simulation was estimated from the rela-
tive difference between the Monte Carlo efficiencies obtained us-
ing two different pT shapes, namely those from PYTHIA [50] with
Perugia-0 tune [51] and from the FONLL pQCD calculation [1,6].
The resulting contribution to the systematic uncertainty was found
to be 3% in the two lowest pT intervals, where the selection effi-
ciency is strongly pT dependent, and 2% at higher pT.

The systematic uncertainty from the subtraction of feed-down
D mesons was estimated following the same approach as used
for D0, D+ and D∗+ mesons [3]. The contribution of the FONLL
perturbative uncertainties was included by varying the heavy-
quark masses and the factorization and renormalization scales,
μF and μR, independently in the ranges 0.5 < μF/mT < 2, 0.5 <

μR/mT < 2, with the constraint 0.5 < μF/μR < 2, where mT =

2 The small particle–antiparticle asymmetry reported by the LHCb Collabora-
tion [19] is negligible in this context.
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√
p2

T + m2
c . The mass of the b quark was varied within 4.5 <

mb < 5 GeV/c2. The uncertainty related to the B decay kinemat-
ics was estimated from the difference between the results ob-
tained using PYTHIA [50] instead of EvtGen [56] for the particle
decays and was found to be negligible with respect to the uncer-
tainty on the B meson cross section in FONLL. Furthermore, the
prompt fraction obtained in each pT interval was compared with
the results of a different procedure in which the FONLL cross sec-
tions for prompt and feed-down D mesons and their respective
Monte Carlo efficiencies are the input for evaluating the correc-
tion factor. Since FONLL does not have a specific prediction for
D+

s mesons, four different approaches were used to compute the
pT-differential cross section of promptly produced D+

s . The first
two approaches used the FONLL prediction for the generic ad-
mixture of charm hadrons and that for D∗+ mesons (the D∗+
mass being close to that of the D+

s ) scaled with the fragmenta-
tion fractions of charm quarks in the different hadronic species,
f (c → D), measured by ALEPH [23]. The other two predictions for
prompt D+

s were computed using the pT-differential cross section
of c quarks from FONLL, the fractions f (c → D) from ALEPH [23],
and the fragmentation functions from [57], which have one pa-
rameter, r. Two definitions were considered for the r parameter:
i) r = (mD − mc)/mD (mD and mc being the masses of the consid-
ered D meson species and of the c quark, respectively) as proposed
in [57]; ii) r = 0.1 for all mesons, as done in FONLL after fitting the
analytical forms of [57] to the D∗+ fragmentation function mea-
sured by ALEPH [58]. The D∗+

s mesons produced in the c quark
fragmentation were made to decay with PYTHIA and the result-
ing D+

s were summed to the primary ones to obtain the prompt
yield. For all the four predictions used for prompt D+

s cross section,
the evaluation of fprompt included the FONLL perturbative uncer-
tainties from the variation of the factorization and renormalization
scales in the range quoted above and of the c quark mass within
1.3 < mc < 1.7 GeV/c2. The systematic uncertainty on the B feed-
down was defined from the envelope of the resulting values of
fprompt. The resulting uncertainties in the transverse momentum
intervals used in this analysis are about +5

−17%, as it can be seen in
Table 2.

Finally, the results have global systematic uncertainties due to
the D+

s → φπ+ → K−K+π+ branching ratio (5.3% [52]) and to
the determination of the cross section of pp collisions passing the
minimum-bias trigger condition (3.5%).

6. Results

6.1. pT-differential D+
s cross section and D meson ratios

The inclusive production cross section for prompt D+
s mesons

in four transverse momentum intervals in the range 2 < pT <

12 GeV/c is shown in Fig. 3. As discussed in Section 4, the cross
section reported in Fig. 3 refers to particles only, being computed
as the average of particles and antiparticles under the assump-
tion that the production cross section is the same for D+

s and D−
s .

The vertical error bars represent the statistical uncertainties, while
the systematic uncertainties are shown as boxes around the data
points. The symbols are positioned horizontally at the centre of
each pT interval, with the horizontal bars representing the width
of the pT interval. In Table 3, the numerical values of the prompt
D+

s production cross section are reported together with the average
pT of D+

s mesons in each transverse momentum interval. The 〈pT〉
values were obtained from the pT distribution of the candidates in
the D+

s peak region, after subtracting the background contribution
estimated from the side bands of the invariant mass distribution.
The measured pT-differential production cross section is compared

Fig. 3. (Colour online.) pT-differential inclusive cross section for prompt D+
s meson

production in pp collisions at
√

s = 7 TeV. The symbols are positioned horizontally
at the centre of each pT interval. The horizontal error bars represent the pT in-
terval width. The normalization uncertainty (3.5% from the minimum-bias cross
section and 5.3% from the branching ratio uncertainties) is not shown. Theoreti-
cal predictions from GM-VFNS [5] and from kT-factorization at LO [16,60] are also
shown.

Table 3
Production cross section in |y| < 0.5 for prompt D+

s mesons in pp collisions at
√

s =
7 TeV, in pT intervals. The normalization uncertainty (3.5% from the minimum-bias
cross section and 5.3% from the branching ratio) is not included in the systematic
uncertainties reported in the table. The average pT of D+

s mesons in each transverse
momentum interval is also reported.

pT interval
(GeV/c)

〈pT〉
(GeV/c)

dσ/dpT||y|<0.5 ± stat. ± syst.
(μb GeV−1 c)

2–4 2.7 ± 0.4 19.9 ± 6.1+5.8
−6.7

4–6 4.7 ± 0.1 5.06 ± 1.03+1.3
−1.5

6–8 6.8 ± 0.1 1.02 ± 0.28+0.27
−0.30

8–12 9.4 ± 0.1 0.28 ± 0.06+0.08
−0.10

to two theoretical predictions, namely the GM-VFNS model [5,59]
and the calculations from [16,60] based on the kT-factorization ap-
proach.

The GM-VFNS prediction is found to be compatible with the
measurements, within the uncertainties. The central value of the
GM-VFNS prediction corresponds to the default values of the renor-
malization (μR) and factorization (μI and μF for initial- and final-
state singularities, respectively) scales, i.e. μR = μI = μF = mT,

where mT =
√

p2
T + m2

c , with mc = 1.5 GeV/c2. The theoretical un-

certainties are determined by varying the values of the renormal-
ization and factorization scales by a factor of two up and down
with the constraint that any ratio of the scale parameters should
be smaller than or equal to two [5]. The central value of the
GM-VFNS prediction is higher than the measured point by ≈50%
in the first pT interval, while in the other intervals it agrees with
the data within ≈15%. For D0, D+ and D∗+ mesons measured by
ALICE at the same pp collision energy [3], the central value of
the GM-VFNS predictions was found to lie systematically above the
data. As mentioned in Section 1, predictions for the D+

s production
cross section within the FONLL framework are not available, due
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Fig. 4. Ratios of D meson production cross sections as a function of pT. Predictions from FONLL, GM-VFNS and PYTHIA 6.4.21 with the Perugia-0 tune are also shown. For
FONLL and GM-VFNS the line shows the ratio of the central values of the theoretical cross section, while the shaded area is defined by the ratios computed from the upper
and lower limits of the theoretical uncertainty band.
to the poor knowledge of the fragmentation function for charm-
strange mesons.

The prediction from [16,60] is obtained in the framework of
kT-factorization at LO using Kimber–Martin–Ryskin (KMR) uninte-
grated gluon distributions in the proton. The measured D+

s cross
section is described by the upper limit of the theoretical uncer-
tainty band.

The ratios of the pT-differential cross sections of D+ and D∗+
to that of D0, taken from [3], are shown in the top panels of
Fig. 4. In the bottom panels of the same figure, the ratios of the
D+

s cross section to the D0 and D+ ones are displayed. In the
evaluation of the systematic uncertainties on the D meson ra-
tios, the sources of correlated and uncorrelated systematic effects
were treated separately. In particular, the contributions of the yield
extraction, cut efficiency and PID selection were considered as un-
correlated and summed in quadrature. The systematic uncertainty
on the B feed-down subtraction, being completely correlated, was
estimated from the spread of the cross section ratios obtained by
varying the factorization and renormalization scales and the heavy-
quark mass in FONLL coherently for all mesons. The uncertainty
on the tracking efficiency cancels completely in the ratios between
production cross sections of mesons reconstructed from three-body
decay channels (D+ , D∗+ and D+

s ), while a 4% systematic error was
considered in the ratios involving the D0 mesons, which are recon-
structed from a two-particle final state. The D+

s /D0 and D+
s /D+

ratios were corrected for the different value of pp minimum-bias
cross section used in [3] and in this analysis.3

The predictions from FONLL (only for D0, D+ and D∗+ mesons),
GM-VFNS, and the PYTHIA 6.4.21 event generator with the Pe-
rugia-0 tune are also shown.4 For all these model predictions,
D mesons in the rapidity range |y| < 0.5 were considered. In
PYTHIA, the default configuration of the Perugia-0 tune for charm
hadronization was used.

The D+/D0 and D∗+/D0 ratios are determined in PYTHIA by
an input parameter, PARJ(13), that defines the probability that a
charm or heavier meson has spin 1. In the Perugia-0 tune, this
parameter is set to 0.54 from the measured fractions Pv of heavy
flavour mesons produced in vector state, see e.g. [4,29,61]. This
setting results in an enhancement of the D+/D0 and a reduction of
the D∗+/D0 ratios with respect to those obtained with the default
value, PARJ(13) = 0.75, based on spin counting.

The D+
s /D0 and D+

s /D+ ratios in PYTHIA are governed by an-
other input parameter, PARJ(2), that defines the s/u (s/d) quark

3 The preliminary pp minimum-bias cross section value of 62.5 mb, used in [3],
was updated to 62.2 mb.

4 The ratios from the kT-factorization model of [16] are not shown in Fig. 4.
Indeed, in this model the fragmentation fractions f (c → D) are taken from experi-
mental measurements and the same fragmentation function is used for all D meson
species, resulting in ratios of D meson cross sections that are independent of pT.
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suppression factor in the fragmentation process. In the Perugia-0
tune, PARJ(2) is set to 0.2, which gives rise to a reduced abun-
dance of D+

s mesons with respect to the default value of 0.3. With
this parameter adjustment, PYTHIA with the Perugia-0 tune repro-
duces reasonably well the value and pT shapes of the measured
ratios involving D0, D+ and D∗+ , while it slightly underestimates
the abundance of D+

s mesons. The fact that PYTHIA with Perugia-0
tune underestimates the strangeness production was already ob-
served at the LHC in the light flavour sector [62,63].

In the Perugia 2011 tune [64], PARJ(13) is set to the same
value (0.54) as in the Perugia-0 tune, while a lower value of the
strangeness suppression factor, PARJ(2) = 0.19, is used. This re-
sults in the same values of the Perugia-0 tune for the D+/D0 and
D∗+/D0 ratios, and in slightly lower values for the D+

s /D0 and
D+

s /D+ ratios.
The ratios of the FONLL and GM-VFNS predictions were com-

puted assuming the perturbative uncertainty to be fully correlated
among the D meson species, i.e. using the same scales for the cross
sections at the numerator and at the denominator. Thus, the per-
turbative uncertainty cancels almost completely in the ratio, as it
can be seen in Fig. 4 where, for both FONLL and GM-VFNS, the line
shows the result obtained from the central values of the theoreti-
cal predictions, and the shaded area spans the region between the
ratios computed with the upper and lower limits of the theoretical
uncertainty band. The predictions from FONLL and GM-VFNS agree
within uncertainties with the measured particle ratios. Indeed, in
FONLL and GM-VFNS, the relative abundances of the various D
meson species are not predicted by the theory: the fragmenta-
tion fractions f (c → D) are taken from the experimental measure-
ments. On the other hand, in both the pQCD calculations, the pT
dependence of the ratios of the D meson production cross sections
arises from the different fragmentation functions used to model
the transfer of energy from the charm quark to a specific D meson
species [28,65,66] and from the different contribution from decays
of higher excited states. The parton fragmentation models used in
the calculations provide an adequate description of the measured
data. The measured D+

s /D0 and D+
s /D+ ratios do not show a sig-

nificant pT dependence within the experimental uncertainties, thus
suggesting a small difference between the fragmentation functions
of c quarks to strange and non-strange mesons. A higher statistics
data sample would be needed to conclude on a possible pT de-
pendence of the ratios of strange to non-strange D meson cross
sections.

6.2. pT-integrated D+
s cross section and D meson ratios

The visible cross section of prompt D+
s mesons, obtained by

integrating the pT-differential cross section in the measured pT
range (2 < pT < 12 GeV/c), is

σ
D+

s
vis

(
2 < pT < 12 GeV/c, |y| < 0.5

)

= 53 ± 12(stat.)+13
−15(syst.) ± 2(lumi.) ± 3(BR) μb.

The production cross section per unit of rapidity, dσ/dy, at mid-
rapidity was computed by extrapolating the visible cross section to
the full pT range. The extrapolation factor was extracted from the
FONLL-based predictions for the D+

s pT-differential cross section
described in Section 5. The extrapolation factor was taken as the
ratio between the total D+

s production cross section in |y| < 0.5
and the cross section integrated in |y| < 0.5 and in the pT range
where the experimental measurement is performed. In particu-
lar, the central value of the extrapolation factor was computed
from the prediction based on the pT-differential cross section of
c quarks from FONLL, the fractions f (c → D) from ALEPH [23],

Table 4
Ratios of the measured production cross section for prompt D
mesons in pT > 0 and |y| < 0.5 in pp collisions at

√
s = 7 TeV.

Ratio ± (stat.) ± (syst.) ± (BR)

D+/D0 0.48 ± 0.07 ± 0.11 ± 0.01
D∗+/D0 0.48 ± 0.07 ± 0.08 ± 0.01
D+

s /D0 0.23 ± 0.06 ± 0.08 ± 0.01
D+

s /D+ 0.48 ± 0.13 ± 0.17 ± 0.03

and the fragmentation functions from [57] with r = 0.1. The un-
certainty on the extrapolation factor was obtained as a quadratic
sum of the uncertainties from charm mass and perturbative scales,
varied in the ranges described above, and from the CTEQ6.6 parton
distribution functions [67]. Furthermore, to account for the uncer-
tainty on the D+

s fragmentation function, the extrapolation factors
and their uncertainties were also computed using the FONLL pre-
dictions for D0, D+ and D∗+ mesons and the envelope of the
results was assigned as systematic uncertainty. The resulting value
for the extrapolation factor is 2.23+0.71

−0.65. The prompt D+
s produc-

tion cross section per unit of rapidity in |y| < 0.5 is then

dσ D+
s /dy = 118 ± 28(stat.)+28

−34(syst.) ± 4(lumi.)

± 6(BR)+38
−35(extr.) μb.

The D meson production ratios were computed from the cross
sections per unit of rapidity, dσ/dy. The corresponding values for
D0, D+ and D∗+ from [3] were corrected to account for the up-
dated value of the pp minimum-bias cross section. The systematic
uncertainties on the ratios were computed taking into account the
correlated and uncorrelated sources as described above. The re-
sulting values are reported in Table 4 and shown in the left-hand
panel of Fig. 5 together with the results by other experiments
that measured prompt charm production: LHCb [17], e+e− data
(taken from the compilation in [68]), and ep data in photopro-
duction from ZEUS [29] and DIS from H1 [22]. The error bars
are the quadratic sum of statistical and systematic uncertainties
and do not include the uncertainty on the decay branching ratios,
which are common to all experiments. The particle ratios for ZEUS
and e+e− were computed from the compilation of fragmentation
fractions f (c → D) published in [29] after updating the branch-
ing ratios of the considered decay channels to the most recent
values [52]. For the ZEUS data, the systematic uncertainties were
propagated to the particle ratios by properly taking into account
correlated and uncorrelated sources [69]. For the H1 data, the D
meson ratios were computed starting from the unconstrained val-
ues of f (c → D) published in [22], taking into account the corre-
lated part of the systematic uncertainty and subtracting from the
quoted ‘theoretical’ uncertainty the contribution due to the decay
branching ratio [70]. Also in this case, a correction was applied to
account for the updates in the branching ratios of the considered
decay channels. The ALICE results are compatible with the other
measurements within uncertainties.

The values predicted by PYTHIA 6.4.21 with the Perugia-0 tune
are also shown in the figure, as well as those from a canonical
implementation of the Statistical Hadronization Model (SHM) [71].
The values from PYTHIA were obtained by integrating the prompt
D meson yields in the range |y| < 0.5 and pT > 0. The SHM, which
computes the hadron abundances assuming that particles origi-
nate from a hadron gas in thermodynamical equilibrium, provides
a good description of the measured hadron yields in heavy-ion col-
lisions at various energies and centralities [72], but it can also be
applied to small systems like pp [73,74] and e+e− [75,76]. The
SHM results used for the present comparison were computed for
prompt D mesons, assuming a temperature T of 164 MeV and
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Fig. 5. Left: pT-integrated ratios of D meson production cross sections compared with other experiments [17,22,29,68]. Error bars are the quadratic sum of statistical and
systematic uncertainties, without including the uncertainty on the BR which is common to all experiments. Right: strangeness suppression factor γs compared to measure-
ments by other experiments [18,22,29,68]. Predictions from PYTHIA 6.4.21 with the Perugia-0 tune and from a canonical implementation of the statistical hadronization
model (SHM) [71] are also shown. The gray band represents the uncertainty on the SHM predictions due to the uncertainty on the volume and on the strangeness fugacity
(see text for details).
a volume V of 30 ± 10 fm3 at the moment of hadron decou-
pling. The dependence on temperature of the cross section ratios
considered in this analysis is rather small within the few MeV un-
certainty on the value of T . To properly reproduce the yield of
strange particles in small systems, such as pp and e+e− , an ad-
ditional parameter, the fugacity [74], is usually introduced in the
partition function to account for the deviation of strange particle
yields from their chemical equilibrium values. For the SHM predic-
tions reported here, a value of strangeness fugacity of 0.60 ± 0.04,
extrapolated from the results of a fit to particle yields in pp col-
lisions at

√
s = 200 GeV [77], was used. With these parameters,

the SHM provides a good description of the measured ratios of D
meson cross sections.

The strangeness suppression factor for charm mesons, γs, was
also evaluated. It is defined as the ratio of the production cross
sections of charm-strange mesons (cs̄) to that of non-strange
charm mesons (average of cd̄ and cū).5 Since all D∗+ and D∗0

mesons decay into either a D0 or a D+ , and all D∗+
s decays produce

a D+
s meson [52], the strangeness suppression factor was com-

puted as

γs = 2dσ(D+
s )/dy

dσ(D0)/dy + dσ(D+)/dy
. (2)

The contribution to D0 and D+ yield from decays of excited charm-
strange mesons heavier than D∗+

s was neglected.
The resulting value of γs, computed from the D+

s , D0 and D+
cross sections per unit of rapidity (dσ/dy), is

γs = 0.31 ± 0.08(stat.) ± 0.10(syst.) ± 0.02(BR).

Charm-strange meson production is suppressed by a factor ≈3.2
in the fragmentation of charm quarks. In the right-hand panel of
Fig. 5, this result is compared with the γs measurements by other
experiments, taken from the compilation in [21], after updating

5 The same symbol γs is used in the statistical hadronization model to indi-
cate the fugacity, which, as mentioned above, is usually included in the partition
function to account for strangeness suppression. However, the two γs are differ-
ent. Indeed, in the statistical hadronization model, the value of the ratio between
strange and non-strange charm mesons is proportional to the fugacity, but not equal
to it, due to the different masses of the various D meson species.

the branching ratios of the considered decay channels to the val-
ues in [52]. The preliminary measurement by ATLAS [18] in pp
collisions at the LHC, obtained using an equivalent (under the hy-
pothesis of isospin symmetry between u and d quarks) definition
of the strangeness suppression factor based on the cross sections
of D+

s , D+ and D∗+ in charm hadronization, is also shown. The
error bars are the quadratic sum of statistical and systematic un-
certainties and do not include the uncertainty on the decay BR. The
values from PYTHIA with the Perugia-0 tune, where γs corresponds
to PARJ(2), and the statistical hadronization model described above
are also shown for reference. It is also interesting to note that a
similar amount of strangeness suppression was reported for beauty
mesons by the LHCb Collaboration that measured the ratio of
strange B mesons to light neutral B mesons, fs/ fd, obtaining the
value 0.267+0.021

−0.020 [78].
All the γs measurements, performed in different colliding sys-

tems and at different centre-of-mass energies are compatible
within experimental uncertainties. The current ALICE and ATLAS
results at LHC energy in the central rapidity region do not allow
one to conclude on a possible lifting of strangeness suppression
with increasing collision energy. Furthermore, the D+

s /D0 (D+
s /D+)

ratios are measured at the LHC both at mid-rapidity and at forward
rapidity, thus allowing one to study a possible rapidity dependence
of the strangeness suppression in charm hadronization. From the
comparison of the ALICE and LHCb results with the current exper-
imental uncertainties (left-hand panel of Fig. 5), it is not possible
to draw a firm conclusion on this point.

7. Summary

The inclusive production cross section for prompt D+
s me-

son has been measured in the transverse momentum range 2 <

pT < 12 GeV/c at central rapidity in pp collisions at
√

s = 7 TeV.
D+

s mesons were reconstructed in the hadronic decay channel
D+

s → φπ+ with φ → K−K+ , and charge conjugates, using the
ALICE detector. The measured differential cross section is described
within uncertainties by the prediction from the GM-VFNS cal-
culation, which is based on perturbative QCD at NLO with the
collinear factorization approach, and it is compatible with the up-
per side of the uncertainty band of calculations based on the
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kT-factorization approach at LO. The relative D meson produc-
tion yields and the strangeness suppression factor, γs = 0.31 ±
0.08(stat.) ± 0.10(syst.) ± 0.02(BR), agree within the present ex-
perimental uncertainties with those measured by other experi-
ments for different centre-of-mass energies and colliding systems.
More precise measurements are needed to address the possible en-
ergy and rapidity dependence of strangeness suppression in charm
hadronization.
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74 Oak Ridge National Laboratory, Oak Ridge, TN, United States
75 Petersburg Nuclear Physics Institute, Gatchina, Russia
76 Physics Department, Creighton University, Omaha, NE, United States
77 Physics Department, Panjab University, Chandigarh, India
78 Physics Department, University of Athens, Athens, Greece
79 Physics Department, University of Cape Town, iThemba LABS, Cape Town, South Africa
80 Physics Department, University of Jammu, Jammu, India
81 Physics Department, University of Rajasthan, Jaipur, India
82 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
83 Purdue University, West Lafayette, IN, United States
84 Pusan National University, Pusan, South Korea
85 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
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