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Abstract

We show the existence of a minimizing procedure for selecting a unique representative on

the orbit of any given Riemann surface that contributes to the string partition function.

As it must, the procedure reduces the string path integral to a final integration over a

particular fundamental domain, selected by the choice of the minimizing functional. This

construction somehow demystifies the Gribov question.
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1 Introduction

In this article, we describe a procedure for gauge-fixing the 2d-gravity gauge invariance [1]

with a geometrical meaning that is as transparent as possible. The aim is to find a defini-

tion that escapes the Gribov question [2] and, more precisely, to select unambiguosuly a

single representative on the orbits of the conformal classes of metrics of Riemann surfaces.

A better understanding of the gauge-fixing is useful for the predictions of string

theory. For instance, for on-shell string observables, the singularities at the boundaries

of the moduli space of string worldsheets are the source of infra-red divergencies of the

4-dimensional quantum field theory limit. An unambiguous string gauge-fixing method

is certainly needed.

We will show the existence of a minimizing procedure for selecting a unique rep-

resentative on the orbit of any given Riemann surface that contributes to the partition

function, while making sure that a BRST symmetry is maintained. The procedure selects

among all representatives of the worldsheet in the Teichmüller space a particular funda-

mental domain, which is made of representatives that are at absolute minimum distance

of a reference worldsheet. We will use the framework of the Beltrami parametrization of

string 2d-worldsheets (and its extension for the superstring).

The method holds for any given fixed genus. For the torus, the procedure may be

tuned to select the first fundamental domain of the Poincaré disk. In this method, the

obvious inconsistencies of the Faddeev–Popov method in the “conformal gauge”, and

possible Gribov copies are successfully eliminated.6

The Beltrami parametrization of the 2-dimensional metrics in string theory was in-

troduced in 1986 for a clearer definition of the path integral of the 2d-gravity field [3][4].

It gives a better understanding of the factorization of left and right movers and of the

the conformal anomaly of string theory. Its use respects the context of local quantum

field theory, and allows the control of the conformal Ward identities. The Beltrami

parametrization gives a formally very strong parallel between Yang–Mills and string the-

ory BRST technologies.

One motivation of this work is that string theory is a simpler arena than Yang–Mills

theory for finding unambiguous gauge–fixings, beyond the limitation of the Faddeev–

Popov method. Earlier ideas suggested that, for defining the Yang–Mills path inte-

gral over A/G, in the theory, one should pick out the absolute minimum of the norm

6The necessity of selecting a single representative for each orbit in a BRST invariant way, is justified,

since it provides the safe definition of quantum observables as the elements of the cohomology of the

BRST symmetry.
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∫
d4xTr AµA

µ on each orbit of the space of gauge field configuration {Aµ}. In string

theory, one can do a careful and precise analysis. The result suggests that one should

perhaps use a more refined minimizing function
∫
d4xf(Tr AµA

µ), where the function f

is introduced to avoid spurious divergencies that do not concentrate at the boundary of

the moduli space of gauge field configurations. In fact, for a given Riemann surface, we

will show that one can choose the following minimizing function

F [µzz̄, µ
z̄
z] =

∫
Σ

ρzz̄(z, z̄)dzdz̄
1

1− |µ|2
ln

1− |µ|
1 + |µ|

. (1)

where µzz̄ is the Beltrami differential and the factor ρzz̄(z, z̄) is a universal measure that

depends only on the genus of the Riemann surface.

The paper is organized as follows. We first recall basic formulas for the Beltrami

parametrization in string theory. We then explain the gauge-fixing procedure as a mini-

mizing principle of a relevant functional on the orbit of each Riemann surface. We show

how it leads to a BRST-invariant action. The functional expresses the distance between

an arbitrarily chosen point in the Teichmüller space of a reference surface (at a fixed

genus) and any given possible representative of the 2d-metrics of a surface, defined mod-

ulo local dilatations. The gauge fixing consists in choosing the metric that minimizes

this distance. The method can be explored in great detail for the torus. Interestingly,

a careful choice of the distance must be done to avoid spurious Gribov-type problems.

For higher genus, the method is geometrically well-defined, but one faces in practice the

complication and/or our ignorance about the nature and the details of modular groups

and fundamantal domains. Technical complications are obviously foreseen for g > 1, even

at g = 2. A formal generalisation of the Nauenberg–Lee–Bloch–Nordsieck arguments to

string theory should be possible in which a cancellation of divergent contributions occurs

between amplitudes of different genus, with insertions of “soft” vertex operators.

Other formulations of string theory exist where one can find the untwining of the

geometry of Riemann surfaces and the quantum field theory of strings, such as the light-

cone or the Witten formulation of open string field theory, see for instance [6]7. However,

the conformal gauge approach, as it is formulated in this paper from a minimizing prin-

ciple, has the great advantage of combining in a rather satisfactorying way a precise

description of Riemann surface orbits and the basic properties of 2-dimensional local

quantum field theory.

7The idea of such papers is for instance to show that the graphs of string theory in light cone

quantization are in one-to-one correspondence with Riemann Surfaces, i.e. that each moduli space maps

one-to-one into (and onto) a worldsheet diagram.
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2 Beltrami parametrization for strings

2.1 Definition and the choice of a coordinate system

Once one understands, following Polyakov [1], that the propagation of a string on a

given manifold sweeps out quantum mechanically all possible worldsheets that can be

embedded in a given target space, with possible emissions of other strings, one needs a

parametrization of 2-dimensional manifolds that is as handy as possible, in order to per-

form a path integral over all the metric fluctuations. Such a parametrization is provided

by the Beltrami differential, which completely avoids the use of the scalar part of the

metric, and provides an appropriate local field variable for the path integral.

The geometrical data are as follows. One considers a metric on an arbitrary smooth

compact 2-dimensional Riemann surface Σ(z, z̄) without boundary, and of genus g. Here

(z, z̄) denotes at each point a fixed local set of complex analytic coordinates on Σ. The

Beltrami differential µzz̄ and its complex conjugate µz̄z are defined by the following pa-

rameterization of the 2d-metric on Σ,

ds2 =
(

exp 2Φ
)

(dz + µzz̄dz̄)(dz̄ + µz̄zdz), (2)

where exp 2Φ(z, z̄) is the conformal factor of the metric in this choice of coordinates. The

transformation law of µzz̄ and µz̄z under dilatations is zero. The infinitesimal transforma-

tions of µzz̄ and µz̄z will be given shortly in the form of a BSRT symmetry.

A minimal set of patches for a surface of a given genus can be generally obtained.

The Beltrami differentials are a set of local functions in each patch, that are globally

identified on their common boundaries. When one changes the system of coordinates,

z, z̄ → z′, z̄′, the shape of the patches changes, but the deformation of their boundaries is

obtained by the repametrization in each path, and the identification on the boundaries

of neighboring patches still holds.

New coordinates Z and Z̄ are defined by

dZ = ρZz (µzz̄, z, z̄)(dz + µzz̄dz̄) dZ̄ = ρ̄Z̄z̄ (µz̄z, z, z̄)(dz̄ + µz̄zdz). (3)

where ρZz is an integrating factor. Since d2 = 0, ρZz satisfies the differential equation

(∂z̄ − µzz̄∂z) ln ρZz = ∂zµ
z
z̄ and functionally depends only on µzz̄.

To define the reparametrization- and dilatation-invariant quantum field theory that

corresponds to a given Lagrangian, the general approach is to choose once and for all a

fixed set of coordinates. This means adopting the point of view of active gauge trans-

formations on the fields, without explicitly changing coordinates. From now on, we will
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thus assume that all fields, including the Beltrami differentials, only transform under

active symmetries, such as the BRST symmetry. All formulas must be written in such a

way that they can be put automatically in correspondence with another system of coor-

dinates. One must not confuse the BRST symmetry of the theory and the possibility of

choosing different sets of coordinates for defining the path integral. The quantum field

theory is defined as satisfying all Ward identities corresponding to the BRST symmetry,

in the absence of contradictions due to a possible non-vanishing anomaly. Observables

are defined from the cohomology of the BRST symmetry.

2.2 2d-action and Beltrami parametrization

For any given local lagrangian depending on the 2d-metric gαβ on Σ and on fields whose

arguments are coordinates on Σ, one can replace the dependence on gαβ by dependence

on µzz̄, µ
z̄
z and Φ. For instance, the globally well-defined two-form curvature of Σ is

Rz,z̄ = ∂z∂z̄Φ + ∂z∂zµ
z
z̄ + ∂z̄∂z̄µ

z̄
z +O(µ2) (4)

Conformally-invariant quantities can depend only on µzz̄ and µz̄z. Given the string field

X(z, z̄), a quick computation shows that the Polyakov action is given simply by∫
Σ

dX ∧ ∗dX =

∫
Σ

d2z
√
ggαβ∂αX∂βX =

∫
d2z

(∂z̄ − µzz̄∂z)X(∂z − µz̄z∂z̄)X
1− µzz̄µz̄z

. (5)

For this action, the path integral over the fields of 2d-gravity only involves the Beltrami

differential components µzz̄ and µz̄z. The gauge-fixing of Weyl transformations is trivial,

provided that there is no conformal anomaly because, for such conformally-invariant ac-

tions, the Faddeev-Popov determinant associated to setting Φ = 0 equals one. These

properties made it possible in the mid-80’s to rederive, within the context of local quan-

tum field theory, many conventional results of string theory that had been obtained

previously by other methods, e.g., [3][4]. In fact, µzz̄, after its gauge fixing, is nothing

but the source of the energy tensor component Tzz, but to do this gauge-fixing, one must

address global issues. Moreover Φ is an irrelevant field variable, not seen by conformal

invariance.

2.3 Factorization property and Beltrami parametrization

The Beltrami parametrization is well adapted to the factorization property of left and

right movers and to the conformal invariance on the worldsheet that lie at the heart of
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string theory. The (active) gauge transformations of µzz̄ and µz̄z under an infinitesimal

local 2d-diffeomorphism with vector field (εz, εz̄) are8

δµzz̄ = ∂z̄ε
z + εz∂zµ

z
z̄ − µzz̄∂zεz

δµz̄z = ∂zε
z̄ + εz̄∂z̄µ

z̄
z − µz̄z∂z̄εz̄. (6)

We observe that the fields µzz̄(z, z̄) and µz̄z(z, z̄) are invariant under local dilatations,

and also that the general infinitesimal variation of µzz̄ depends only on the single local

parameter εz, and on µzz̄. This is known as the factorization property. For the purpose of

BRST-invariant quantization, one replaces (εz, εz̄) by the anticommuting Faddeev-Popov

ghost field (cz, cz̄) and defines the active BRST symmetry that corresponds to the above

infinitesimal transformations

sµzz̄ = ∂z̄c
z + cz∂zµ

z
z̄ − µzz̄∂zcz scz = cz∂zc

z

sµz̄z = ∂zc
z̄ + cz̄∂z̄µ

z̄
z − µz̄z∂z̄cz̄ scz̄ = cz̄∂z̄c

z̄ (7)

The action of s is nilpotent on all fields, s2 = 0. According to the general BRST method

for local gauge-fixing, the small diffeomorphism invariance of e.g. the Polyakov action can

be locally gauged-fixed in the path integral by adding to the invariant classical action

an s-exact term, which imposes a condition on µzz̄ and µz̄z that allows one to do the path

integral. This gauge-fixing term can be chosen to respect the left-right independence

on the worldsheet. However, as in the case of the Yang–Mills theory, no local gauge

function can be chosen that is globally well defined; zero modes can occur if one applies

the Faddeev–Popov method, and the way one fixes the gauge for the 2-d metric must be

revisited.

3 The gauge-fixing question

Let us now come back to the problem that one faces when one wishes to sum over all

possible Beltrami differentials µzz̄ and µz̄z for a given Riemann surface Σ. Once a set µzz̄
and µz̄z has been obtained, any other set {µzz̄G} and {µz̄z

G} that is defined by applying

a general diffeomorphism G on µzz̄ and µz̄z gives another perfectly equivalent description

of the surface. The space of the Beltrami differential µzz̄ is connected, but the space of

diffeomorphisms is not. A diffeomorphism is either a “small” one, composed of a succes-

sion of infinitesimal ones, or a “large” one, which cannot be connected to the identity

8 The relation between ε and the ordinary parameters ξ of diffeomorphism is εz = ξz + µz
z̄ξ

z̄.
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transformation, or some combination of such small and large gauge transformations. The

orbit of Σ is therefore a rather complicated disconnected function in the space of Beltrami

differentials, which explains the difficulty of the path integral over all possible Beltrami

differentials.

The gauge-fixing question is how to find a way to select a unique representative on

each orbit, and how to make sense of the expectation-value of an observable 〈O〉 as a

well-defined path integral, where the measure of 2d gravity variables only involves the

conformal classes of metrics µzz̄ and µz̄z :

〈O〉 =

∫
[dµzz̄][dµ

z̄
z]dXO(µzz̄, X) exp

∫
d2z (∂z̄−µzz̄∂z)X(∂z−µz̄z∂z̄)X

1−µzz̄µz̄z∫
[dµzz̄][dµz̄z]dX exp

∫
d2z (∂z̄−µzz̄∂z)X(∂z−µz̄z∂z̄)X

1−µzz̄µz̄z

= ? (8)

Non-perturbatively, the conventional Faddeev–Popov method generally fails, as ex-

plained very clearly by Singer in the Yang–Mills theory, since the so-called gauge condi-

tion is in fact not globally well-defined [2]. In the present case the local gauge condition

cuts orbits erratically, and all sorts of inconsistencies may occur. For example, the con-

formal gauge consisting in taking µzz̄ = µz̄z = 0 can only be imposed locally, otherwise it

selects only the square torus.

As compared to the Yang–Mills case, the difficulty that occurs in the conformal gauge

for 2d gravity is analogous to the so-called Gribov ambiguity of a Landau-type gauge. It

is however much simpler to handle, and even to describe, because in the case of 2d-gravity

we have a good understanding of the orbits of Beltrami differentials.

An advantage of the string situation is that, from the beginning, we deal with bounded

functions. One has the constraint that any representative on the orbit must satisfy

det
√
g = exp Φ|1− µzz̄µz̄z| cannot vanish. In fact, on any given point of an orbit, positivity

requires

|µzz̄| < 1 (9)

In the case of the torus, this property justifies the use the Poincaré disk D of complex

numbers |γ| ≤ 1, as a representation of the Teichmüller space, instead of the upper-half

space Im(τ) ≥ 0. One foresees that any complication, if it occurs, can only happen for

the singular points of the boundary of the moduli space, which is the unit circle in the

case of the torus. However, already in this simple case the use of the conformal gauge,

treating µzz̄ and µz̄z independently, is too naive, and global questions must be addressed

ab initio.

The so-called conformal gauge, in which one tries to gauge-fix µzz̄ and µz̄z to a given

background with Φ = 0, is not compatible with the global structure of Σ(z, z̄). Taking
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Φ = µzz̄ = µz̄z = 0 is a much too strong condition since it implies that Rz,z̄ = 0 everywhere,

which is generally wrong, and the brute force application of the perturbative BRST

method for the conformal gauge explicitely leads to inconstancies, under the form of

zero modes for the Faddeev–Popov operator. Even if the problem can be corrected by

trial and error, eventually giving a partition function that reduces to an integral over a

fundamental domain (when the modular group is known), or over the Teichmüller space

(modulo some denumerable redundancy), logically one should not start the process by

gauge-fixing in the conformal gauge.

In the case g = 1, among all equivalent representations of a torus in D, we will give

a criterion for choosing a unique representative. For higher genus, g > 1, the problem is

more intricate, but our approach still holds, and we will explain it first, and then check

the consequences for the torus.

4 Choosing a minimizing gauge-functional to define

the 2d-gravity path integral.

To select a unique representative for the Beltrami differential, we propose a minimizing

functional, F [µzz̄, µ
z̄
z] to be extremised, orbit by orbit, in the space of Beltrami differentials.

This functional represents a possible distance between the Beltrami parametrization µ of

any given Riemann surface Σ and that of an arbitrarily chosen Riemann surface of the

same genus, whose representative is also freely chosen on its gauge orbit.9 We denote

by Γ the chosen representative of the Beltrami differential of this reference surface. One

must check eventually that Γ can be changed without affecting the values of observables,

a property that can be demonstrated by the Ward identities of the underlying BRST

symmetry of the construction.

The minimizing process must be done in several steps. One starts from a given point

µzz̄ on the orbit of Σ, and minimizes the functional F with respect to gauge transforma-

tions along the orbit that are connected to the identity, and gets a point in the Teichmüller

space. Then one looks for all other extrema that are connected to the former one by large

gauge transformations, that is, the diffeomorphisms that are not connected to the iden-

tity, and gets down to the moduli space. The gauge-fixing consists in finding the absolute

minimum among all these local extrema.

9The functional, F [µz
z̄, µ

z̄
z], and the “distance” it represents, will be used to gauge fix, that is to say,

to select one representative out of all possible gauge-equivalent configurations, so naturally it will not

itself be gauge invariant.
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We choose to express the distance from µzz̄ to Γ by

F Γ[µzz̄, µ
z̄
z] =

∫
Σ

dzdz̄ ρzz̄(z, z̄)
D(µzz̄,Γ, µ

z̄
z, Γ̄)

1− µzz̄µz̄z
. (10)

The factor ρzz̄(z, z̄) is a measure that exists for any given set of coordinate patches

{z, z̄}, and allows one to make the integral (10) well defined. It is a universal factor that

is the same for all surfaces of given genus g. Consequently when µzz̄ runs along an orbit,

ρzz̄(z, z̄) remains the same. (For the torus, that is g = 1, one can chose ρzz̄(z, z̄) = 1.)

Therefore, when we look for a local extremum of F [µzz̄, µ
z̄
z] under transformations that

are continuously connected to the identity, we will vary µzz̄, µ
z̄
z, while keeping ρzz̄(z, z̄) as

a fixed measure for all surfaces of the same genus.

The motivation for the factor (1 − µzz̄µ
z̄
z)
−1 that diverges at |µzz̄| ∼ 1 is as follows.

In the case of the torus, we found that this factor allows one to concentrate all possible

ambiguities at the singular point of the boundary of the Teichmüller space. In fact we

shall show that, with this factor, the value of µzz̄ that extremises the variation of µzz̄
under the action of small diffeomorphisms is an absolute minimum rather than a saddle

point. (Relative minima that are not absolute do not occur). This allows one for instance

to understand the gauge-fixing as resulting from a drift force that is always attractive,

everywhere on the orbit.

We consider explicitly the case where one may choose Γ = 0, and

D(µzz̄,Γ, µ
z̄
z, Γ̄) = D(µzz̄µ

z̄
z). (11)

With further knowledge of the theory of Riemann surfaces, when µzz̄ is identified with a

representative of the Teichmüller space, the function D can be understood as a possible

distance in this space. The functional F is the lift of this distance in the space of

the conformal classes of metrics µzz̄ and µz̄z, by the inverse operation of the“ small”

diffeomorphisms Diff0 that are connected to the identity.

To simplify notation, we now define

f(x) =
D(x)

1− x
(12)

so that

F [µzz̄, µ
z̄
z] =

∫
Σ

dzdz̄ ρzz̄(z, z̄)f(µzz̄µ
z̄
z) (13)

Having in mind the relevance of the so-called Weil-Petersen metric, we can propose

D(x) = ln
1− x
1 + x

(14)
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or

D(x) = ln
1−
√
x

1 +
√
x
. (15)

One may prefer that the distance between 2 points be linear in |µzz̄| for small |µzz̄|, in

which case the second choice is preferable. For the sake of the minimization principle for

F [µzz̄, µ
z̄
z] along a gauge orbit, we will check that both choices (14) and (15) are acceptable,

and a wider class of f(x) may also be considered.

5 Extremals of the gauge function

5.1 Extremisation equation for µzz̄ and its resolution

When the functional (13) is at a local extremum under infinitesimal coordinate transfor-

mations, the stationarity condition is

δF (||µ||2) =

∫
dzdz̄ ρzz̄(z, z̄) (µz̄zδµ

z
z̄ + c.c.)f ′

=

∫
dzdz̄ ρzz̄(z, z̄) µz̄z(∂z̄ε

z + εz∂zµ
z
z̄ − µzz̄∂zεz)f ′ + c.c.

=−
∫
dzdz̄ εz(∂z̄ − µzz̄∂z − 2∂zµ

z
z̄)(ρzz̄µ

z̄
zf
′) + c.c. (16)

It is convenient to introduce the tensor with componants

hzz(µ
z
z̄, µ

z̄
z, z, z̄) ≡ ρzz̄(z, z̄)f ′(µzz̄µ

z̄
z)µ

z̄
z, (17)

and c.c., and a local extremum is characterized by the equations,

(∂z̄ − µzz̄∂z − 2∂zµ
z
z̄)hzz = 0, (18)

and c.c.

For the torus, g = 1, one can take ρzz̄(z, z̄) = 1, so hzz = f ′(µzz̄µ
z̄
z)µ

z̄
z has no explicit

dependence on z and z̄. In this case the solution of (18) for µzz̄ is

µzz̄ = γ, (19)

where γ is a constant (complex) modulus, defined modulo an SL(2, Z) transformation.

For genus g > 1, one uses the Riemann-Roch theorem to solve (18). One goes to

another system of coordinates Z, Z̄, such that dZ = ΛZ
z (dz + µzz̄dz̄) and dZ̄ = ΛZ̄

z (dz̄ +

9



µz̄zdz). As noted earlier, the integrating factor, ΛZ
z , depends functionally only on µzz̄,

ΛZ
z = ΛZ

z (µzz̄, z, z̄) and ΛZ̄
z = ΛZ̄

z (µz̄z, z, z̄). Then the equation,

∂ZHZ,Z = 0, (20)

implies by the Riemann-Roch theorem that

HZ,Z =
∑

1≤i≤3g−3

γiHi(Z). (21)

The γi are complex moduli that can be chosen to vary over any given fundamental

domain. The Hi(Z) are a basis of the 3g-3 zero modes of quadratic differentials that

is to say, the 3g-3 linearly independent (complex) solutions of (20). Now by tensorial

covariance, one has

hzz = (ΛZ
z )2HZ,Z =

∑
1≤i≤3g−3

γihi(µ
z
z̄, z, z̄), (22)

which satisfies (18).

The solution of the minimizing equations is thus given by

ρzz̄(z, z̄)f ′(µzz̄µ
z̄
z)µ

z̄
z =

∑
1≤i≤3g−3

γihi(µ
z
z̄, z, z̄)

ρzz̄(z, z̄)f ′(µzz̄µ
z̄
z)µ

z
z̄ =

∑
1≤i≤3g−3

γ̄ihi(µ
z̄
z, z̄, z). (23)

These are a pair of coupled functional equations for µzz̄ and µz̄z with solutions

µzz̄ = µzz̄0(γ, γ̄, z, z̄) (24)

and c.c. We emphasize that here the dependence on the γ’s is highly non-linear, and it

is a challenge to find the solution explicitly even for g = 2.

Let us summarize the situation. Equation (18), which determines an extremum of

the functional (13), is solved when hzz is expressed as a linear combination of particular

functions hi, with complex coefficients γi. The γi can be identified as a point in the

Teichmüller space. Thus, starting from an arbitrary point µzz̄ on the orbit, one can reach

a point of the Teichmüller space by a succession of small gauge transformations that

brings one to a stationary point on the gauge orbit which is a minimum with respect to

all small gauge transformations. The modular group, which consists of the large gauge
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transformations, allows one to jump discontinuously from one stationary point to any

other stationary point on the orbit. By choosing the absolute minimum of F among the

stationary points on each orbit, we obtain a fundamental modular region that contains

the reference point γ = 0, and provides a unique representative for each Riemann surface

(modulo local dilatations).

5.2 Behaviour of the orbit near the local extremum µzz̄0

Because eqs. (23) depend on f , the solutions µzz̄0 depend implicitly on the choice of f .

In order to obtain only minima of the minimizing functional F rather than extrema that

are merely saddle points, one may try to choose the function f such that the matrix

of second derivatives of the minimizing functional is always positive in the fundamental

modular region (except at singular points that occur on the boundary of the fundamental

domain, and correspond to degenerate Riemann surfaces, such as the pinched torus).

This property ensures that when one applies a small diffeomorphism to µzz̄0, so that the

representative of the surfaces exits the Teichmüller space, its norm can only grow. If this

property can be ensured throughout a fundamental domain, one gets a Hessian that is

positive definite everywhere (but at the singular point(s) of the fundamental domain).

We will show (in the case of the torus) that it permits one to describe the gauge fixing

as the result of an attractive drift force along the orbit via stochastic quantization. The

criterion is that the behavour of f(x) is sufficiently near the horizon, at x = 1.

This situation is pictured in Fig. 1. The infinite-dimensional space of the µ(z, z̄) is

represented in perspective in the horizontal plane. It contains the Teichmüller space

represented by the horizontal blue line segment. A single gauge orbit, consists of an

infinite number of disconnected branches, of which only two are shown in the figure.

They are represented by the two disconnected horizontal red curves that intersect the

Teichmüller space at µ = γ1 and µ = γ2. The Teichmüller parameters γ! and γ2 are

related by a ‘large’ gauge transformation ∈ SL(2, Z). Each red curve is related to γ1 or

γ2 by a ‘small’ gauge transformation that is continuously connected to the identity. The

vertical axis measures values of the minimizing functional F (µ), and the two green curves

show the values of F (µ) for points µ on the gauge orbit, just described, that is obtained

from the green curves by vertical projection. The green curves are at a minimum at

F (γ1) and F (γ2), where the branches of the gauge orbit intersect the Teichmüller space.

An interesting feature is that there can be only a single minimum of the minimizing

functional on each connected branch of a gauge orbit. Indeed, suppose that there were

two relative minima on the same branch. In this case they are related by a gauge
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F(µ)

F(γ1)

γ1

γ2

F(γ2)

|γ| = 1

|γ| = 1

|μ| = 1

Figure 1: Plot of the values of the minimizing functional, in green, corresponding to a

single gauge orbit, in red, of which only two (out of an infinite number of) disconnected

branches are shown. The blue horizontal line is the Teichmüller space.

12



transformation that is continuously connected to the identity. On the other hand each

minimum satisfies the stationarity condition, which means that each minimum is a point

in the Teichmüller space. However, within the Teichmüller space, two points that are

gauge-equivalent are related by a large diffeomorphism, which cannot be continuously

connected to the identity. Thus we have arrived at a contradiction, which shows that

there cam be only a single minimum on each connected branch of a gauge orbit. We shall

show explicitly for the case of the torus that the single minimum does in fact exist for

appropriately chosen minimalising functional.

6 BRST-invariant action

We would like to impose the above gauge fixing in a BRST-invariant way. For this

purpose, we introduce the gauge-fixing BRST-exact Lagrangian,

s

∫
dzdz̄[bzz(µ

z
z̄ − µzz̄0) + c.c.] =

∫
dzdz̄

(
λzz(µ

z
z̄ − µz̄z0)− bzz(∂z̄cz + cz∂zµ

z
z̄ − µzz̄∂zcz)

)
+

∑
1≤i≤3g−3

li
∫
dzdz̄

∂µzz̄0(γ, γ̄, z, z̄)

∂γi
bzz + c.c., (25)

where the BRST-operator s acts according to

sµzz̄ = ∂z̄c
z + cz∂zµ

z
z̄ − µzz̄∂zcz scz = cz∂zc

z

sbzz =λzz sλzz = 0

sγi = li sli = 0, (26)

and c.c., with s2 = 0. Here the γ are in a fundamental domain containing the value γ = 0.

The Lagrange multiplier λzz assures that the minimization condition on µzz̄ is satisfied on

each gauge orbit, and this value of µzz̄ automatically gets substituted everywhere in the

action and the observables.

The last term in the action imposes, by integration over the li, that the antighost

field b remains orthogonal to all zero modes in the Fadeev–Popov operator, defined by

(∂z̄ − µzz̄∂z + 2∂zµ
z
z̄)bzz = 0.

We will check that no zero eigenvalue occurs for the torus, by an appropriate choice

of the function f . In fact the zero mode occurs only at the singular part of the boundary

of the minimizing fundamental domain, which constitutes therefore a harmless Gribov

horizon.
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The definition of the observables as s-invariant quantities that are not s-exact ensures

that they cannot depend on the γ’s, because the pairs (γ, l) are BRST-trivial doublets.

Their field dependance is only though the string field X and the Beltrami differentials

µzz̄ and µz̄z (and their supersymmetric partners in the superstring case).

The alternative of imposing equations (18) as gauge conditions, by means of Lagrange

multiplier fields in a standard BRST-invariant way will be sketched in an Appendix. How-

ever this gauge choice is impractical because gravitational degrees of freedom propagate,

and for this reason we shall impose instead the solution of this equation, which is µzz = γ

in the case of the torus.

7 The case of the torus

7.1 Identification of the domain that minimizes the gauge-functional

For the torus, the Teichmüller space can be represented as the upper half-plane of complex

τ , with Im(τ) ≥ 0. Two points that differ by any given SL(2, Z) transformation

τ → aτ + b

cτ + d
, (27)

where a, b, c and d are positive or negative integers, represents the same torus. These

transformations can be decomposed as successions of transformations

τ → −1

τ
; τ → τ + 1. (28)

As is well known, the first fundamental domain is defined by −1
2
≤ Re(τ) ≤ 1

2
and τ τ̄ ≥ 1.

All other fundamental domains are obtained from compositions of transformations (28).

For any given Riemann surface one has everywhere |µzz̄| < 1. It is thus appropriate

to redefine the Teichmüller parameters in such a way that they are confined in a disk

where their modulus remains smaller than one. For the torus, the solution is obvious; all

points of the complex upper-half plane Im τ ≥ 0 are mapped onto the Poincaré disk D,

|γ| ≤ 1, by

γ =
τ − i
τ + i

(29)

As we will show, this opens the way to the gauge-fixing of 2d-gravity in a very simple

way.

Figure 2 shows the image DI of the first fundamental domain for the case of the torus.

The mapping τ → −1
τ

corresponds to a symmetry γ → −γ for every point of any given
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fundamental domain. The mapping τ → τ + n sends a point γ of the domain I into a

point γn of another fundamental domain such that γn > γ.

The curves in γ-space that appear in the figure are found from the inversion,

τ = i
(1 + γ

1− γ

)
= i
(1 + x+ iy

1− x− iy

)
, (30)

where we have separated γ into its real and imaginary parts. One easily finds that the

boundary of the Teichmüller space, Im(τ) = 0 corresponds in the γ plane to the unit

circle x2 + y2 = 1, whereas the boundary of the first fundamental modular region, made

up of parts of the curves Re(τ) = ±1/2, and |τ | = 1, is made up in the γ plane by parts

of the curves (x− 1)2 + (y ∓ 2)2 = 22 and x = 0, as drawn in Fig. 2.
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|γ| = 1

|τ| = 1

Re τ = 1/2

Re τ = - 1/2

Figure 2: The Poincaré disk |γ| ≤ 1 corresponds to the Teichmüller space Imτ ≥ 0. The

first fundamental modular region of the torus, and its copy under γ → −γ, are outlined

in red, as the interior of both adjacent triangles in the middle of the γ plane. For these

domains, the point |γ| = 0 is the representative of the “squared” torus. This point can

be e.g. chosen as the reference point for the minimizing functional in string theory. All

other fundamental domains are obtained by modular transformations. Each one of them

intersects only once the boundary circle |γ| = 1. On the other hand any given point of

this boundary belongs to several fundamental domains. The boundary of the Poincaré

disk can be therefore named as the (harmless) horizon of 2-dimensional gravity.
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7.2 BRST-invariant representation of the minimizing domain

For genus g = 1, the last Lagrangian simplifies to

s(

∫
dzdz̄

(
bzz(µ

z
z̄ − γ)

)
=

∫
dzdz̄

(
λzz(µ

z
z̄ − γ)− bzz(∂z̄cz − γ∂zcz)

)
+ l

∫
dzdz̄ bzz

+c.c., (31)

where s acts as in (26). This expression must be added to the Polyakov action, which

is BRST-invariant but not BRST-exact. The gauge-fixing action (31) identifies λzz, as a

Lagrange multiplier field for µzz̄. The constant fermionic Lagrange multiplier l imposes

that the zero mode of the operator ∂z̄ − γ∂z is omitted. Consequently the ghost and

anti-ghost integrations give a regularised determinant, det′(∂z̄ − γ). Eventually, the

integration over γ must be done over the fundamental domain that we found by our

minimizing principal for each orbit. This reproduces the known result for the partition

function of string theory with a 1-torus worldsheet. In this construction, it must be

noted that, although one has escaped the consequence of Singer’s theorem by solving a

minimizing principle, a BRST symmetry has been preserved all along the way, allowing

one to prove by locality properties that the observables satisfy all requirements concerning

factorization and modular invariance. Notice that the degenerate point γ = 1 is safely

approached. This is where the torus approaches the pinched torus, that is, a sphere with

two identified points. If an observable produces divergences as one approaches this point,

one must e. g. use a cutoff |γ| < 1− ε, consistent with the BRST Ward identity (see the

previous section), so the divergence cancels in the limit ε→ 0.

We now verify the absence of zero modes of the second variation of the minimizing

functional, except at the singular point |γ| = 1, and we determine the criteria on the

function f in order that the second variation of the minimizing functional F be strictly

positive for γ < 1.

7.2.1 Eigenvalues and zero modes of the Faddeev-Popov operator

We shall calculate the eigenvalues of the Faddeev-Popov operator

M ≡ ∂ − γ∂ (32)

where ∂ ≡ ∂
∂z

and ∂ ≡ ∂
∂z

.

This operator acts on functions f(z, z) that are doubly periodic in the basic parallel-

ogram

f(x+ 1, y) = f(x, y + 1) = f(x, y). (33)
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where z = x + iy, and x and y are real. Note that the boundary conditions satisfied by

the coordinates are fixed, independent of the metric, because our transformations are all

active, that is to say, they act on the fields only.

The Faddeev-Popov operator is a derivative with constant coefficients which is diag-

onalized by an exponential,

fm,n(x, y) = exp[2πi(mx+ ny)], (34)

and the boundary conditions are satisfied by taking m and n to be integers. Thus the

general solution with the doubly periodic boundary conditions reads, in terms of z and z

fm,n(x, y) = exp[π(mi+ n)z + π(mi− n)z]. (35)

The eigenvalues of the Faddeev-Popov operator are obtained from

(∂ − γ∂)fm,n = Em,nfm,n, (36)

which gives

Em,n = π(mi− n)− γπ(mi+ n). (37)

The null eigenvalues satisfy Em,n = 0, which gives for the values of γ that correspond to

null eigenvalues,

γ = −n−mi
n+mi

. (38)

This implies

|γ| = 1, (39)

and so all values of γ that correspond to zero-modes of the Faddeev-Popov operator

M = ∂ − γ∂ lie on the unit circle.

7.2.2 Second variation of minimizing functional

The derivation of the second variation of F is simplified by never partially integrating

on µ or µ̄ because, in the end, the condition of minimisation that is imposed, is µzz̄ = γ

= const. For notational simplicity we now set µ = µzz̄ and µ̄ = µz̄z.

The minimizing functional is given by

F =

∫
d2z ρ f(µ̄µ). (40)
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Its first variation is

δF =

∫
d2z ρ f ′(µ̄µ) (δµ̄µ+ µ̄δµ)

=

∫
d2z ρ f ′(µ̄µ) (∇ε̄µ+ µ̄∇ε), (41)

where we have used

δµ = ∇ε ≡ (∂̄ − µ∂ + ∂µ)ε, (42)

and cc.

The second variation is then

δ2F =

∫
d2z ρ { f ′′(µ̄µ) (∇ε̄µ+ µ̄∇ε)2

+ f ′(µ̄µ) [ 2∇ε̄∇ε+ δ(∇ε̄)µ+ µ̄δ(∇ε) ] }. (43)

By (42) we have δ∇ε = (−δµ∂ + ∂δµ)ε, which gives

δ∇ε = −∇ε∂ε+ ∂(∇ε)ε (44)

and cc, and we have

δ2F =

∫
d2z ρ

[
f ′′(µ̄µ) (∇ε̄µ+ µ̄∇ε)2 (45)

+ f ′(µ̄µ)
(

2∇ε̄∇ε+ [−∇ε̄∂̄ε̄+ ∂̄(∇ε̄)ε̄]µ+ µ̄[−∇ε∂ε+ ∂(∇ε)ε]
) ]

.

We are interested in the second variation at the stationary points of the minimizing

functional, and we specialize to the torus. In this case we have ρ = 1, and µ = γ and

µ̄ = γ̄, where γ and γ̄ are complex conjugate constants with γγ̄ ≤ 1. In this case ∇ε
simplifies to

∇ε ≡ (∂̄ − γ∂)ε, (46)

and cc, and we have

δ2F |µ=γ =

∫
d2z

[
f ′′(γ̄γ) (∇ε̄γ + γ̄∇ε)2 (47)

+ f ′(γ̄γ)
(

2∇ε̄∇ε+ [−∇ε̄∂̄ε̄+ ∂̄(∇ε̄)ε̄]γ + γ̄[−∇ε∂ε+ ∂(∇ε)ε]
) ]

.

We simplify this expression by doing a partial integration in the last two terms,

δ2F |µ=γ =

∫
d2z [ f ′′(γ̄γ) (∇ε̄γ + γ̄∇ε)2

+ 2f ′(γ̄γ) (∇ε̄∇ε−∇ε̄∂̄ε̄γ − γ̄∇ε∂ε) ]. (48)
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7.2.3 Positivity of eigenvalues

We wish to determine if the second variation, δ2F |µ=γ, is a positive quadratic form.

Since it involves derivatives with constant coefficients, we may diagonalize it by fourier

components. With coordinates z = x + iy and z̄ = x − iy, the boundary conditions for

the torus are

ε(x+ 1, y) = ε(x, y + 1) = ε(x, y). (49)

and cc. The second variation is diagonalized by

ε(x, y) = α sin[2π(mx+ ny)] + β cos[2π(mx+ ny)], (50)

and cc, where m and n are integers, and α and β are complex constants. Since δ2F |µ=γ is

quadratic in the derivatives ∂ε, ∂ε̄, ∂̄ε, ∂̄ε̄, the terms in sin[2π(mx+ny)] and cos[2π(mx+

ny)], do not mix, so the terms in α and β do not mix, and we may diagonalize by taking

β = 0 or α = 0. These choices give the same result, and we take

ε(x, y) =α sin[2π(mx+ ny)]

ε̄(x, y) = ᾱ sin[2π(mx+ ny)] (51)

We have

∂ = ∂z = (1/2)(∂x − i∂y)
∂̄ = ∂z̄ = (1/2)(∂x + i∂y), (52)

which gives

∂ε = Wα cos[2π(mx+ ny)]; ∂ε̄ = Wᾱ cos[2π(mx+ ny)]

∂̄ε = Wα cos[2π(mx+ ny)]; ∂̄ε̄ = Wᾱ cos[2π(mx+ ny)] (53)

and

∇ε = V α cos[2π(mx+ ny)]

∇ε̄ = V ᾱ cos[2π(mx+ ny)], (54)

where

W ≡ π(m+ in); W ≡ π(m− im). (55)

and

V ≡W − γW
V ≡W − γ̄W. (56)
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Upon integrating over x and y, we obtain for the second variation

2δ2F |µ=γ = f ′′(V γᾱ + V γ̄α)2 + 2f ′(|V |2ᾱα− VWγ̄α2 − VWγᾱ2). (57)

In terms of the variables α and ᾱ, this is the quadratic form

2δ2F |µ=γ = Aᾱα +Bα2 +Bᾱ2, (58)

where

A ≡ 2f ′′|V |2γ̄γ + 2f ′|V |2 (59)

B ≡ f ′′V 2γ̄2 − 2f ′VWγ̄, (60)

and cc. In terms of the real variables

α = r + is; ᾱ = r − is (61)

it reads

2δ2F |µ=γ = (A+B + B̄)r2 + (A−B − B̄)s2 + 2i(B − B̄)rs. (62)

The eigenvalues of this real quadratic form are easily found to be

λ = A± 2B̄B. (63)

For appropriately chosen f(x), the derivatives f ′(x) and f ′′(x) are positive, so A is

positive, and both roots will be positive if A2 > 4B̄B namely, if

A2 − 4B̄B > 0. (64)

We wish to determine if this quantity is positive for all values of W and γ, with γ̄γ ≤ 1.

To simplify the calculation we write

V = Wv; V = Wv̄ (65)

where, by (56),

v ≡ 1− σ; v̄ = 1− σ̄ (66)

and

σ ≡ γ
W

W
= |γ|eiφ; σ̄ ≡ γ̄

W

W
= |γ|e−iφ. (67)

Here φ is a pure phase because
W

W
=
m− in
m+ in

, (68)
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is a pure phase, and we have

σ̄σ = γ̄γ. (69)

In terms of these variables we have

A= 2f ′|V ||W ||v|(R|γ|2 + 1)

B= f ′VWγ̄(Rvσ̄ − 2)

B= f ′VWγ(Rv̄σ − 2), (70)

where we have introduced the ratio of derivatives

R ≡ f ′′(γ̄γ)

f ′(γ̄γ)
. (71)

Positivity of the second variation is determined by the positivity of

Q ≡ A2 − 4BB

4|V |2|W |2f ′2
. (72)

which is given by

Q= |v|2(R|γ|2 + 1)2 − |γ|2(Rv̄σ − 2)(Rvσ̄ − 2)

= 2R|γ|2 ( |v|2 + vσ̄ + vσ ) + |v|2 − 4|γ|2, (73)

where the term in R2 has cancelled because |σ|2 = |γ|2.

To evaluate this expression, we use v = 1− σ, which gives

|v|2 = (1− σ)(1− σ̄) = 1− σ − σ̄ + |γ|2 (74)

vσ̄ + vσ = (1− σ)σ̄ + (1− σ̄)σ = σ + σ̄ − 2|γ|2, (75)

so

|v|2 + vσ̄ + v̄σ = 1− |γ|2, (76)

and we obtain

Q = 2R|γ|2(1− |γ|2) + 1− 2|γ| cosφ+ |γ|2 − 4|γ|2, (77)

where we have used σ + σ̄ = 2|γ| cosφ. This expression is a minimum at cosφ = 1, so Q

will be positive for all m and n if and only if Q is positive at this minimum, namely if

Qmin ≡ 2R|γ|2(1− |γ|2) + (1− |γ|)2 − 4|γ|2 (78)
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is positive. For |γ| close to 1, all terms are small except the last one — which is negative

— unless we can save the day by an appropriate choice of f(|γ|2). Indeed let us choose

f(x) =
1

(1− x)p
, (79)

where p is a power at our disposal. We have

R(x) =
f ′′(x)

f ′(x)
=
p+ 1

1− x
(80)

and, with x = |γ|2, we obtain

Qmin = 2(p+ 1)|γ|2 + (1− |γ|)2 − 4|γ|2

= 2(p− 1)|γ|2 + (1− |γ|)2. (81)

This will be positive for all |γ| ≤ 1 if and only if p ≥ 1. Thus for f(x) of the form (79),

Q is non-negative for all |γ| ≤ 1 and all integers m and n provided that

p ≥ 1. (82)

This is necessary and sufficient for δ2F to be a positive form. Other expressions for

f(x) will also satisfy this condition, but they must have the singularity at |γ| = 1 of the

strength found here. For example f(x) = − ln(1− x) will not do, and with the simplest

choice F =
∫
dzdz̄ µµ̄, one would gets a negative eigenvalue for |γ| > 1/3.

The condition

Qmin ≥ 0, (83)

where Qmin is defined in (78) provides a simple criterion which determines whether the

second variation of the minimizing functional δ2F is a positive form or not.

8 Definiteness and convergence of the gauge-fixing

process through stochastic quantization

Stochastic quantization materializes quantum fluctuation by a Langevin equation, with

a Gaussian noise b and a drift force that is equal to the sum of the classical equation of

motion, − δS
δφ

and a “force”, δv(φ), tangent to the gauge orbit, that is given by a gauge

transformation (in our case a reparametrization) with a field-dependent generator vz.

The latter must be chosen in such a way that the Langevin process converges at infinite
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values of a stochastic time t, and the Langevin equation for any given field reads, in

general

∂tφ = −δS
δφ

classical

+ δgauge,v(φ) + bφ(x, t), (84)

where bφ(x, t) is a white noise for φ(x, t). The correlation functions of gauge independent

operators cannot depend on the the choice of v (provided the stochastic process is well

defined).

In the case of 2d-gravity, the last equation remains formal because in order to achieve

the condition |µzz̄| < 1, one cannot assume stricto-sensu that all fluctuations of the noise

bφ(x, t) are allowed. This problem is possibly solved by reformulating the stochastic

process under the form of Fockker–Planck equation, where the notion of a noise disappears

when the Fockker–Planck kernel is introduced.

For our case, the gauge symmetry is 2d-reparametrization. All fields now depend

on z, z̄, t, and for every gauge orbit, we introduce the following metric dependent gauge

function

vz = ρzz̄f ′∇(µz̄z)
z µzz̄ (85)

Call bµzz̄ and bX Gaussian noises for µzz̄ and X. Both Langevin equations for the Beltrami

differential and the string field are

∂tµ
z
z̄ = Tzz −∇z̄(ρ

zz̄f ′∇(µz̄z)
z µzz̄) + bµzz̄ (86)

where Tzz is the classical energy momentum tensor

Tzz =
δS

δµzz̄

Polyakov

=
∂z̄ − µzz̄∂z
1− µzz̄µz̄z

X · ∂z̄ − µ
z
z̄∂z

1− µzz̄µz̄z
X (87)

and

∂tX = −(∇z̄∇z +∇z∇z̄)X + ρzz̄f ′∇(µz̄z)
z µzz̄∇zX + ρzz̄f ′∇(µzz̄)

z̄ µz̄z∇z̄X + bX (88)

The presence of a Laplacian with no zero modes in both equations ensures a well-defined

converging stochastic process, and the gauge-fixing is well-achieved in this method.

To implement the form of the explicit equilibrium Fokker–Planck distribution of the

Langevin process is probably an impossible task, since both Langevin equations involve

nontrivial gravitational interactions between the µzz̄ and X fields having explicitly no

zero-mode problems in the stochastic process, but a ghost-free field theory has a price,

namely the existence of of gravitational interactions.
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The role of the functions ln ρzz̄(z, z̄) and f in the definition of the drift force along the

gauge orbit is to ensure that the latter is always a restoring one, and that it can vanish

only at the boundary of a fundamental domain. If these functions are not well chosen, an

artificial singularity of the Langevin/Fokker–Planck process may occur, where the drift

force can change sign, but this just an artifact of a bad system of coordinates, which is

analogous to the (pseudo) Schwartzschild singularity in the description of a black hole.

9 Conclusion

This paper high-lights the property that the Gribov question is not a problem in string

theory. There is an unambiguous gauge-fixing, with a minimizing principle on each

orbit, such that the Faddeev-Popov determinant in a BRST-invariant description cannot

possibly change sign in a fundamental domain. Infrared problems may occur for certain

modular invariant observables, when the moduli approaches the singular points of the

fundamental domain. Their existence is certain, since a multitorus of genus g can be

pinched in a number of ways, and can be identified as a Riemann surface of lower genus

with identified points, a geometrical feature that seems to be the origin of possible IR

divergencies of the field theory limit of string theory.

The method indicates that a complete knowledge of the moduli space of Riemann

surfaces is necessary to get a reliable BRST-invariant action for the theory. Since the

method has a straightforward generalization for the superstring, we left aside the tachyon

problem, which is irrelevant for the question of gauge-fixing.

The string is thus a very interesting laboratory for gauge-fixing questions. Choosing

an absolute minimum for a gauge-fixing functional on each orbit selects a unique rep-

resentative of the worldsheet metric, orbit per orbit. This choice can be enforced in a

BRST-invariant way. It allows one to select and compute all observables of the theory,

while respecting all BRST Ward identities. The expressions found are given by the usual

integrals over a fundamental domain of Riemann surfaces, at a fixed genus.

This fundamental domain is in fact found by minimizing a certain distance in the

space of Beltrami differentials, which corresponds to the gauge-fixing functional on each

orbit.

In the case of the torus one can explicitly verify that no Gribov issue arises. A horizon

exists however, and is found to be the boundary of the Poincaré disk, where the quantum-

field-theory limit of string theory is defined. This boundary of the Teichmüller space is

degenerate, in the sense that it represents a surface for which the absolute minimum
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of the gauge-fixing functional is degenerate. It gathers all the singular points of the

boundaries of each fundamental domain, when the torus becomes degenerate, as a sphere

with a pair of points identified (pinched torus). However, when one restricts to one given

fundamental domain, only one of these points occurs, and its contribution can safely

regularised, provided one computes infra-red safe observables.
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10 Appendix A : Sketch of the condition ∇z̄hzz in a

standard BRST construction

In this section, for the sake of curiosity, we show an attempt to directly enforce the min-

imizing gauge-condition ∇z̄hzz in the “standard” BRST construction, as one does in the

perturbative Yang–Mills landau gauge. For this purpose, one uses a Lagrange multiplier

local field λz for imposing the condition by adding to the action a term
∫
d2zλz∇zµ

z
z̄. To

make this term part of a BRST-exact term, one also introduces an anti-ghost field Cz,

such that sCz = Λz. One does the analogous for the other sector.

The anti-ghost Cz cannot have generic zero modes, since it has a single holomorphic

index, like the Faddeev Popov ghost cz, but the existence of the 3g-3 global zero modes

will pop up in a different manner as for the antighost bzz of the previous method. These

zero modes will be carried by the now propagating Beltrami differential, and a deficit

between the number of propagating zero modes of the Beltrami differential and the

Lagrange multipliers. The theory seems in fact almost impossible to solve, since we

will get a theory where the 2d-gravity fields become propagating, apparently like the

longitudinal gluon in the Yang–Mills theory in the Landau gauge.

According to the “naive” idea of BRST quantization, we thus tentatively define the

BRST gauge-fixing action action as∫
d2z s

(
Cz(∂z̄ − µzz̄∂z − 2∂zµ

z
z̄)f
′ρzz̄µ

z̄
z + s(C z̄(∂z − µz̄z∂z̄ − 2∂z̄µ

z̄
z)f
′ρzz̄µ

z
z̄

)
=

∫
d2z s(Cz̄∇z̄f

′ρzz̄µ
z̄
z + Cz∇zf

′ρzz̄µ
z
z̄) (89)
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that is,∫
d2z (Λz∇z̄f

′ρzz̄µ
z̄
z + Λz̄∇zf

′ρzz̄µ
z
z̄ −

(
Cz C z̄

)(s(∂z̄ − µzz̄∂z − 2∂zµ
z
z̄)f
′ρzz̄µ

z̄
z

s(∂z − µz̄z∂z̄ − 2∂z̄µ
z̄
z)f
′ρzz̄µ

z
z̄

)
(90)

This action is problematic. The ghost terms are probably well defined by a proper choice

of the function f ′. However, one has global zero modes for f ′ρzz̄µ
z
z̄ and f ′ρzz̄µ

z̄
z. One

must force f ′ρµ to remain in the appropriate space of the same dimension as Λ, by a

gauge-fixing involving constant ghosts. This is probably the way an integration over

a fundamental domain will make its way in the expression of the partition function.

There is not much motivation to check the details because in this action the Beltrami

differentials now become propagating fields, as do Λz̄ and Λz, and one gets gravitational

interactions with the string field X. We thus expect super-renormalizable 2-d quantum

field theory, with a subtle infra-red problem.10

One can however check the consistency of this theory by computing its confor-

mal anomaly, which only involves the local structure of the worldsheet. This is a

purely local question that can be done at genus zero. One must compute perturbatively

∇z̄Tzz(x), Tzz(y) and check its vanishing condition, to be able to enforce the BRST Ward

identity. This computation was done a long time ago, (it was motivated by different con-

cerns [5]). The computation with a propagating metric involves loops containing the free

propagators of µ,Λ, c, C and X. The contribution of the ghosts is not the same as in the

conformal gauge, due to the different conformal weights of the anti-ghosts, but one still

gets the condition D − 26 = 0 due to compensating contribution of internal loops of µzz̄
and Λ.

It is important that the method we advocate of defining the gauge-fixing by the

minimizing principle on each orbit is however completely well defined, since, as shown

in this Appendix, the attempt to enforce the condition ∇f ′ρµ = 0 in a conventional

BRST-invariant way leads to unnecessary stringy complications, such as the propagation

of lagrange multipliers of the BRST symmetry, with the occurrence of extra zero modes

that seem difficult to solve.

10 This QFT has a chance to be handled in the limit of infinite genus, which is unreachable in the

normal construction, because of the growing complicated structure of fundamental domains when the

genus increases.
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11 Appendix B: Superstring extension

For the superstring case, the Beltrami differential gets a supersymmetric partner, the

conformal invariant part of the 2d gravitino, with 2 components α+
z (z, z̄), α−z̄ (z, z̄). The

2d spinor α+
z̄ , α

−
z is defined in the tangent plane of the Riemann surface, and its large

gauge transformations are deduced from those of the Beltrami differential. Calling γ±

the local ghost of local supersymmetry, the small reparametrization and supersymmetry

gauge transformations are represented by the following BRST transformations

sµzz̄ = ∂z̄c
z + cz∂zµ

z
z̄ − µzz̄∂zcz + α+

z̄ γ
z

scz = cz∂zc
z +

1

2
γzγz

sα+
z̄ = ∂z̄γ

z + µzz̄∂zγ
z − 1

2
γz∂zγ

z + cz∂zα
+
z̄ −

1

2
α+
z̄ ∂zc

z

sγ+
z = cz∂zγ

+
z −

1

2
γ+
z ∂zc

z (91)

and complex conjugate equations. The question of the gauge-fixing of the local super-

symmetry can be solved with the generalisation of the method we introduced for the

Beltrami differential. There are gauge orbits for α+
z̄ and α−z . The choice of a unique

representative both for µ and α will be obtained by a minimizing principle, using for

instance the functional

F [µzz̄, µ
z̄
z, αz, αz̄] =

∫
Σ

ρzz̄(z, z̄)dzdz̄
1

1− |µ(z, z̄)|2
(92)(

ln
1− |µ(z, z̄)|
1 + |µ(z, z̄)|

−
√
ρzz̄α+

z̄ (z, z̄)α−z (z, z̄)
)
. (93)

For instance, at genus one, the solution for the minimum is µzz̄ = γ and α+
z̄ = t, where t is

a super-module, and for genus g > 2, the Riemann-Roch theorem predicts the integration

over 2g-2 super-modules, with a method completely analogous as the one we followed for

the Beltrami differential, and an eventual partition with a BRST symmetry. In the

path integral, the super-module is a Grasmann variable, and its BRST transform is a

commuting constant T , with st = T . T is unbounded and serves as a bosonic constant

Lagrange multiplier for ensuring that the commuting antighost β−z̄ has no zero modes.

References

[1] A. M. Polyakov, Gauge Fields and Strings, Contemporary Concepts in Physics, Pub-

lisher CRC ; O. Alvarez, Theory of Strings with Boundaries: Fluctuations, Topology,

28



and Quantum Geometry B216 (1983) 125; E. D’Hoker, D.H. Phong, The Geometry

of String Perturbation Theory, Rev.Mod.Phys. 60 (1988) 917 and Multiloop Ampli-

tudes for the Bosonic Polyakov String, Nucl.Phys. B269 (1986) 205; C.M. Becchi,

C. Imbimbo, Gribov horizon, contact terms and Cech–De Rham cohomology in 2D

topological gravity Nucl.Phys. B462 (1996) 571-599, hep-th/9510003.

[2] V. N. Gribov, Quantization of non-abelian gauge theories, Nuclear Physics B139

(1978), 1-19; I. M. SInger, Some remarks on the Gribov ambiguity, Comm. Math.

Phys. Volume 60, Number 1 (1978), 7-12.

[3] L. Baulieu, M. Bellon, Beltrami Parametrization And String Theory, Phys. Lett.

B196 (1987) 142; L. Baulieu, On the BRST structure of the closed string and

superstring theory, in Non perturbative quantum field theory 1987 Cargèse Pro-
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