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Abstract

We reformulate the quantum black hole portrait in the language
of modern condensed matter physics. We show that black holes can
be understood as a graviton Bose-Einstein condensate at the critical
point of a quantum phase transition, identical to what has been ob-
served in systems of cold atoms. The Bogoliubov modes that become
degenerate and nearly gapless at this point are the holographic quan-
tum degrees of freedom responsible for the black hole entropy and
the information storage. They have no (semi)classical counterparts
and become inaccessible in this limit. These findings indicate a deep
connection between the seemingly remote systems and suggest a new
quantum foundation of holography. They also open an intriguing pos-
sibility of simulating black hole information processing in table-top
labs.
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1 Introduction

Exchange of ideas between condensed matter and particle physics has a long
history. In the present paper we would like to establish one more link: A
fundamental connection between the physics of black holes and critical phe-
nomena in quantum Bose-Einstein condensates (BEC) that are formed in
ordinary quantum systems such as cold atoms and photon gasses.

This connection originates from a recently formulated quantum theory of
black holes, according to which black holes represent quantum Bose-Einstein
condensates of gravitons [3].

In the usual treatment gravitational systems, such as the black holes (or
even an entire Universe), are introduced through the background geometry
that they produce. Thus, in the semi-classical approximation, one studies
small fluctuations about the background, but the background geometry itself
is treated as an intrinsically classical entity. However, in nature there are no
true classical objects, the Planck’s constant is non-zero, ~ 6= 0. So in the
semi-classical treatment we are working in the limit in which the quantum
constituents of the geometric background cannot be resolved.

Hence, what are the true quantum constituents of the classical geometry?
Just in the same way as a laser beam is an emergent classical description

of a large occupation number of photons, the classical geometry must be
handled as an effective description of a quantum state with large graviton
occupation number. When such state is a ground-state, the gravitational
field is effectively a Bose-Einstein condensate. This is the case for black
holes [3].

Unlike the photons (which are electrically neutral) gravitons gravitate and
can form a self-sustained Bose-condensate, a black hole. The special property
of such a condensates is that they are at the point of maximal packing. The
maximal packing means that the size of the condensate, L, depends on the
occupation number N in such a way that it is impossible to further increase
N without increasing L. Essentially, at the point of maximal packing N
becomes the sole characteristic of the system. In particular, the size scales
as L =

√
N LP , whereas the coupling between individual particles scales as

α = 1/N . Putting it simply, a black hole represents a large-N system in the
’t Hooft’s sense [4], with the critical value of the coupling, αN = 1.

This picture naturally explains all the semi-classical mysteries of black
holes. Particularly, the Hawking radiation [1] and the negative specific heat
result from quantum depletion of the condensate. The spectrum of radiation
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is thermal up to 1/N -corrections with effective temperature T = ~/
√
NLP .

The resulting heat capacity is obviously negative, since N decreases as a
result of the depletion.

It is interesting, that emergence of thermality has nothing to do with the
temperature of the condensate, but instead results from the self-similarity of
the depletion and leakage, which does not change the N -dependence of the
black hole characteristics.

Another black hole mystery is the origin of Bekenstein entropy [2] and
the quantum mechanism of information-storage and processing by a black
hole. The scaling of Bekenstein entropy as the horizon area S ∼ L2/L2

P ,
creates the impression that the horizon is an union of N Planck-size pixels
each housing a distinguishable degree of freedom that can be in a discrete
number of degenerate states (e.g., ±) resulting into an exponentially large
number of micro-states. Due to this property, these hypothetical degrees of
freedom are often called Holographic [11].

In the semi-classical picture the microscopic origin of these degrees of
freedom is mysterious (and as we shall show, inaccessible in principle). In-
stead in our quantum picture, these degrees of freedom naturally originate
as collective quantum excitations of the graviton Bose-condensate, huddled
within a mass gap of order 1/N . In [3] we refer to them as flavors. These
flavor degrees of freedom are intrinsically-quantum and they decouple as 1/N
in the classical limit, as they should. Correspondingly in the (semi)classical
limit it becomes infinitely hard to resolve them. This explains why in this
limit black holes can store an arbitrary amount of information, without ever
releasing it.

If black holes are Bose-Einstein condensates then it is natural to expect
that at least some of its properties must have counterparts in ordinary Bose-
Einstein condensates [5] such as in systems of cold atoms [7,8] or photons [9].
The purpose of this paper is to establish this connection. The motivation for
such an analysis is pretty clear. First, it is of fundamental importance to es-
tablish unity of physical phenomena in seemingly remote systems. Secondly,
such a connection can potentially enable us to simulate quantum black hole
physics in the table-top labs. A potential byproduct of such a simulation can
be the use of black hole information storage and processing in cold atomic
or photonic systems.

In this paper we shall try to make a first step in this direction and to
show that the connection is much deeper that what one would have naively
thought.
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To summarize our findings shortly:

Black holes represent Bose-Einstein-Condensates of gravitons at the crit-

ical point of a quantum phase transition.

Quantum phase transitions are well-known in condensed matter physics
(see e.g., [6]). The category of quantum transitions that is our main focus
was studied recently in cold atomic systems [7, 8]. As we shall explain, such
phase transitions capture the key physics of the black hole quantum portrait.

The essence of the connecting phenomenon is the following. In the pres-
ence of an attractive interaction a fixed size BEC undergoes a phase transi-
tion above critical values of the occupation number N . The uniform BEC
becomes unstable and moves into a phase of a bright soliton. At the critical
point Bogoliubov modes become almost degenerate with the ground-state,
within the energy gap that collapses as 1/N . These gapless modes reflect the
underlying breaking of symmetry and the corresponding appearance of Gold-
stone modes. At the same point the quantum depletion of the condensate
becomes important.

Detailed comparison of the above system with the black hole picture of [3]
reveals that all the above phenomena have exact counterparts there. Namely,
the critical value of the occupation number in the black hole case corresponds
to the point of maximal packing (the critical value of the ’t Hooft’s coupling)
or equivalently to self-sustainability of the graviton condensate. The gapless
Bogoliubov modes are playing the role of the holographic flavors that ac-
count for the black hole entropy and the quantum depletion is the Hawking
radiation. The brief summary of the black hole - BEC correspondence is:

• Maximal packing (self-sustainability) ←→ Critical point of a quantum
phase transition

• Holographic degrees of freedom (flavors) ←→ Gapless Bogoliubov
modes at the critical point

• Bekenstein entropy ←→ Quantum degeneracy of the BEC state at the
critical point

• Hawking Radiation ←→ Quantum depletion and leakage of the BEC
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It is important to stress, that we are not dealing with a crude analogy,
but with identical physics. Of course, black holes have some peculiar char-
acteristics (so far) not exhibited by ordinary lab condensates. In the lab
systems the critical point is achieved by tuning the external factors (e.g.,
size of the system, number of atoms and interaction strength). Due to this
the depletion puts them away from the critical point.

In contrast, black holes are self-tuned and always stay at the critical
point due to the self-similarity of the depletion. Emission of a quantum
takes a black hole of graviton number N into the one with N − 1 with all
the characteristics depending on N self-similarly. Analogous effect could in
principle be achieved in the lab if one externally adjust parameters in order
to track the depletion.

As a final remark, we have suggested that the connection between the
maximal packing and the holography must not be limited to the black hole
case and must be more general. In particular, as a supporting evidence, by
extending this connection to an AdS geometry and treating it as a graviton
condensate we have observed [3] that it also appears at the point of maximal
packing. Moreover, the occupation number N of gravitons in AdS exactly
reproduces the central charge of the CFT that is independently predicted by
AdS/CFT correspondence [17]. Is this a simple coincidence?

The results of the present paper suggest that it is not. It originates from
the general feature of an overpacked BEC being at the critical point, where
Bogoliubov modes become degenerate and the system effectively becomes
conformal. We therefore suggest:

The understanding of classical geometries as BECs at the critical point

provides a quantum foundation of holography.

The maximally packed systems (αN = 1), such as black holes or AdS
space, are equivalent to BEC’s at the critical point of a quantum phase tran-
sition, and as such they are described by (nearly conformal) physics of degen-
erate Bogoliubov modes. The degree of conformality should be determined
by the depletion properties of the condensate.

The paper is organized as follows.
In the next section we briefly review the essentials of the black hole quan-

tum portrait in terms of BEC of gravitons. In section 3 we make contact
between this picture and the quantum phase transition in BECs appearing
in condensed matter and atomic systems [7, 8] and show that they are gov-
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erned by the same physics. In order to establish this connection we study a
prototype theory of BEC that exhibits critical transition and show that these
properties closely match the ones of graviton BEC in the quantum picture of
a black hole [3]. In section 4 we discuss the peculiarity of the graviton BEC,
that allows it to be stuck at the critical point, even during the quantum col-
lapse and leakage. In section 5 we discuss why maximal packing (equivalently
critical point) of BEC is crucial for allowing large entropy and information
storage. In section 6 we discuss the generalization of our results to other
systems with maximal packing and suggest that this provides an universal
quantum foundation of holography. Finally, we discuss some potential impli-
cations of our results and give an outlook. We shall set the speed of light to
one, but keep ~ explicit. We shall ignore all the irrelevant numerical factors.

2 Black Holes as Bose-Einstein Condensates

In this section we shall briefly discuss some essentials of the black hole quan-
tum portrait in order to prepare a ground for establishing the connection
with condensed matter systems. For a more detailed discussion the reader is
referred to the original papers [3].

Gravitons are massless spin-2 particles. The strength of graviton-graviton
interaction is measured by a dimensionless coupling ”constant”,

α ≡ L2
P

L2
, (1)

where, L is a characteristic wave-length of the gravitons participating in the
interaction and LP is the Planck length. In terms of Newton’s gravitational
constant, GN , the Planck length is defined as L2

P ≡ ~GN . The physical
meaning of the above coupling can be understood in simple terms as the
relativistic generalization of the Newtonian attraction among two gravitons.
Notice that the latter force acting among two non-relativistic massive parti-
cles of mass m can be written in terms of α as,

V (r)Newton = −~α
r
, (2)

with the same α given by (1), but with the only difference that for a massive
particle L has to be understood as its Compton wave-length, L ≡ ~

m
. The

difference for gravitons is that, because they are massless, the role of the
Compton wave-length is replaced by an actual wave-length.
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From equation (1) it is obvious that if wave-lengths are large, the inter-
action among the gravitons is extremely weak. For example, for gravitons of
wavelength L = 1cm, the quantum interaction strength is α = 10−66! One
would say that for all practical purposes such gravitons should behave as free.
However, gravitons are bosons, and because of this their occupations num-
bers can be very high. In such a case the collective effects become extremely
important. The key point of our theory is that gravitons can self-condense

and this condensates are black holes. As we shall see, because of the nature
of the coupling (1) this condensates are very special as they are always at
the critical point.

In order to see this let us imagine that we wish to localize as many soft
gravitons as possible within a space region of size L. In other words we
are trying to form a BEC of gravitons of characteristic wave-length L by
gradually increasing the occupation number N . At the beginning, when N
is small, graviton interactions are negligible and we need external sources to
maintain the condensate. So for small occupation numbers, the behavior is
similar to a photon condensate, which requires external binding potentials.
However, as we increase N the effects of the interaction become dramatic.
Individual gravitons feel stronger and stronger collective binding potential
and for the critical occupation number,

N = Nc =
1

α
, (3)

the graviton condensate becomes self-sustained. This self-sustainability con-
dition can be obtained by equating the kinetic energies of individual gravi-
tons, Ek = ~/L, with the collective binding potential, V = −αN ~

L
,

Ek + V = (1 − αN)
~

L
= 0 , (4)

which is satisfied for the critical value of N given by (3).
An extremely important property of the critical point is that it also corre-

sponds to the point of maximal packing. The concept of maximal packing is
that the system is so densely packed that its defining characteristics becomes
N . In particular,

L =
√
NLP , α = 1/N . (5)

But, for gravitons being at the overpacked point also means that further
increase of N without increasing L becomes impossible. Any further increase
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ofN results into the increase of the wave-length in such a way that the system
stays at the maximal-packing point (5).

Notice, that equation (4) clearly indicates that the critical point (5) can
be achieved for arbitraryN , but it is not enough to see why L cannot decrease
beyond L <

√
NLP . Naively, such a decrease of L would results into an even

stronger bounded system.
Such collapse of L indeed takes place, but remarkably it cannot take the

system out of the critical point (5). The reason is that the decrease of L
is balanced by the decrease of N due to quantum depletion and leakage of
the condensate. As a result the condensate slowly collapses, but it looses
gravitons at the same rate. In this way, the system always stays at the
critical point (5).

The reason for the diminishing ofN is that the graviton condensate under-
goes a quantum depletion and the depleted quanta leak out. The key of this
phenomenon is that due to the interaction with their fellow gravitons, some
of the bosons get excited above the ground-state. But, since the ground-state
energy is within 1/N from the free-escape point, the excited gravitons that
gain energies above this tiny gap leave the condensate and join continuum.
In other words, the condensate starts to leak, with a depletion rate which is
essentially given by

Γleakage =
1√
NLP

+ L−1
P O(N−3/2) . (6)

This rate can be easily understood from the following estimate. Since the
graviton-graviton coupling in the condensate is 1/N , the probability for any
pair of gravitons to scatter is suppressed by 1/N2, however this suppression
is compensated by a combinatoric factor ∼ N2 counting the number of avail-
able graviton pairs. As a result, the rate of the graviton emission from the
condensate is simply given by the characteristic energy of the process (inverse
wave-length of gravitons).

The above quantum depletion translates into the following leakage law,

Ṅ = − 1√
NLP

+ L−1
P O(N−3/2) , (7)

where dot stands for the time-derivative.
It is precisely this quantum leakage of the graviton BEC that (only!) in

the semi-classical limit becomes Hawking radiation.
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The correct understanding of the semi-classical limit is the key for under-
standing why all the above quantum physics of graviton BEC was missed in
the previous analysis.

The semi-classical limit is defined by the following double scaling limit,

N → ∞, LP → 0 , L ≡
√
NLP = finite, ~ = finite . (8)

Thus, in the language of BEC the semi-classical limit is the limit in which
all the quantum physics of the condensate decouples as 1/N → 0 and be-
comes impossible to resolve. What was a quantum condensate now becomes
a collection of infinite number of infinitely soft non-interacting bosons all
the individual identities of which are lost. All the semi-classical black hole
mysteries are a direct consequence of this unphysical treatment. One of the
consequences is the exact thermality of Hawking radiation.

This immediately follows from the leakage law. Which in this limit (by
rewriting N in terms of the black hole mass) becomes the Stefan-Boltzmann
law for a black hole with Hawking temperature given by T = ~

L
,

Ṁ = − ~

L2
. (9)

Notice, that the exponential suppression of higher frequencies, usually
attributed to the thermality of the source, follows from the combinatorics
of the quantum depletion. For example, emission of a graviton with much
shorter wavelength, ∼ k−1

√
NLP (where k ≫ 1 is a parameter ), requires

a re-scattering cascade process of at least k gravitons in the condensate.
Due to the variation of the effective graviton coupling along the cascade the
corresponding rate for large k is suppressed by the factor,

Γk>>1 ∝ N−k k! , (10)

where the extra k! comes from the correction to the graviton coupling for
a cascade taking place in k consecutive steps. When k is a fraction of N ,
the suppression factor goes like e−k(1+ lnN/k). In the semi-classical limit (8)
the above suppression reproduces the exponential Boltzmann-type suppres-
sion, which is typical of the thermal spectrum. Nonetheless the underlying
quantum physics of this thermal-like spectrum has nothing to do with the
thermality of the source, since condensate is in fact cold, but with the un-
derlying quantum physics of BEC being at the overpacked critical point. We
will elaborate further this discussion in the next section after introducing a
concrete microscopic model of the Bose condensate.
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3 Black Hole as BEC at Quantum Phase Tran-

sition

We now wish to establish the connection between the above-discussed black
hole quantum portrait and the critical phenomena in ordinary BEC, such as
were observed in cold atoms in [7, 8]. However, since we would like to keep
our discussion as general as possible, we shall consider a simple prototype
model that captures the key features of the phenomenon. Let Ψ(x) be a field
operator describing the order parameter of a Bose-gas. The particle number
density is given by the correlator n(x) = 〈Ψ(x)Ψ(x)〉. The simplest hamil-
tonian that takes into the account the self-interaction of the order parameter
can be written in the form,

H = − ~L0

∫

d3xΨ(x)∇2Ψ(x) − g

∫

d3xΨ(x)+Ψ(x)+Ψ(x)Ψ(x) , (11)

where, L0 is a parameter of length-dimensionality, and g is an interaction
coupling constant of dimensionality [length]3×[mass]. Since we are looking
for a connection with gravity we assume the interaction to be attractive.
We shall put the system in a finite box of size R with periodic boundary
conditions Ψ(0) = Ψ(2πR) and with the total particle number being N .
This implies the normalization condition,

∫

d3xΨ+Ψ = N . (12)

Performing a plane-wave expansion, Ψ =
∑

k
ak√
V
ei

kx

R where V = (2πR)3

is the volume and ak, a
+
k are particle creation an annihilation operators,

[aka
+
k′ ] = δkk′ , we can rewrite the Hamiltonian as

H =
∑

k

k2a+k ak −
1

4
α
∑

k

a+k+p a
+
k′−p ak ak′ , (13)

where α ≡ 4gR2

~V L0

and H ≡ R2

~L0

H .
We shall now study the spectrum of low lying excitations about an uni-

form BEC. That is, we assume that most of the particles occupy the k = 0
level and study the small quantum fluctuations about this state. The spec-
trum of fluctuations is determined by the Bogoliubov-De Gennes equation.
In first approximation we can use the Bogoliubov replacement

a+0 = a0 =
√

N0 ≃
√
N , (14)
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of the ground state creation annihilation operators into classical c-numbers.
Note that this approximation relies on taking N ≫ 1 while keeping ~ differ-
ent from zero. Keeping only terms up to quadratic order in a+k , ak for k 6= 0,
and taking into account the normalization condition (12),

a0a0 +
∑

k 6=0

a+k ak = N . (15)

leads (up to a constant ) to the following Hamiltonian describing the small
quantum fluctuations

H =
∑

k 6=0

(

k2 + αN
/

2) a+k ak −
1

4
αN

∑

k 6=0

(

a+k a
+
−k + ak a−k

)

. (16)

In order to diagonalize the hamiltonian we perform a Bogoliubov transfor-
mation,

ak = uk bk + v∗kb
+
k . (17)

The Bogoliubov coefficients are given by ,

u, v = ±1
2

(

k2 − αN/2

ǫ(k)
± 1

)

, (18)

leading to the following spectrum of the Bogoliubov modes,

ǫ(k) =
√

k2(k2 − αN) . (19)

The Hamiltonian in terms of b-particles is diagonal and has the following
form

H =
∑

k

ǫ(k) b+k bk + constant . (20)

As it is clear from (19) the first Bogoliubov energy vanishes for

N = Nc =
1

α
(21)

and the system undergoes a quantum phase transition. This is exactly the
phase transition observed in [7,8]. The essence of this phase transition is that
for N > Nc the first Bogoliubov level becomes tachyonic and the uniform
BEC is no longer a ground-state. Taking into the account 1

N
-corrections, it
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is clear that the gap between the uniform ground-state and the Bogoliubov
modes collapses to 1/N and becomes extremely cheap to excite these modes.
So by quantum fluctuations the system starts to be populated by Bogoliubov
modes very easily. This means that the condensate starts to undergo a very
efficient quantum depletion. The number density of the depleted a-particles
to each k-levels are given by

nk = |vk|2 . (22)

Since nk decreases as 1/|k|4 for large |k|, the total number of depleted par-
ticles is well-approximated by the first-level depletion, which gives,

∆N ∼ n1 =

(

1 − αN/2√
1 − αN

− 1

)

≃
√
N . (23)

The striking similarity of the above BEC physics with the black hole quantum
portrait suggest that in both cases we are dealing with one and the same
physics of the quantum phase transition. Indeed the physics of the graviton
condensate is reproduced for the particular case of L0 = R = L and g =
~L2

P .
The criticality condition (21) then is nothing but the self-sustainability

condition (3) which implies that the graviton condensate is maximally packed
(5). The energy gap to the first Bogoliubov level is then given by

ǫ1 =
~

L
√
N

=
1

N

~

LP

. (24)

This expression summarizes a remarkable property of maximally-packed sys-
tems:

The energy cost of a collective excitation can be made arbitrarily low by

increasing the occupation number of bosons in the BEC.

Thus, by increasing N one can encode an essentially-unlimited amount of
information in these modes. Notice, that in semiclassical limit (8) the energy
gap collapses to zero and BEC (black hole) becomes an infinite capacitor of
information storage!

What we are uncovering is that this is a very general property of over-
packed BEC’s which are at the critical point of a quantum phase transition.
In both cases, the cold atomic system of [7,8] versus the graviton condensate,
the key point is the maximal packing. The overpacking of the system results
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into the collapse of the mass gap and the Bogoliubov modes become degen-
erate within a 1/N -window. These almost-degenerate Bogoliubov modes are
the quantum holographic degrees of freedom (flavors) that are responsible
both for the entropy as well as for the efficient depletion of the system. No-
tice, that these degenerate Bogoliubov modes are intrinsically-quantum and
have no classical counterparts. In the classical limit they decouple as 1/N
and become unobservable.

The way the BEC state acquires entropy at the critical point is easy to
figure out. In fact in the homogeneous phase for N < Nc the low lying
states in the Fock space are characterized by |n,N −n > where n represents
the number of quanta in the first excited state and N − n the ones in the
condensate ground state. The quantum phase transition takes place when
N = Nc. The specific feature of the quantum phase transition is that all these
excited states in the Fock space become quasi degenerate ( at 1

N
order ) in

energy manifesting the underlying spontaneous breaking of symmetry and
the appareance of a Goldstone mode. Since at the critical point the number
of quasi degenerate ground states is O(N) we can effectively define ∼ N
Bogoliubov quasi zero modes. In the presence of any additional discrete
characteristics of bosons (e.g., such as helicity) the scaling of entropy as
S ∼ N is a natural expectation.

In this qualitative approach we do not attempt to get the numerical co-
efficients. Our target instead is to uncover the quantum physics behind the
black hole entropy as the quasi degenerate nature of the corresponding BEC
state at the quantum critical point. In terms of information theory what we
observe is that once we reach the quantum critical point we can use the Bo-
goliubov quasi zero modes to store information at a minimal cost of energy.
3

Let us now derive the black hole leakage law (7) from the Bogoliubov
treatment of the BEC at the critical point. The equation (23) gives the

3In the previous paragraph we have simply defined the black hole entropy as measuring
the degeneration of the corresponding BEC ground state at the critical point. In addition
to this microcanonical notion of entropy we can naturally define a quantum contribution.
Denoting |BEC(i) > with i = 1, ..N the quasi degenarate ground states at the critical
point we should think of the black hole quantum state as some quantum superposition
|BH >=

∑

i
ci|BEC(i) > with

∑

i
|ci|2 = 1 and the corresponding density matrix as

ρ = |BH >< BH |. If we wash out the off diagonal pieces of ρ as we do when we measure
the system we gain an amount of Von Neumann entropy of the order −∑

i
(c2

i
lnc2

i
) ∼ lnN .

This is the quantum contribution to the black hole entropy in the BEC portrait.
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number of the depleted particles in the absence of back reaction. Since we
are interested in time dependence of N , we need to divide the number of
depleted particles ∆N ∼

√
N by minimal time ∆t that such depletion takes.

This time is given by the time that it takes ∆N number of particles to re-
scatter. The time for re-scattering of a single pair is given by

τ ∼ Lα2N2 ∼
√
NLP . (25)

Correspondingly, the time for
√
N such re-scatterings is ∆t =

√
Nτ =

NLP . Thus, the resulting leakage law up to 1/N corrections is,

Ṅ = − ∆N

∆t
= −

√
N

NLP

= − 1√
NLP

, (26)

which exactly reproduces (7). Thus, we have reproduced the black hole
evaporation law from the depletion of the cold Bose-Einstein condensate at
criticality. At this point it is interesting to observe that the re-scattering
time defined above coincides with the causal cell for a speed of sound α2N2

equal to the speed of light. This is again a typical property of the quantum
critical point that very likely lies at the origin of fast scrambling [13].

Notice, that the value we have used for ∆N was derived in the absence
of back reaction. The peculiarity of the graviton condensate allows us to
neglect this back reaction. The reason is that black hole graviton condensate
is always at the critical point since α is tracking 1/N . So approximation
of no-back reaction is always good up to 1/N . This is why Ṅ is very well
approximated by ∆N/∆t. The situation is different for the cold atomic
systems, where α is an external parameter and one has to take into the
account the back reaction, as it was done in [7]. If α is not tracking N , then
the change of N by ∆N offsets αN by α∆N and in equation (23) one has
to replace αN → αN(1 + ∆N/N), which gives ∆N ∼ N1/3. Obviously
the black hole quantum phase transition should be characterized by some
critical exponents roughly characterizing the holographic CFT. However the
Bogoliubov approximation we are considering here is simply equivalent to a
mean field approximation.

Before closing this section it would be illustrative to compare the BEC
derivation of the depletion with the semiclassical derivation of Hawking radi-
ation in the black hole geometry. In both cases the essence of the derivation
lies on the Bogoliubov transformation. In the black hole case and simplifying
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things representing the near horizon as Rindler geometry, the relevant trans-
formation connects creation annihilation operators relative to Minkowski and
Rindler vacua. This transformation leads to a typical thermal spectrum
∆(Nω) = (eωT − 1)−1 with T the Hawking temperature. In the IR we get
∆(N) ∼ T

ω
, while in the UV we get the typical thermal exponential suppres-

sion. In the case of the BEC we have derived above the depletion in the
IR regime obtaining ∆(N) ∼

√
N . Nicely enough this corresponds to the

minimal energy ω ∼ 1
N

in the BEC and to an effective temperature T ∼ 1√
N

in agreement with the depletion law. Moreover the exponential suppression
in the UV can be easily understood once we have uncover the meaning of the
black hole entropy. In fact when we consider the emission of a very energetic
quanta, we are forced to build up these quanta with a certain number k of
soft quanta occupying the ground-level of the condensate. This effectively
reduces the degeneracy of the BEC ground state by a factor of order ek. In
other words when the system emits a hard quantum the price to pay is to
reduce accordingly the multiplicity of quasi-degenerate Bogoliubov modes.

4 Being Stuck at the Critical Point

As we said above, the important property of the graviton BEC is the impos-
sibility to enter into the strong coupling regime, αN ≫ 1. Despite the fact
that black holes deplete and leak gravitons they always remain at the critical
point, because leakage is self-similar in N .

In order to understand this peculiarity, let us first discuss what is happen-
ing in other systems for which entering into the strong coupling regime is pos-
sible. For cold atomic BEC’s discussed in [7], the quantum phase transition
signals the formation of a bright soliton. That is, an overpacked condensate
(N ≫ Nc) prefers to store particles non-uniformly and store them in higher
momentum modes. The critical point (3) marks the transition between the
two regimes. The reason we can ,in this case, enter into the strong cou-
pling regime is because although the attractive interaction increases we can
compensate it by the quantum presure created by higher momentum modes
in the band of states that are quasi degenerate in energy with the uniform
BEC ground state. The soliton configuration that represents a ground-state
in this regime and can be well-approximated by a localized solution of the
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Gross-Pitaevskii equation,

i~
∂Ψ

∂t
= −

(

~L0∇2Ψ + 2gΨ+ Ψ
)

Ψ . (27)

.
In one space dimension for αN ≫ 1 this equation has a well-known exact

solution [10], a bright soliton,

Ψs(x) ∝
√

µ

g
sech

(√

µ

~L0
(x− x0)

)

, (28)

where µ is a chemical potential, which from normalization condition scales
as µ ∼ g2N2/~L0. Therefore, the argument of the (28) scales ∼ (αN)x/R.

This system exhibits a Goldstone zero-mode (corresponding to a sponta-
neous breaking of translational invariance) and higher excitations (breathing
modes ) separated by an energy gap.

In three dimensions however the solitons are unstable and collapse. This
can be understood from the following simple energetics argument. Consider
a deformation of the uniform condensate such that we localize most of the
particles within a region of size L. That is, the order parameter Ψ is localized
within the region L. Due to the normalization condition (12) the over-density
scales as |ψ|2 ∼ N/L3. The energy corresponding to such a configuration
from Hamiltonian (11) is,

E ∼ ~L0
N

L2
− g

N2

L3
. (29)

This L-dependence has no minimum. It has an extremum at the critical point
αN = 1. Beyond the critical point αN > 1 the system collapses towards
L → 0. The collapse indicates that the system prefers to store more and
more quanta into the higher momentum modes and the condensate is getting
more and more localized.

What is the connection of this phenomenon to our picture of a black hole?
The peculiarity of the black hole graviton condensate is that although it also
collapses the collapse takes place through a cascade of successive condensates
N → N−1→ N−2.., all of them at the critical point ! This is due to the fact
that the black hole collapses by a quantum depletion which is accompanied
by the leakage. Depleted quanta escape and leave the condensate, decreasing
N according to (7).
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In other words, the quantum-mechanical collapse of the graviton conden-
sate is simply a quantum progenitor of what in semi-classical limit becomes
the Hawking radiation 4.

The fact that collapse of a black hole is happening in a self-similar way,
so that black hole stays at the critical point, can be seen from the energy
balance argument similar to (29). For the black hole case (g = ~L2

P and
L0 = L) this energy balance takes the form,

E ∼ ~
N

L
− ~L2

P

N2

L3
. (30)

This fixes the critical value L = LP

√
N and the corresponding energy

Ec =
√
N~/LP . Beyond this point the energy balance dictates the sys-

tem to collapse. But the collapse happens without moving away from the
critical point. To see this let us estimate the energy gained by the system by
shrinking its size by,

∆L = −L2
P /L , (31)

which corresponds to a change of ∆N = −1 provided the system stays at
the critical point. The corresponding change of energy is

∆E =
~√
NLP

(32)

which is exactly the energy needed to leak out a single quantum and deplete
the system self-similarly, as described by the equation (7). In fact, as shown in
[14], the above quantum collapse effectively can be described in the language
of a Landau-Ginsburg Lagrangian for the field N ,

LLG = (Ṅ)2 +
1

N
L−2
P + L−2

P O(1/N2) . (33)

4It is customary to try to describe black hole physics in terms of two complementary
pictures [16]: the in-falling and the external observers. In a nutshell the two descriptions,
within our scheme, are roughly as follows. The external observer sees the cascade of
quanta of increasing energy that escape and the accompanying change of N . Instead,
the observer inside the BEC experiences how the number of low-lying Bogoliubov modes
diminishes but also how the b-operators defining the creation of these low-lying excitations
are self similarly transformed along the process. The situation could become paradoxical
if we insist in keeping the same operators for the Bogoliubov modes along the process i.e
if we do not track the self-similar change of the underlying Bogoliubov transform we have
defined in the previous section.
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So the graviton BEC collapses self-similarly due to the fine balance between
the depletion and the leakage. Such a balance generically is not exhibited
by other collapsing condensates in which the original N particles get redis-
tributed and become localized within a smaller region of space. Such conden-
sates can deplete, but they do not necessarily leak at the same rate. This is
because in such systems the deep solitonic phase is usually accompanied by
a large escape energy (see, e.g., [7]). In particular depletion in the solitonic
regime is very small and of the same order as depletion in the weak coupling
uniform BEC phase.

Notice, that the condensate may not be purely gravitational but can
also include bosons that are subject to other microscopic forces (e.g., gauge
forces), that can counteract the gravitational attraction. In such a case the
depletion of the condensate can be suppressed, and collapse can be prevented.
Such a condensate when stabilized at the critical point, describes a quantum
portrait of what is classically known as an extremal black hole.

This phenomenon can be described in the language of the following effec-
tive Hamiltonian

H = ~L0

∫

d3x |∇Ψ|2 − ~L2
P

∫

d3x |Ψ+Ψ|2 + H ′ , (34)

where

H ′ ≡
∫

d3x
L2
P

~

∣

∣

∣

∣

∇
∫

d3x′
1

|x− x′|
(

~L0 |∇Ψ|2 − ~L2
P |Ψ+Ψ|2

)

∣

∣

∣

∣

2

, (35)

is the contribution to the energy from the long-range Coulomb-type field
produced by the Bose-condensate.

It is easy to see how this contribution stabilizes the BEC at the critical
point. Without this contribution the system would collapse due to the at-
tractive self-interaction term, which for small L scales as ∼ ~L2

PN
2/L3 and

dominates over the first term in (34). We therefore ignore the latter term
in stability analysis. Now, the same self-interaction energy localized within
the region L produces a Coulomb-type field that contributes into the energy
through H ′. This contribution scales as E ′ ∼ ~L6

pN
4/L7. Correspondingly

the L-dependence of energy is,

E ∼ ~L6
pN

4/L7 − ~L2
PN

2/L3 , (36)

which stabilizes the system at L =
√
NLP .
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4.1 Black Hole Formation as Quantum Phase Transi-

tion

The picture of a black hole as of BEC makes it clear why any scattering
process that results into a black hole formation implies classicalization of
gravity [12]. From what we said above, it follows that any such process can
be understood as a formation of graviton BEC and its evolution to the critical
point of quantum phase transition.

In order to fix ideas let us consider a two-particle |in〉-state characterized
by a center of mass energy E and some impact parameter b. The gravitational
self energy of this system is Egr = Erg(E)

b
, where by rg(E) we mean the

gravitational radius corresponding to energy E i.e rg(E) = EL2
P . Let us

consider the initial situation with very high total energy E ≫ ~/LP and
large impact parameter b >> rg(E). In these conditions the gravitational
self energy Egr is much smaller that the total energy E. Irrespectively of this
we can describe the gravitational self energy in terms of a gas of N gravitons
with occupation number N = Erg

~
and typical wave length L = b. We can

consider this gas of soft gravitons as a BEC confined in a region of size b.
What effectively plays the role of the confining potential for these gravitons is
the external source, namely the two particles in the |in〉-state. Obviously, for
such a condensate αN ≪ 1. Thus, we can assume that this Bose-Einstein
condensate is in weak coupling conditions in a homogeneous phase. The
classical order parameter solving the corresponding Gross-Pitaevskii equation
effectively describes the Newtonian weak interaction among the |in〉-particles.
In standard practice this corresponds to the eikonal approximation 5. We
wish to note that the Bose-Einstein condensate accounts for the exchange of
N gravitons in a ladder.

When we vary b keeping the center of mass energy fixed, what we are
doing is changing the coupling α among the gravitons in the Bose-Einstein
condensate produced by the center of mass energy. To account for this in-
crease in the coupling, using diagrammatic terms, we need to add graviton
exchanges among two consecutive rungs of the eikonal ladder. According to
our previous discussion we should expect to reach a critical value at which
the condensate of gravitons approaches a point of quantum phase transition

5Our aim here is not to enter into the technical subtleties of the trans-Planckian scat-
tering, on which a lot of work has been done since the pioneering papers [18–20]. Our
aim is to uncover the Bose-Einstein condensate picture of black hole formation in this
scattering, which is the key to understanding classicalization of UV-gravity [12].
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and becomes self-sustained. This obviously happens when E and Egr are of
the same order, or equivalently when α ∼ 1/N . At this point the system is
fully dominated by self-gravity and classicalizes.

Again the diagramatic interpretation of this quantum phase transition
is quite natural, namely the appearance of a contribution to the imaginary
part of the amplitude. The black hole works as a bound state contributing
to the imaginary part of the scattering amplitude. The special feature of
the quantum phase transition is that the black hole ”eats-up” the Goldstone
mode in order to gain entropy. In other words the quantum phase transition
of the gravitational BEC unitarizes the ultra-planckian scattering.

5 Maximal Packing: Bekenstein and Hawk-

ing

In this section we would like to clarify why the quantum holographic degrees
of freedom that we were able to identify in our quantum picture would be
impossible to recover in any semi-classical treatment. The two major pil-
lars (as well as mysteries) of black hole physics are Bekenstein entropy and
Hawking radiation.

Bekenstein tells us that the black hole entropy must scale as the area
S ∝ L2. But, since entropy is dimensionless, the area must be measured
in some units. In pure (quantum) gravity the only fundamental parameter
of correct dimensionality is the Planck area, L2

P . So the entropy must scale
as S ∝ L2/L2

P . But, LP is a quantum length. So Bekenstein entropy is an
intrinsically-quantum entity. Not semi-classical, but quantum. In particular,
in both classical as well as semi-classical limits, that are commonly applied
to black hole physics, Bekenstein entropy becomes infinite. This is because
in both limits, LP → 0. One may find this puzzling, but there is nothing
to be scared of. This is exactly how it should be. In fact, this behavior is
one of the consistency checks of Bekenstein’s entropy formula, (see below).
Notice, that one cannot assume that this infinity will be regulated by some
cutoff. This is because in gravity the cutoff length is LP and one should be
able to consistently take it to zero.

In order to understand what is going on, let us focus on the semi-classical
black hole limit. This limit is given by,

GN → 0, L ≡MGN = fixed , ~ = fixed , (37)
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where M is the black hole mass. In this limit the black hole geometry is
fixed and one can consider quantum fluctuations on it without worrying
about the back-reaction. This is exactly the limit in which Hawking is doing
his computation getting an exactly thermal spectrum of finite temperature
T = ~/R. But, notice that exactly in the same limit the Bekenstein entropy
diverges, since LP is zero.

In order to explain why this situation is highly non-trivial and why its
clarification requires the physics of Bose-Einstein condensate, we have to put
ourselves in the place of a quantum observer. This observer sees an object of
a finite size L radiating a thermal spectrum, but having an infinite entropy,
or equivalently, an infinite degeneracy of micro-states. If we think of these
micro-states being formed by some quantum excitations about the black hole
vacuum, we have to admit that each of these infinite number of distinguish-
able excitations should cost zero energy. How, can an excitation localized
within a finite size box cost no energy? Standard quantum mechanical intu-
ition suggest that quantum excitation within the box of size L should cost
energy ∼ ~/L. It is true, that a finite size box can possess some zero modes,
such as for instance Goldstone zero modes of broken translational invariance,
but usually only a finite number of such modes exist. Thus, where are these
infinite number of required zero modes coming from?

Our quantum picture answers this question in very simple physical terms.
The finite size box can house an unlimited number of gapless modes, because
it is a Bose-Einstein condensate with large occupation number N and is at
the critical point (3), or equivalently, at the point of maximal packing (5).
As we have seen, thanks to this criticality, the collective Bogoliubov modes
cost energy given by (24), which is 1/

√
N -suppressed relative to a naive

expectation, ~/L. This immediately explains infinite entropy of the box in
the limit N = ∞.

With the above knowledge everything fits into the place. Hawking’s semi-
classical limit (37) in our language is the double-scaling limit (8). In this
limit the Bogoliubov energy gap collapses to zero and degeneracy becomes
infinite, whereas the Hawking radiation becomes thermal. Correspondingly,
the entropy of the black hole becomes infinite. Obviously, working in the
semi-classical picture it is fundamentally impossible to trace the origin of
holographic Bogoliubov degrees of freedom, since in this limit they decouple
as 1/N , as they should. In other words, any scattering experiment that is
aiming to resolve these Bogoliubov modes must have an amplitude suppressed
by powers of 1/N .
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In particular, Hawkings famous ”information paradox” is an artifact of
the semi-classical limit. For N = ∞ Bogoliubov modes can store an infinite
amount of information, but it is also infinitely hard to retrieve this infor-
mation, since modes are decoupled from any observer. But, this is not more
surprising than the fact that it is infinitely hard to find a needle in an infinite
haystack.

6 Quantum Foundation of the Holography

In our previous paper [3] we have suggested that the underlying quantum
reason for holography was equivalence of the system to large-N BEC. These
left open the question about the true quantum identity of the holographic
degrees of freedom. Now we are in a position to suggest a very general answer
to this question. We have seen that the graviton condensate that describes
a black hole is at the critical point of a quantum phase transition. The
quantum holographic degrees of freedom are degenerate Bogoliubov modes
that become almost gapless at the critical point. It is striking that the
physics at the critical point is described by some sort of CFT. The way black
holes manage to store information with a minimal energy cost is through the
Bogoliubov quasi zero modes. The holographic bound becomes in this sense
a bound on the available number of Bogoliubov zero modes for self sustained
condensates.

With the above observations, it is natural to generalize this connection
beyond black holes to other gravitational or non-gravitational systems that
are expected to have holographic description and in our language can be
viewed as large-N Bose-Einstein condensates. We then suggest that such
systems are at the critical point of a quantum phase transition with holo-
graphic degrees of freedom being Bogoliubov modes. The first indication
that we are on a right track comes in fact from generalizing our reasoning
to AdS space. As we have shown, when viewed as a graviton condensate
the AdS space also represents a critical point (maximal packing), with the
same relation between the occupation number N , graviton coupling α and
the length (radius of AdS) L as in the black hole case. Remarkably, the
occupation number of gravitons coincides with the value of central charge
of CFT that has been conjectured [17] in AdS/CFT correspondence. Given
the fact the latter conjecture makes no appeal to BEC nature of AdS space,
appearance of the same central charge in our approach is striking.
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Our present picture suggest that this coincidence can have a deep un-
derlying reason. The AdS space is a graviton BEC at the point of critical
phase transition. The appearance of CFT description in such a system is
very natural. This is the physics of the corresponding Bogoliubov modes.

Generalizing the above connection, we suggest the following quantum
explanation of holography. Holographic description can naturally arise in
non-perturbative field-theoretic systems, usually described by classical field
configurations, that quantum-mechanically represent large-N BECs at the
critical point of quantum phase transition. The holographic description of
such systems is in terms of CFT-type theory of nearly gapless Bogoliubov
modes. Notice, that this holographic CFT in N → ∞ limit must become
lower dimensional. This is because the appearance of the nearly gapless
Bogoliubov modes is due to the transition from the uniform condensate to a
phase of a bright soliton and is associated with the spontaneous breaking of
the translational invariance. It is natural to expect that gapless Bogoliubov
modes must be localized at the edge of the forming bright soliton where
gradients of the order parameter become maximal in the solitonic phase.

Finally, the quantum depletion of BEC should be a measure for a depar-
ture from the exact CFT. For example, the non-extremal black holes deplete
and this affects the CFT description by 1/N -effects. In contrast, the AdS and
the extremal black holes can be protected from depletion by supersymmetry
and extremality and this is probably the reason for a cleaner CFT-description
for such systems. This also suggests, why CFT description cannot work for
de Sitter space.

7 Outlook

The purpose of this work was to reformulate a quantum theory of black
holes [3] in the language of condensed matter physics. The key point of the
theory is to identify the black hole with a Bose-Einstein condensate of gravi-
tons at the point of maximal packing. This term refers to a situation when
the interaction strength α between the condensed Bosons (gravitons) is equal
to the inverse occupation number N . It was suggested in the previous work
that this property of maximal packing provides a quantum foundation to the
known semi-classical properties of black holes. In particular, quantum holo-
graphic degrees of freedom (flavors) responsible for the Bekenstein entropy
and information storage, appear as collective nearly gapless excitations of
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the condensate.
In the present paper we have shown, that the translation of the above

picture in more familiar language of condensed matter systems reveals that
physics of the maximally packed graviton condensate is the physics of Bose-
Einstein condensates at the critical point of a quantum phase transition,
very similar to what have been observed in cold atoms [7]. The quantum
holographic degrees of freedom are nearly degenerate Bogoliubov degrees of
freedom with the mass gap that scales ∼ 1/N instead of the inverse size of
the system, as one would naively expect. The magic of large-N collective
effect at the critical point allows to have an unlimited number of nearly-
degenerate states within an arbitrarily-small mass gap even for a fixed finite
size of the system!

We have shown, that the black hole graviton BEC remains at the critical
point even during the quantum depletion and the collapse. This quantum col-
lapse of the condensate is nothing but a quantum pre-cursor of the Hawking
radiation.

It is important to realize that the above holographic degrees of freedom
are not reducible to known semi-classical excitations in the background black
hole metric. These are Bogoliubov modes of the graviton condensate it-
self, which are intrinsically-quantum and must decouple as 1/N in the semi-
classical limit (8).

Our results have a number of interesting implications. First, they point
to a deep underlying connection between the maximally-packed gravitational
(or non-gravitational) systems and BECs at the critical point of the quantum
phase transition.

This connection offers an intriguing possibility of simulating black hole
physics in table-top experiments.

We have also pointed out that our findings suggest a very general quan-
tum foundation of holography. According to this idea, non-perturbative field
configurations that usually are treated classically in reality represent large-N
BEC’s at the critical point of a quantum phase transition. These systems
admit holographic description in form of (exact or approximate) CFT of
the gapless Bogoliubov degrees of freedom. Moreover, the departure from
exact CFT must be measured by the quantum depletion properties of the
condensate.

It would be interesting to apply this concept to different systems. The
obvious choices of gravitational systems would be AdS and de Sitter spaces,
which as we have shown in [3] obey the large-N BEC properties similar to
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black holes.
However, we have also shown that the ordinary field theoretic topological

defects, such as t’Hooft-Polyakov monopole, when viewed as a Bose-Einstein
condensate also obey the condition of the maximal packing (5). Thus, this
systems must also be equivalent to BECs at the critical point of a quantum
phase transition. The corresponding Bogoliubov modes should then give
holographic description of such non-perturbative objects. This may shed a
new useful light at the physics of such objects.
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