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Inflation is the leading paradigm for explaining the origin of primordial density perturbations. However

many open questions remain, in particular whether one or more scalar fields were present during inflation

and how they contributed to the primordial density perturbation. We propose a new observational test of

whether multiple fields or only one (not necessarily the inflaton) generated the perturbations. We show

that our test, relating the bispectrum and trispectrum, is protected against loop corrections at all orders,

unlike previous relations.
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I. INTRODUCTION

The statistical distribution of the primordial density field
provides a unique opportunity to test our understanding of
the origin of the observed Universe. Inflation is the leading
paradigm, but many questions about its details remain and
it is so flexible that it is unclear if it can ever be ruled out.
However it is at least possible to test, in a model indepen-
dent way, whether a single source present during inflation
was responsible for generating density perturbations,
or whether multiple sources are required, by exploiting
deviations from a Gaussian distribution. Non-Gaussianity
(nonG) parameters are related by distinctive consistency
relations, whose structure generally depends on whether
perturbations are produced by one or more scalar fields.
These parameters could be measured by forthcoming
Planck satellite data and we may be able to answer funda-
mental questions about the number of degrees of freedom
contributing to the primordial density perturbation.

In single-source scenarios, density perturbations are
generated by quantum fluctuations in a single scalar field,
that does not necessarily correspond to an inflaton field
driving the Hubble expansion. Single-field inflation is one
particular case of this setup, in which a single inflaton field
both drives inflation and generates primordial cosmologi-
cal perturbations. More generally, we include also setups
such as curvaton or modulated reheating scenarios, in the
limit that only one field generates the density perturbation
[1]. In these models, large nonG of local shape is induced
by a single light scalar field, whose dynamics is important
on super-Hubble scales.

One famous consistency relation associates the squeezed
limit of a 3-point function with the scale dependence of
the 2-point function: fNL ¼ �5=12ðn� � 1Þ. This relation
is valid only for single-field (clock) inflation [2], and is
violated in more general single-source or multiple-source
scenarios. Another consistency relation, on which we will
focus, connects the collapsed limit of a 4-point function to
the squeezed limit of the 3-point function:

�NL ¼ ð6fNL=5Þ2: (1)

This equality is satisfied at tree level in single-source
scenarios (up to gravitational corrections that can violate
it by a small amount [3]; see however our conclusions),
but is generally violated in multiple-source setups, leading
to the Suyama-Yamaguchi inequality �NL � ð6fNL=5Þ2
[4–7]. Recently it was shown that the equality (1) can be
broken at an observable level, even in single-source sce-
narios, due to loop corrections [8,9]. A popular model
which can realize this possibility is the interacting curvaton
scenario; several other models also exist [8].
Inflationary observables associated with any given

n-point (n-pt) function receive loop contributions, in terms
of integrals over internal soft momenta that induce loga-
rithmic corrections proportional to parameters related with
higher n-pt functions. These contributions are clearly seen
in a diagrammatic representation of n-pt functions in terms
of Feynman-type diagrams [10]. Loop corrections to cor-
relation functions contribute to fNL and �NL, and in single-
source scenarios, these corrections can combine in such
a way to break the equality (1). As we will discuss, the
violation of (1) can be interpreted as due to the fact that the
equality written in this way does not include contributions
of soft momentum lines, connecting different n-pt func-
tions entering the definitions of �NL and f2NL. These soft
momentum lines are allowed by momentum conservation,
and lead to radiative corrections comparable to the con-
ventional loop corrections. Accounting for both loop cor-
rections and soft modes, we will build a new combination
of bispectrum, trispectrum and power spectrum, that leads
to an equality satisfied to all orders in radiative corrections
in generic single-source scenarios. The equality reduces to
equation (1) at tree level, and is in general broken in
multiple-field scenarios. Our result therefore generalizes
the Suyama-Yamaguchi relation to all orders in radiative
corrections. Moreover, in the second part, we will also
discuss how the soft modes we consider are the source of
the inhomogeneity of nonG observables discussed in
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Ref. [8], leading to further observational implications for
our findings. Finally, in the conclusions we will point out
that our generalized inequality is preserved by gravita-
tional corrections that spoil (1).

The role of soft momenta is reminiscent of what happens
in QED, in which a careful inclusion of contributions of
both real and virtual soft photons is crucial for canceling
IR divergences in physical processes [11]. The conceptual
idea we develop here is similar to what happens in that
context, although the technical implementation will be
different.

II. RADIATIVE CORRECTIONS
TO n-pt FUNCTIONS

From now on we focus on a local Ansatz for the pri-
mordial curvature perturbation [12]

�ðxÞ ¼ �GðxÞ þ 3 �fNL
5

�2GðxÞ þ
9 �gNL
25

�3GðxÞ þ
81 �hNL
125

�4GðxÞ
þ � � � � h�ðxÞi; (2)

where �G is a Gaussian random fluctuation, with vanishing
ensemble average h�Gi ¼ 0. The local Ansatz assumes
the parameters �fNL, �gNL and �hNL to be constant. For our
arguments, we will assume that these parameters are suffi-
ciently large to be observable: in this case, slow-roll sup-
pressed contributions to non-Gaussianity, associated with
the intrinsic non-Gaussianity of the fields under considera-
tion, provide only small corrections to our results in the
relevant momentum limits, and can be neglected. We focus
on single-source scenarios, in which the curvature pertur-
bation is generated by a single scalar � and with observ-
ably large nonG. It is then possible to rewrite the local
Ansatz (2) in terms of an expansion of a suitable classical
function Nð�Þ,

�ðxÞ ¼ Nð�0 þ ��ðxÞÞ � hNð�0 þ ��ðxÞÞi

¼ X1
n¼1

NðnÞð�0Þ
n!

ð��ðxÞn � h��ðxÞniÞ: (3)

This expansion is similar to the �N approach of Ref. [13]
but for our purposes it is not necessary to specify Nð�Þ
further. �0 denotes a homogeneous, time dependent back-
ground solution and the fluctuations ��ðxÞ are Gaussian
with zero mean. Making the identification N0ð�0Þ��ðxÞ ¼
�GðxÞ, a comparison of Eqs. (2) and (3) yields the relations
6 �fNL=5 ¼ N00N02, 54 �gNL=25 ¼ N000N03, etc., [13].

The general definitions for the parameters fNL and �NL
at tree level and beyond are given in appropriate squeezed
and collapsed limits by

fNL � 5

12
lim
k1!0

Bðk1; k2; k3Þ
Pðk1ÞPðk2Þ ; (4)

�NL � 1

4
lim
k12!0

Tðk1; k2; k3; k4; k12; k13Þ
Pðk12ÞPðk1ÞPðk3Þ ; (5)

where h�k1
�k2

i ¼ ð2�Þ3P�ðk1 þ k2Þ, h�k1
�k2

�k3
i ¼

ð2�Þ3B�ðk1 þ k2 þ k3Þ, h�k1
�k2

�k3
�k4

i ¼ ð2�Þ3T��
ðk1 þ k2 þ k3 þ k4Þ, and kij ¼ jki þ kjj. Notice that at

tree level fNL defined by Eq. (4) reduces to the parameter
�fNL entering the local Ansatz (2). At tree level one has
�fNL ¼ 5N00=6N02, ��NL ¼ N002=N04, from which equality
(1) follows immediately. Let us stress that, in this work,
we focus on the case in which the tree-level bar quantities
are constant and do not depend on momenta. However,
when one-loop contributions are added to the tree-level
results, one finds

floopNL ¼ �fNL�18

25
ð2 �f3NL�3 �fNL �gNL�3 �hNLÞ �P ln

�
k

kIR

�
;

�
loop
NL ¼ ��NL�324

625
ð8 �f4NL�12 �f2NLgNL�9 �g2NL�12 �hNL �fNLÞ

� �P ln

�
k

kIR

�
; (6)

where 2�2P ¼ k3PðkÞ, and we neglect its weak scale
dependence. Hence

�loopNL ¼
 
6f

loop
NL

5

!
2
"
1þ 81 �g2NL

25 �f2NL

�P ln

�
k

kIR

�#
; (7)

showing that the consistency relation (1) is violated already
at one loop in single-source models, if the tree-level �gNL is
nonvanishing. More precisely, the consistency relation
holds only on the scale kIR at which the tree-level quantities
are defined and the loops are absent.Moving away from this
scale, the loop corrections become nonzero leading to a
violation of the consistency relation. If the nonGparameters
are large, this violation of the consistency relation can be
observed by the Planck satellite. As a representative ex-
ample, assume �fNL ¼ 20 and �gNL ¼ 8� 105, close to the
upper bound set by WMAP. See, e.g., Ref. [14] for explicit
examples of models that are under good theoretical control,
and that can lead to such a large hierarchy between tree-
level values of �fNL and �gNL. Without including loop cor-
rections [the square parenthesis in (7)] one would find
�NL ¼ 576: a value too small to be observed in the near
future, since the forecasted Planck constraint is �NL * 1500
at 1-� error bar, in the absence of detection [15] (see also
Ref. [16] for an analysis suggesting that CMB data might
lead to even lower values for the detectability of �NL).
Including loops, instead, the value of �NL becomes large

enough to be detectable: �NL � 3600 setting �P � 10�9

to match cosmic background explorer normalization, and
assuming lnðk=kIRÞ is of order 1 [17]. Hence in this situation
loop corrections can really make the difference and render
�NL detectable even in the single-source case.
A couple of considerations regarding the physical valid-

ity of our calculations are now addressed. One might be
worried with respect to the fact that, choosing such a large
value for �gNL as in the example above, the loop contribu-
tion to some n-point functions dominate over the tree-level
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term: in particular the third order term in (2) can be larger
than the second order term. This raises questions about
whether our calculation is under control at the technical
level, in particular whether a perturbative approach makes
sense. Fortunately it does [provided that terms beyond �gNL
in (2) do not grow too rapidly]. Indeed, it is possible to
show that only one nonlinearity parameter can be associ-
ated with each external line in a loop diagram [10], and so
for the power spectrum the largest possible power of �gNL is
�g2NL (in general for an n-point function it is �gnNL). For the
example we consider, this implies that the one-loop term
always dominates over higher loops: higher loops to the
trispectrum contain at most four powers of �gNL but they are

also suppressed by higher powers of �P than the one-loop
term in such a way that the total value is smaller. To
be specific, there is a three-loop contribution to �NL which

is proportional to �g4NL
�P 3, and so although �g2NL

�P * 1 one

has �g2NL
�P 2 � 1 and hence the one-loop term dominates.

A second concern is about the fact that, in the particular
case of pure single-field inflation, it has been shown that
loop corrections can be absorbed in a redefinition of back-
ground quantities, by a proper choice of physical coordi-
nates: see Refs. [18–20] for the first papers on these topics.
More particularly, the basic idea is the following: since
field perturbations are necessarily adiabatic in single-field
inflation, they span the direction of the homogeneous,
classical inflationary trajectory. It can be shown that, by
means of a change of coordinates, a suitable shift on this
background trajectory can be made such to compensate the
effects of loop corrections to observable quantities. This
fact is however true only for pure single-field inflation, and
does not apply in our more general context of single-source
models that lead to large nonG. In this case, indeed, iso-
curvature fluctuations span directions perpendicular to the
homogeneous one, and consequently the corresponding
loop effects cannot be readsorbed by any background
redefinition. Hence, the loop effects that we are consider-
ing in this paper are fully physical and well defined.

On the other hand, while being well defined and con-
sistent, the standard way of calculating loop corrections
individually to the power spectrum, bispectrum and tris-
pectrum, and then taking appropriate ratios to define the
nonlinearity parameters beyond tree level, can miss impor-
tant physical contributions. Indeed, these loop corrected
quantities correctly characterize the ratios of individually
measured bispectrum, or trispectrum, and power spectrum.
However, when simultaneouslymeasuring combinations of
n-pt functions, such as the ratios in (4) and (5), one should
allow for the inclusion of soft lines connecting distinct n-pt

functions. Although momentum is of course conserved, no
detector is sensitive enough to probe these soft lines: their
contribution is physical and must be included. This obser-
vation suggests that, besides considering the relation (1),
by including the effects of soft modes it is possible to build
a new observable combination of n-pt functions that leads
to an equality protected against radiative corrections. See
also Ref. [19] for the slow-roll suppressed effect of soft
modes on the power spectrum in single clock inflation.

III. DIAGRAMMATIC APPROACH TO
LOOP CORRECTIONS

It is illuminating to discuss the role of soft modes
diagrammatically, first in a simple example, and then
applying our observations to equality (1). We implement
the diagrammatic approach of Ref. [10]. We use solid dots
to mark external momenta ki, with the number of attached
propagators to each vertex (corresponding to P) giving the
number of derivatives of the functionN, defined by Eq. (3),
associated to the vertex. There are no internal vertices since
we assume that �� is Gaussian. The numerical factors are
the total for each diagram relative to the tree-level term
(which may have some possible permutations), and are
given by the numerical factor of the given diagram (1=2
if a dressed vertex, otherwise unity at one loop or tree
level) times the number of distinct ways in which the loop
can be drawn onto the tree-level diagram.
Let us illustrate the role of soft modes, by considering

radiative corrections to the square of the power spectrum as
an example. We denote with ð. . .Þrad the sum of tree-level
and radiative contributions to a given quantity. Figure 1
depicts diagrammatically the difference between ðPÞ2rad,
associated with the observable h�ðkÞ�ðk0Þi2, and ðP2Þrad,
denoting another observable, h�2ðkÞ�2ðk0Þi. The final
diagram represents a 4-pt function with a soft internal
line (drawn thicker) connecting two N00 vertices (which
can be done in four ways). This contribution cannot be
distinguished from the product of two disconnected 2-pt
functions and must be included in ðP2Þrad. So, accounting
for loop corrections only would not give the correct result
for the observable ðP2Þrad, showing the importance of the
soft modes.
Contributions to radiative corrections associated with

soft lines connecting different diagrams play a crucial
role for characterizing equality (1) beyond tree level. In
order to analyze it diagrammatically, it is convenient to
reexpress it in terms of square of the bispectrum, and the
product of the trispectrum with the power spectrum. At tree

FIG. 1. The difference between observables ðPðkÞÞ2rad and ðPðkÞ2Þrad.
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level, (1) reads �B2
k1!0 ¼ �T �Pðk5Þk12!0;k5!0, where here and

in what follows, to avoid ambiguities, we assume that, in
the zero momentum limit, all soft momenta coincide: k1 ¼
k12 ¼ k5 ! 0. Including loop corrections to P, B and T, in
appropriate squeezed and collapsed limits, the relation is

ðBÞ2rad � ðPÞradðTÞrad
¼ �4ð54=25 �gNLÞ2 �PðkÞ2 �P2

q!0
�P lnðk=kIRÞ: (8)

So, the equality is broken by a term proportional to tree-
level �gNL, as discussed in the previous section. However, a
straightforward calculation shows that the relation

ðB2Þradk1!0 ¼ ðPTÞradk12!0;k5!0

¼ �B2
k1!0

�
1þ ð6=5Þ2

�
3 �hNL= �fNL þ 9 �g2NL=4

�f2NL

þ 15 �gNL þ 6 �f2NL

�
�P lnðk=kIRÞ

�
; (9)

instead leads to an equality that is preserved by radiative
corrections. This new equality holds for models leading
to large nonG of local type, as the ones on which we are
focusing our attention in this paper. We have neglected
all nonlocal contributions associated to eventual non-
Gaussianity present at horizon crossing. Assuming canoni-
cal kinetic terms, this is well justified as the neglected
contributions are slow-roll suppressed. In the first line of
Eq. (9), we send to zero a momentum line (denoted with
k1) in each of the bispectra in the left-hand side; in the
right-hand side, we send to zero the internal momentum
line of the trispectrum denoted with k12, as well as the
momentum k5 characterizing the power spectrum. As
explained above, all these momenta are made vanishing
with the same rate, and coincide in the zero momentum
limit. When evaluating the previous quantities, it is crucial
to include diagrams describing contributions of soft modes
connecting different elements of each combination (drawn
thickly in the diagrams below), respectively, the three
diagrams for ðB2Þrad and two for ðPTÞrad.

The three first diagrams are 6-pt functions consisting of
two 3-pt functions connected by a soft line. Analogously to
the case of the 2-pt function in Fig. 1, they contribute to
ðB2Þrad but do not appear in the square of the 3-pt function
ðBradÞ2. The soft terms thus generate a nonvanishing vari-
ance for the bispectrum, ðB2Þrad � ðBradÞ2 � 0, and similar
comments apply for ðPTÞrad on the right-hand side of
Eq. (9). Including the soft diagrams with their associated
numerical coefficients [10], one fulfills the equality (9),
ðB2Þrad ¼ ðPTÞrad, that generalizes the equality (1) to first
order in radiative corrections. The key observation is that,
in order to define an equality that remains valid when
radiative corrections are included, one should consider

radiative contributions to the entire combination of
ðB2Þrad and ðPTÞrad, that include both loop corrections
and contributions from soft modes connecting different
diagrams. The new combination (9) can be considered as
a new inflationary observable: when going beyond tree
level in a loop expansion, it allows us to probe nonG
parameters in a different way with respect to relation (1).

IV. AN ALTERNATIVE APPROACH TO
RADIATIVE CORRECTIONS

We reconsider the problem from another point of view,
which allows a straightforward generalization of our
results to all orders in radiative corrections, and empha-
sizes the connection to inhomogeneities of non-Gaussian
observables [8]. First, consider a wave number Q< aH
which defines a length scale smaller than the observed
Universe. The fluctuations in (3) can be divided into long
wavelength (LW) and short wavelength components with
respect to this scale as

��ðxÞ ¼
Z
q>Q

dq

ð2�Þ3 e
iq�x��ðqÞ þ

Z
q<Q

dq

ð2�Þ3 e
iq�x��ðqÞ

� ��sðxÞ þ ��LðxÞ: (10)

For a Gaussian field, the LW fluctuations are uncorrelated
with the short wavelength modes, h��LðkÞ��sðk0Þi ¼ 0,
and they both have vanishing ensemble averages, h��Li ¼
h��si ¼ 0. Up to cosmic variance, the ensemble averages
correspond to spatial averages over the full observable sky.
For measurements probing wave numbers k > Q, or

equivalently regions of size smaller than 1=Q, the LW
modes ��L act as an approximately homogeneous back-
ground for ��s. Indeed, the average of ��L computed over
a spherical patch of volume Vx0

, with the origin located

at a fiducial point x0, is given by Ref. [8] h��LðxÞix0 ’
��Lðx0Þ. The average h��LðxÞix0

consequently depends

on the location x0 of the patch. In general, the contribution
of long-wavelength modes differs from patch to patch,
generating variations in observables evaluated in different
subhorizon patches across the sky. This has a cumulative
effect, leading to a log-enhanced variance of the long-
wavelength fluctuations over the entire observable
Universe (P� denotes the spectrum of the fluctuations ��):

h��2
LðxÞi ¼

Z
kIR<q<Q

dq

ð2�Þ3 P�ðqÞ ’ P� ln

�
Q

kIR

�
; (11)

Using the results above, the curvature perturbation as mea-
sured within a patch of volume Vx0

can be written as

�ðxÞjVx0 ’ X1
n¼1

NðnÞð�0 þ ��Lðx0ÞÞ
n!

ð��sðxÞÞn: (12)

Converting this expression to Fourier space on scales k > Q
is straightforward, as ��Lðx0Þ acts as a constant under
this operation. However the LW fluctuations are operators
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with nonvanishing ensemble, or full-sky, 2-pt functions
(11). This has interesting consequences when considering
full-sky expectation values of tree-level n-pt functions
evaluated in small patches hh�ðk1Þ . . . �ðknÞix0

i. We can

expand the argument of h. . .i in terms of LW modes ��L,
and evaluate the ensemble averages: at this point the con-
nection with loops in inflation becomes apparent. This
operation is equivalent to computing radiative corrections
to the corresponding full-sky n-pt functions in a leading-log
approximation. Ensemble averages of powers of ��L lead
to log-enhanced contributions, controlled by formula (11).
By identifying the reference scale Q with the scale k at
which the measurement of full-sky n-pt functions are per-
formed, one finds that the LW mode contributions exactly
reproduce the radiative corrections in the leading-log
approximation.

This approach allows us to easily reproduce and extend
our discussion of radiative corrections to the equality (1).
From the expansion (12) we find the observables �fx0

NL and
��x0

NL, measuring, respectively, the squeezed and collapsed
limits of tree-level 3- and 4-pt functions within a small
patch Vx0

, are given by

�f
x0

NL � lim
k1!0

5

12

�B
�Pðk1Þ �Pðk2Þ ¼

5

6

N00ð�0 þ ��Lðx0ÞÞ
N02ð�0 þ ��Lðx0ÞÞ

;

��
x0

NL � lim
k12!0

1

4

�T
�Pðk12Þ �Pðk1Þ �Pðk3Þ ¼

N002ð�0 þ ��Lðx0ÞÞ
N04ð�0 þ ��Lðx0ÞÞ

:

(13)

Taking ensemble averages we find, h ��x0

NLi ¼ ð6=5Þ2 �
hð �fx0

NLÞ2i � ð6=5Þ2h �fx0

NLi2, which can also be expressed as

h �B2
x0
ik1!0 ¼ h �Tx0

�Px0
ik12!0;k5!0: (14)

As discussed above, this relation between tree-level
quantities in a small patch Vx0

, equates to all orders in

radiative corrections, and to leading-log accuracy, the
corresponding full-sky quantities evaluated k� V

x�1=3
0

.

Expanding (14) to second order in the LW modes ��L

exactly reproduces the first order radiatively corrected
equality between ðB2Þrad ¼ ðTPÞrad, derived above using
diagrammatic methods (9). In squaring �fx0

NL one obtains
quadratic contributions in ��L both from the linear and
quadratic terms in Eq. (13). The former correspond to soft
corrections, and are the origin of the inhomogeneities of
nonG discussed in Ref. [8], and the latter to loop corrections.
Both of them have to be included in order for the equality (9)
[or (14)] to be satisfied. This is why the the loop corrected

quantities floopNL and �loopNL (6), missing these soft contribu-
tions, in general fail to satisfy the equality (1), as seen in (7).

At one-loop order, it is instructive to rewrite (7) as

hBx0
i2k1!0 ¼ hTx0

ik12!0hPx0
ik5!0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�2

T�
2
Pi

q
��2

B: (15)

Here �2
x ¼ hx2i � hxi2 denotes the nonzero variance gen-

erated by the long-wavelength modes, giving a statistical

variation to quantities measured on subhorizon patches.
Writing the formula in this form explicitly shows that
taking averages over the full sky of single quantities, and
then combining them together, does not lead to a simple
form of the equality. Additional pieces proportional to �gNL
(and �hNL at two loops) lead to a violation of the tree-level
result (1) when loops are included. Diagrammatically, as
we have seen in the previous section, these corrections can
be traced back to soft internal modes connecting tree-level
correlators. This can be avoided by defining quantities that,
once averaged over the full sky, allow us to write an
equality between the bispectrum and trispectrum in a
form that automatically handles radiative corrections at
all orders, as given by Eq. (14).

V. CONCLUSIONS

In this work we have investigated new contributions
to local nonG inflationary observables in squeezed or
collapsed configurations, associated with soft momentum
lines connecting different n-pt functions. Our analysis is
essential for investigating and understanding consistency
relations among inflationary observables, that can be tested
by the Planck satellite and provide model independent
information about the number of degrees of freedom
contributing to the primordial curvature fluctuations. We
showed that the new contributions we discussed are essen-
tial for defining a combination of power spectrum, bispec-
trum and trispectrum, Eq. (14), corresponding to a new
equality among observables preserved by radiative correc-
tions in single-source inflationary scenarios. This provides
the natural generalization of the tree-level equality ��NL ¼
ð6=5 �fNLÞ2, which is broken by loop corrections. We dis-
cussed our results adopting a convenient diagrammatic
representation of inflationary n-pt functions in terms of
Feynman diagrams. We also made a connection between
these results and inhomogeneities of nonG observables,
clarifying the relation between loop corrections and
inhomogeneous nonG. In order to do this, we employed a
particularly simple method based on splitting long from
short wavelength modes with respect to a fiducial scale,
and exploited the fact that long-wavelength mode contri-
butions to inflationary observables behave in the same way
as radiative corrections.
In summary, we have shown from various points of view

that long-wavelength, soft modes can provide physical
contributions to inflationary observables. In this work we
focused on scenarios characterized by large nonG, in
which loop effects can provide sizeable corrections to the
equality (1). Interestingly, our arguments can also be used
to clarify puzzling results obtained in pure single-field
inflation, in which the level of nonG is of order of slow-
roll parameters. In that case, it has been shown [3] that tree-
level gravitational corrections to �NL give a contribution
proportional to the tensor-to-scalar ratio r ¼ 16�, while in
the squeezed limit fNL is proportional to the tilt of the
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power spectrum ns � 1 ¼ 2�� 6�: hence, the equality (1)
is violated because each side of that formula scales with a
different power of the slow-roll parameters. On the other
hand, this does not happen for our new consistency relation
(14). Indeed, a straightforward calculation [17] shows that,
although gravitational waves do not contribute at tree level
to the bispectrum B, they do to its square B2. The contri-
bution toB2 is proportional to the tensor-to-scalar ratio, with
the correct features to match with the trispectrum T in the
right-hand side and preserve our consistency relation (14).
While in this paper we focused on single-source scenarios,
it is straightforward to generalize the method and our
results to a multiple-field case. The tree-level equality (1)
gets replaced by the inequality ��NL > ð6=5 �fNLÞ2 [4].
According to our previous discussion, this translates into a
new inequality between full-sky observables:

ðB2Þradk1!0 < ðPTÞradk12!0;k5!0; (16)

which holds to all orders in radiative corrections, and
to leading-logarithm precision. This inequality can be
unambiguously used to discriminate between single- and
multiple-source scenarios for generating primordial pertur-
bations at arbitrary orders in radiative corrections, even
when loops are included. The Suyama-Yamaguchi inequal-
ity and our inequality (16) above are two observable rela-
tions probing different physics when loops or gravitational
corrections are included, and are capable of testing in
different ways models which generate the curvature
perturbation. We will explore this and other interesting
features in a future publication.
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