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Abstract. The error and alarm system for the data acquisition of the Compact Muon Solenoid 
(CMS) at CERN was successfully used for the physics runs at Large Hadron Collider (LHC) 
during first three years of activities. Error and alarm processing entails ���the notification, 
collection, storing and visualization of all exceptional conditions occurring in the highly 
distributed CMS online system using a uniform scheme. Alerts and reports are shown on-line 
by web application facilities that map them to graphical models of the system as defined by the 
user. A persistency service keeps a history of all exceptions occurred, allowing subsequent 
retrieval of user defined ���time windows of events for later playback or analysis. This paper 
describes the architecture and the technologies used and deals with operational aspects during 
the first years of LHC operation. In particular we focus on performance, stability, 
and ���integration with the CMS sub-detectors. 

1.  Introduction 
The Compact Muon Solenoid (CMS) [1] is a general-purpose particle detector at the Large Hadron 
Collider (LHC) [2] at CERN in Geneva, Switzerland. The CMS Data Acquisition (DAQ) [3] is 
responsible to build and filter events from about 600 data sources at a maximum trigger rate of 100 
kHz. The error and alarm system has to provide the facilities to retrieve, process, store, and display 
errors and alarms occurred during the operation of the CMS experiment. The DAQ is composed of 
few thousand hosts [4][5] and of O(20000) interdependent applications that need to be monitored in 
near real-time. One of the critical success factors for an error and alarm management system is 
scalability, several dimensions of scaling requirements [6][7][8] (e.g. numerical and geographical) 
have been considered to cover all aspects of the system design.  
 



 
 
 
 
 
 

 

The main purpose of the CMS alarm and error system is to alert the operator when an abnormal 
operation occurs, but also to keep history of all past problems for post mortem analysis. The presented 
design is based on four powerful concepts: only notify important conditions, notify in time, respond, 
and provide guidance. The suggested infrastructure fits these needs by providing a set of expandable 
and reusable solutions allowing use of the alarming system for development, test and operation 
scenarios. 

2.  Architecture and design 
The architecture is based on the XDAQ Monitoring & Alarming Service (XMAS) [9], which provides 
several plug-ins specialized for specific tasks and services to support and implement a fully scalable 
distributed monitoring and alarming system. It is a service-oriented architecture, in which a 3-tier 
structured collection of communicating components cooperates to perform the monitoring, error and 
alarm management tasks. The XDAQ middleware provides the universal application connectivity and 
makes applications and services inter-communicating [10] [11]. 

 

 

Figure 1. Diagram is showing the XMAS components used for reporting (Sentinel), collecting 
(Eventing), recording (Spotlight), and display (Hotspot and Coldspot) of errors and alarms.  

 
As shown in Figure 1, the system builds upon a scalable publisher-subscriber [12] service consisting 
of a pool of eventing applications orchestrated by a load balancer application (broker). 
When a DAQ application detects an anomaly it acts as data producers through sentinel services to 
publish an error or an alarm to the eventing service. The spotlight service is responsible for collecting, 
processing, and storing events. It subscribes to the eventing service specifying categories of error and 
alarm events it wants to receive. The spotlight supports two databases technologies: Oracle [13] for 
CMS production system and sqlite [14] for testing and small setups. The visualization components are 
called Hotspot and Coldspot, both applications are developed using Adobe Flash builder [15]. The 
Hotspot is used to visualize the error and alarm occurring in real-time using a graphical web interface. 
This application maps all occurring events and displays them according to a user-defined model of the 
system. The Coldspot allows querying spotlight through Query By Example [16] using a time 
window; this tool is used for post-mortem analysis. 

As shown in Figure 2, two different report scenarios can be identified: applications that detect 
persistent deviations from the normal system behaviour report errors and deviations may also be 
transient, meaning an alarm is fired and eventually revoked when the asserted condition is resolved. 

  



 
 
 
 
 
 

 

 

Figure 2. Error and alarm interaction diagram. 
 
All services are re-locatable and run independently of each other without a need for external 

control. Communication among services is established through a rendezvous mechanism with the help 
of discovery services facilities [17].  

3.  Error handling 
The XDAQ environment offers developers programmatic tools to deal with errors as they occur at 
runtime. A uniform approach is used to handle exceptions in every application.  

 

 

Figure 3. Special macro instructions to throw an exception. 
 



 
 
 
 
 
 

 

The exception handling mechanism available to C++ programs provides the basic ways of dealing 
with exceptional condition within an application throw “try/catch” and “throw” statements. The 
“throw” statement is replaced by special macro instructions  (see Figure 3) that allow automatically 
building exception objects with run-time and compile time information. The mechanism is further 
enhanced to provide an additional “re-throw” statement that allows to build the full sequence of 
subsequent “throw” of exceptions namely the exception stack trace.   

In this schema all errors and alarms are specified according to uniform approach by defining a C++ 
class that extends the standard “xcept::Exception”, as shown in Figure 4. A “xcept::Exception” object 
encapsulates information specific to an error occurring in the distributed environment, e.g. the stack, 
subsystem, pc, application identifier etc. An exception can be thrown several and propagate to the 
function callers till the last function invoked that is willing to catch this exception and performs some 
recovery or reporting actions. 

 
 

 

Figure 4. Declaration of an error for jobcontrol application. 

3.1.  Sending error messages  
 Reporting to external clients is eventually performed by calling the “notifiyQualified” method from 
within any application. Figure 5 shows how to catch an error and append the exception trace to a 
newly created exception that will be reported. 

 

 
Figure 5. Example how to send an error after catching an exception. 

 



 
 
 
 
 
 

 

3.2.  Alarm messages 
Alarm objects are treated similarly to ordinary errors with the exception that alarms can be transient 
and therefore revoked by the originator within a given period of time. This means that any instance of 
“xcept::Exception” object or a derived class can be used to represent an alarm, as shown in Figure 6.  

 
Such an alarm object can be given to the Sentinel application component within an XDAQ executive 
container (context). Sentinel then takes care of routing this alarm through a publisher/subscriber 
component to the Spotlight error server that persistently stores the alarm and serves it to other clients. 
Alarms are resent periodically by the Sentinel application component until the alarm is revoked.  
 

 

 
Figure 7. Example how to emit and revoke an alarm object. 

 
Figure 7 shown how to emit and revoke an alarm object. Before enabling an alarm the first action is to 
retrieve an infospace called “alarms”. This infospace remembers all fired alarms locally and is used to 
re-emit the alarms. It is the communication interface between XDAQ applications and the Sentinel 
subsystem for alarms. Using “XCEPT_DECLARE” macro an instance of the previously defined alarm 
class is created. Next the alarm that derives from an “xcept::Exception” and therefore represents an 
error object is embedded in a “sentinel::utils::Alarm” object.  It is possible to provide the severity 
(warning, error, and fatal) of the alarm as the first parameter. The second parameter is the error object 
to be embedded and the third parameter points to the XDAQ application that is the creator of this 

 
Figure 6. Example of an alarm for an XDAQ application. 



 
 
 
 
 
 

 

alarm. Then the alarm is fired into the infospace by giving it an unique name, test-alarm in our 
example. Revoking an alarm works by retrieving the previously raised alarm from the infospace by the 
alarm's name ("test-alarm"in our example) and the ownership of the alarm stays with the application. 
Thus, the application has to take care of deleting the alarm object, either by keeping a reference to it or 
by retrieving it from the infospace. After you have retrieved the alarm, it is revoked from the 
infospace. That will tell Sentinel to emit a revoke message to the spotlight server and to stop sending 
the alarm over and over. 

3.3.  Communications 
All error and alarm objects are serialized into SOAP messages for communication over the network 
according to the XSD schema as defined in Figure 8 that describes the XML content to be embedded 
in a message. A binary serialization according the same semantic schema is also supported when high 
performance and scalability are required. 
 

 
Figure 8. XML schema for notify SOAP message. 

 
As shown at the top of Figure 8 the notify message contains one or more errors, the error schema has 
attributes and elements to describe a generic error (see  Figure 9) and can include one or more nested 
errors. The most important fields for the schema are the following:  

• identifier is an identification of the exception class (e.g.  jobcontrol::exception::JobCrash);  
• notifier is the originator of this error message;  
• dateTime is the time when the error occurred;  
• severity is the level of error gravity (e.g. warning, fatal, and error);  
• message is a textual description of the error details;  
• tag is a special parameter. It carries application-level, end-to-end agreed information that 

allows to efficiently display the information on the user interface side;  
• uniqueid is universally unique identifier (UUID [22]) for identifying an instance of an 

error. 
The Error schema contains the any tag that permits the extension of the schema with user specific 

error information allowing the possibility to reuse the generic part of the schema maintaining the core 
error information. For the CMS data acquisition system the standard error has been extended with an 
additional schema: ApplicationErrorRecordGroup for XDAQ application software. This schema (see 
Figure 10) defines eight additional fields:  

• class is the type or name of the described application (the fully qualified classname, e.g. 
ns1::ns2::MyClass); 

• context is an URL of the applications container (e.g. http://HOST:PORT);  
• group is the comma separated list of groups to which an application belongs; 
• id is a numeric identifier for the application, for XDAQ the "lid" that identifies the 

application within its executive container; 
• instance is the object instance of the application class; 
• service is a textual identifier of the service that this application provides; 
• uuid is the uniform unique identifier of this application instance; 
• zone is the zone to which this application belongs, i.e. the partition identifier when multi-

partitions are used.  



 
 
 
 
 
 

 

 
 Figure 9. XML schema for describing the error  type in notify message (c.f. Figure 8). 

 

 
Figure 10. XML schema for ApplicationErrorRecordGroup SOAP message. 

 



 
 
 
 
 
 

 

4.  Visualization 
In the CMS error and alarm system there are two different visualization scenarios to support the 
operation of the CMS experiment: an online display and a post-mortem display. The CMS operators 
use the online display during data taking to detect deviations from the normal system behaviour. The 
CMS experts are able to analyze past errors using the post-mortem display. 

4.1.  Online display model and graphics  
The system model provides an abstract view of the system. Several perspectives can be used to 

represent different views of the system. A view can be defined as a recursive hierarchical structure to 
fulfill the system required. In order to match errors reported by the running system with the abstract 
model a number of filters are defined. Filters are associated with views by means of special nodes; 
named “filter nodes”. These nodes define regular expressions matching the attributes from the error 
report. 

 

 
Figure 11. FEDBuilder class model. Blue boxes are different views 

instead the dashed red boxes are filter nodes used by connected views. 
 

Figure 11 shows the FEDBuilder class tree model structure. The FEDBuilder refers to a set of 
applications that are logically grouped together. In this model the association between fedbuilder <A> 
and <crateid> can change in each configuration of the DAQ system. Therefore a model is derived 
from the configuration database.  The following attributes (see Table 1) must be defined to intercept 
errors from all applications participating in the FEDBuilder task, they are used to intercept and count 
the exceptions and map them to the system tree model.  

 
Table 1. Fedbuilder attributes. 

Name Group  Tag 
Channel <C> unit_frlcrate, crate_<crateid> geoslot_<G>, channel_<C> 
RU on slice <S> unit_ru,fb_<A>, slice_<S>  
Other unit_frlcrate, crate_<crateid>  

 
Hotspot is an Adobe Flex [18] application used to view and retrieve the error and alarm 
 data stored and retrieved by Spotlight. Hotspot displays errors and alarms according the CMS data 
acquisition abstract model system. Errors and alarms are associated to elements of the system model 
and displayed corresponding to their severity levels. The tool offers different views of the model such 
as tree navigation, heat maps, and tables. Figure 12 shows the main view of Hotspot, the left-most 
panel of the main view represents the model tree that categorizes errors into nodes within the tree.  
The nodes are categorized under labels such as ‘Fedbuilders’, ‘FEDs’, ‘Slices’, ‘Infrastructure’, and so 
on.  These categories are represented as tiles on the right-most panel in the Heatmap. Each tile on the 



 
 
 
 
 
 

 

heatmap displays the name of the category it represents, its associated icon and, if existing, any 
exceptions associated with it. 
 

 
Figure 12. Main view of the Hotspot application. 

 
The coloured bar represents the severity level of the most-severe exception contained, in our 

example there are Fedbuilder error exceptions and the bar is orange. Double-clicking on a heatmap tile 
brings the heatmap to focus on the nodes and subcategories within it allowing the user to navigate and 
refine his criteria for viewing exceptions.  The user is also able to select elements on the model tree to 
accomplish the same effect. Selecting an element on the model tree and clicking “Acknowledge” 
allows the user to acknowledge (dismiss) all the exceptions categorized within that element. The 
“Reset” button removes all the exceptions being displayed on the screen and triggers a reloading of the 
model definition XML file – resetting the application to a state as if it had just been launched. In 
Figure 12, a fedbuilder::exception::DataCorruptionDetected error matches two different views: the 
“Fedbuilders” and the “Slices” perspectives. 
Clicking ‘Info’ on a heatmap tile or clicking the ‘Info’ tab navigates to view the selected exceptions 
and their properties. Figure 13 displays the exceptions selected under the previous Hotspot main view.  
This view allows the user to selectively acknowledge individual exceptions and identify their structure 
(as relating to parent and child exceptions), and their associated properties such as their severity, 
notifying application, error message etc. 

4.2.  Post-mortem analysis and graphics 
Coldspot is an Adobe Flex application providing a post-mortem view of exception data stored by 
spotlight. The main feature is to retrieve the error through Query By Example using a time window. 
Figure 14 shows the “Query” tab of the coldspot, this view allows the user to selectively choose each 
parameter to perform the query. The time window in which errors should be searched for can be 
specified by the controls at the top of the tab, by clicking the “submit” button the query is sent to the 
spotlight. The “display” tab displays the exceptions retrieved from the spotlight application with the 
same interface look and feel of the Hotspot “Info” tag (see Figure 13).   



 
 
 
 
 
 

 

 
Figure 13. Hotspot application “Info” tab. 

 
 

 

Figure 14. Coldspot application “Query” tab. 



 
 
 
 
 
 

 

5.  Persistency  
The spotlight application is responsible for the storage and retrieval of error and alarm data.  Three 
spotlight applications have been implemented to support different requirements:  

• Spotlight2g, utilizes a database called SQLite to store the exceptions.  SQLite is a in-process 
library that implements a self-contained, server-less, zero-configuration, and transactional 
SQL database engine. It is a very lightweight database, however it is unable to efficiently 
handle large datasets. To compensate for this, an archival system is required to record the data 
split across multiple database files.  This was an early implementation for initial development 
as a proof of concept and now it is used for testing and small setups; 

• SpotlightOCCI, making use of Oracle’s OCCI API, is used to store this exception data in an 
Oracle database. The Oracle database has no upper-limit to the amount of data it can store and 
it has been shown to cope and operate smoothly with hundreds of thousands of records of 
exception data.  The Oracle database is also a very widely used and robust RDBMS with 
thorough documentation, these features combining to make it a more suitable technology for 
recording the exceptions than the SQLite. This is used in the CMS production system. 

• SpotlightTT, utilized an in-memory database called Oracle TimesTen [19]. This database is 
designed for low latency, high-volume data, event and transaction management.  Because 
TimesTen’s data is stored entirely in memory, no disk I/O operations are required when 
processing queries.  Since memory access is much quicker than disk access, TimesTen is often 
used in situations that demand a fast and predictable response time, such as in 
telecommunications systems and financial transaction services.  TimesTen supports standard 
ANSI SQL (in addition to its own commands for setup and administration) and can be 
accessed through standard ODBC and JDBC, or through the provided Oracle APIs (such as 
OCCI). TimesTen’s primary limitation is the memory capacity available on the host machine.  
Because all TimesTen’s data is held in memory, the amount being stored cannot be greater 
than the memory space made available by the operating system. 

6.  Benchmarks 
In the CMS error and alarm system the latency for reporting an error from user application to spotlight 
it is less then one second with the current DAQ system. The scalability of the system is achieved with 
increasing the number of spotlight applications. The maximum performance for the spotlight 
application depends on the database capabilities. SpotlightOCCI has been measured to be capable to 
perform at approximately 600 Hz (insertions per second).  TimesTen is an in-memory implementation 
of Oracle database, and stores database data in a machine’s RAM as opposed to hard disk for quicker 
access.  By caching the data in memory, data can be accessed and modified more quickly.  Using a 
TimesTen memory cache, spotlightTT was able to perform approximately at 2kHz. Spotlight2g, for 
comparison, stored approximately 1kHz insertions per second. 

7.  Integration with CMS sub-detectors 
The CMS sub-detectors use XDAQ framework to develop the online software needed for the data 
taking, and are responsible to bring data from their sub-detector front-end system to front-end drivers. 
Different teams are involved in developing the sub-systems software and alternative approaches are 
taken for the same problem. One example is the error reporting: storing errors in a local disk, 
collecting logs in a central place etc. The central DAQ group aims to standardize the error and alarm 
management for all CMS online systems. To succeed it is not enough to provide a common software 
but a common infrastructure is also needed, to cope with this problem the XDAQ as a Service (XaaS) 
has been designed based on the software as a service concept [20]. 
XaaS is a full set of interoperable services that provide standard functionalities for use in the XDAQ 
environment. A XDAQ zone defines the scope of a distributed XDAQ application and all processes 
are organized into and searchable groups known as zones. Each zone has its own error database, 
monitoring data types, and error report system model. An independent dedicated XaaS is available for 



 
 
 
 
 
 

 

each different XDAQ zone.  Each CMS sub-detectors should have a XaaS infrastructure maintained by 
the central DAQ team and a central XaaS system could collect error and alarm from all the CMS 
experiment as shown in Figure 15. 

 
 

 
Figure 15. Central XaaS. 

8.  Summary 
The error and alarm system has been implemented and is currently used in an operational environment 
for the central DAQ and almost all CMS sub-detectors. This software product line [21] is the result of 
several years of development and has proven its fitness for operation in the last three years of LHC 
operation. This paper summarized key requirements and outlined the resulting architecture (error 
handling, visualization, persistency, and integration) of the Distributed error and alarm processing in 
the CMS data acquisition system. 
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