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ABSTRACT
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1.

Grand Unified Theories (GUTs) suffer from the gauge hierarchy problem.

Supersymmetry seems to provide z natural way out from this impassel). Alas, glo-

bal supersymmetry does not fit the bi112). 3)

3)

Realistic models demand the primor-

dial SUSY breaking scale to be

Mg ~V My M, 010" gev) (1)

where Mw denotes the electroweak scale and MP is the celebrated Planck mass
(10'% GeV). 1In such a case, gravitational interactions”’ cannot be neglected if
we want to solve the gauge hierarchy problem, since, for example, there are con-

5)

tributions te scalar (Higgs, squarks, sleptons) masses proportional to the

gravitino mass

M
P

and thus comparable to the maximum allowable scalar massesS).

Among the many advantages of local SUSY theories, the, in general, automatic

6)

soft breaking ' of global SUSY, as a direct consequence of spontaneous'local SUSY
breaking, is of great importance. The spectacular thing about soft global 3USY
breaking emerging from supergravity is that its very specific formS)’6) seems to
satisfy all the very stringent criteria coming from low energy phenomenoclogy.

It is well known that the zbsence of flavour~changing neutral currents (FCNGC)
seems to be the Achilles' heel of many of the substitutes or extensions of the
standard SU(3) & SU(2) ® U{1l) model, such as composite or technicolour models.
In supersymmetric theories, FCNC imposes severe limitsT)’S)’g) on the mass dif-
ference beatween squarks of the same charge but of different generation., That
sounds rather bad for softly broken SUSY theories in general, since all squark

. 10
masses are more or less arbitrary ).

It should not come as a big surprise that
in local SUSY theories, all squarks have more or less the same massS}: gravity is
flavour-blind! There are certainly non-gravitational {i.e., non-universal) cor-

rections to squark masses, but the situation is still generally under control.’

‘Before Jumping to.conclusions, there is a point to be clarified. As we dis—
cussed before, in local SUSY thecries, all scalar particles, including the Higgs
doublets H, [responsible for the SU(2) & U(1) breaking ] are gettingB) a posi-
. . . . 2 ; 2 2 - M2

tive contribution to their (mass) at Mp. MHz M5 /0 MW' There are two

; negative at low energies (n Mw), thus triggering the
2

spontaneous breaking of SU(2) @ U(1l}:

known ways of making M



i) by introducing a light singlet6);

ii) by introducing a large Yukawa couplingll)

, presumably related to the presently
unknown top quark mass (if we want to avoid the introduction of a fourth gene-
ration), sc that its negative contribution eventually wins over the positive

contribution of gauge interactions to Mﬁ . Thus we end up with a negative

Mﬁz at the Fermi scale (v M) ) ?
The first case i) is disastrous, as it brings uplE) the gauge hierarchy problen
again, while in case ii), we are necessarily led to a lower bound for the top
quark massll)

m, S 0lé Gev) (3)

The educated reader will notice immediately that in this case we c¢lash head-on
with the Buras upper boundlB) on the top quark mass of 30 ~ 40 GeV from rare

kaon decays.

In this paper, we show that in local SUSY theories the Buras limit is pushed
naturally to higher masses {» 100 GeV), without even using loop-holes in the ori-
ginal Buras argument, involying long-distance (LD) contributions to the KL—KS
mass difference, or without utilizing the vacuum insertion approximations a la
Gaillard and Lee'®) in calculating the < K01(§LYUdL)2|KO> (=M) matrix element.
Interestingly enough, following the standard arguments, i.e., no LD substantial

contributions and bag modellB), or, even better, PCAC type calculationsl6) of M,

M 223 M = % M (4)

Unturs  ms, hg Peac

we find that rare K decay phenomenology becomes restrictive. It does nct allow
top quark masses larger than 0{100 GeV) if we do not want to have gravitino
maéses, and thus approximately sguark or slepton masses, below 20 GeV, which is
the present lower bound from PETRA and PEPlT).

The system under consideration at scales smaller than the grand unifying
scale MX is the standard SU{3) ® SU{2) ®U(1l) model, involving three genera-
tione of fermions and two Higgs doublets H and ﬁ. The superpotential is

¥ < i ~ <
W = %{JCJ;G?J-HUL—US; C?,—H‘D;Z 5
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with Qj the quark doublet superfield zand Ui, Dg the singlets under the weak
group SU(2). We have ignored the leptons for this discussion. In writing Eq. (5)
we bear in mind that at scales ~ Mg» the breaking of SU(2) ® U(1) occurs

radiativelyll). i and j denote generation indices. The soft breaking terms

4

Iinduced by supergravity involving the scalar fields have the formS)’6)

1 * < ~ ~
%%:‘Ynfldkl N ‘“l;h% (A.ii LORU + Ay O HD;+ he.) (6)

where now all fields in Eq. (6) denote scalars. My, is-the gravitinc mass.
Just below the Planck scale Mp, all mi’s are equal to LA and the Aij’
Aij‘s are equal to A, which is a characteristic of the local supersymmetry
breaking. The charge t% quarks Py pi are related to the mass eigenstates

uiL, Uip through

u, =Uyp o = (U 7

{Ta)

where UL R diagonalize the fermion mass matrix. We also rotate the squark states
?

Sp; s spi, {partners of P;s pg respectively) and define new states by
U 7). 6y o
su; = UL, P tu; ‘CUR )g- (sp ?,s . (70)

Provided that Aij are generation-blind, we have for the up-squark mass matrix

using Eq. (6)

Z‘:: (m‘: lSu;t?-} m:c [l'l:u;lq) +Z.. [A m%& mw (su;)(tu-,) + h, c._-I i

(8)

2 2 5 2 2
Ly MG, ontain m me.
Li* Pri © 3/27 Tul

D terms. The crucial point to notice is that Eq. (8) does not contain flavour-

! as well as contributions stemming from non-vanishing

changing terms, owing to the fact that Aij‘s were assumed to be generation-

independent. . While this is true at scales approaching M it is in general

P’
not guaranteed down at scales Mw. However, following the renormalization group

down to M., one can see that the ratios

1 1
equations for Aij s from MX
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Aii(Mw)/Aij(MX) are, to a very good approximation, generation-independent. If,
r =1 at M and takes

‘ X’ -
the top Yukawa coupling f,, = 0.1 at MX’ then one has for the Aii’ Aij of

for instance, one starts with A4 =3 and Mgaugino/ma/z

the up=- and down-quarks at Mw
*

Ag = 6 diag( Loar, Lo, 1.033)

J.o44 1.Chdy R
Fa¥l
Aj = 6| 1044 1,044 .04
l.oy4a 1.044 1.04)

Though Aij's have suffered large renormalizations by a factor of two, ratios of
different Aij‘s or ﬁi.'s are 1 + 0(10"%). From now on, any reference to A

will mean the value of A at scales O(Mw).

Lnother source of such a non-alignment of the squark mass matrix Méq and
the fermion mass matrix Mqu may be mass corrections to Méq . due to Higgses,
which may generate a radiative departure from this alignmentlg). Fowever, this
latter source is controllable and may not be very important. Therefore, here we
supersymmetrize in a standard way, taking into account the new diagrams which

contribute to the KL—KS mass difference and to KL -+ U_u+ involving squark and

wino fields.

The mass matrix (8) leads, for each flavour index i, to four mass eigen-

states doubly degenerate with masses
2 2 : ) }‘l

- 1 ) 2 y) 2 3L ?7_ 1

MY =m? =g miam +(M—m Ya4AmMm m

Su; t Q[ LT R ( L & N w)

]

=1 _ _1 1 v] Q - 1 Q 2.7 lé (
May = il = g L] g - (G- +4A@3&mw) e

In our calculations, for definiteness, we put mii = méi; our results change

little in the general case. .
* ) s
) Without loss of generality, we have taken Aij's diagonal at MX'
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In Figs, 1 and 2, we give the supersymmetric graphs which contribute to the
+ ¥)

KL—KS mass difference and to KL > Ui . For the sd + sd effective Lagrangian,
we have from the graph of Fig. 1
Susy
_ Gr 0’- .
Lo = UJJ)‘BS('U) (10)

We prefer to conform to the notation of Refs. 13) and 19), so that Uij denctes
elements of the Kobayashi-Maskawa matrix. Bs(i,j) is a complicated function
whose explicit form will be given below. The ordinary quark contribution is
given by the same expression (10) when"BS(i,j) is replaced by B(xi,xj) of
Refs. 13) and 19). For the KL > p"p+ process, the supersymmetric contribution
of the diagrams in Fig. 2 gives the effective Lagrangian

Susy

3
= Qif o = M ~ -+ .
o ™ 8 e ) g %ﬁauﬁ Ua G0

{11}

Again, the ordinary non-supersymmetric contribution is given by the same expression
(11), with GS(i) being replaced by G(xi) of Refs. 13) and 19). For complete-
ness, we give the explicit expression of BS and GS appearing in Egs. (10} and (11):

/-Bs(\;j)-: 4 [o(s}”‘) sJ-")—r b(’cf';f;)—r?(m ol t)}
Gy () = Trl" Mﬂ[(fcs:*‘)-5«5}*))-;'-L(gcs:'j,x)- qsm 0)- . 4(4M] e

. (o [ (des” sP)-dGNsM) - & GGn ]

)

The wino W, and w, masses are takea equal inside the Feynman integrations,
This is a very good approximation. In our numerical calculations, later on,
these will be taken to be = MW'



a, b, ¢ are given by

als; 'ii') = j [‘5(5&, /) - 3(5;,3,’) +g(s, si)- 96, g_l’)]
b(‘l:;) 4:3 )= y (13}

C(Sc,’-);j)‘:

-

whereas the functions g, £, d are given by

I
9,("_1 V=g [(X) “ox - (xw)] 4 q_m_ﬁ

(14)
{or= lx)’ a ) ) ¢ &y s(x—j)[a > & 16
The arguments sf, ti as well as 1, Si and )\ appearing in (12) are
> * 12 - 2 2 2
gg'--_(rgaw e (Do) = () S (T =(22) s
me e ) Mol ) Mo 0T mg

with M the wino mass, ms,, the sneutrino mass, and Mw the W boson mass,.

The essential point to keep in mind, putting aside all this formalism, is that

Bs’ GS now contain information for the gravitino mass m, ., and the constant

A of local SUSY through the squark masses m
suy,tuy’

Before dealing with the general case, we briefly recall why one has a bound

for the top quark mass in the ordinary theory by comblnlng the mass

K. -K
L 'S
dlfference and the bound for the short-distance KL + U U amplitude. Ignoring

for the sake of argument the contribution of up- and charm-quarks, we have for the

K

L-KS mass difference

Ame = 4R 1) oy (."_E) S 16)
W

My
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where O denotes a function of the Kobayashi-Maskawa angles and m, is assumed
large enough, To parametrize < KO[...

it is often useful to introduce the
parameter R [see, for instance, Ref, 13)] so that

2
where K 1is a constant. The parameter R is defined so that for R = 0.42,
one has the vacuum insertion approximation, while for R = 1, one has the bag
model. The PCAC estimate already discussed corresponds to R z 1.3, sllghtly
larger than that of the bag models. For the short-distance

KL + 1 u amplitude,
one has a bound

VO (Ei) £ (torstant ) 15,65 |

Pﬂ& (18)
30 that, combining (16) and (18) on account of (17), we get
2 ?
(%) £ Conat) (510 (19)
M, R

One sees therefore that m cannot increase arbltrarlly. The bound given by
Eq. (19) becomes stronger with higher values ¢f R. The analysis which has just
been presented for the Buras limit on my in an ordinary theory is very much
simplified, since actually the complete expressions for Am /m and the K -

L
+ up’ amplitude should be used.

in the supersymmetric theory for the KL"KS mass difference, one has

Ay . 4 [n AB_+n A Bt n AL B (20)
™ R

n
with "f" a numerical constant equal to 1.6 10"10, and where the functions
Bij are the sums of Bs(i,j) and the B(xi,xj)'s of the non-supersymmetric case.
Ac,'t, ct depend on the Kobayashi-Maskawa angles, and nc, £, C; are QCD |
correction factors. To help the reader, we have followed very clesely the notation
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of Ref. 13). From the ¥ - w " short-distance bound, we get

IA(K;*]:W)I = In/AlGe4n! Al G, 1 £(85 lsal)ss”
$.d.

(21)

where we have a prime on the n,A's to distinguish them from those of Eq. (20).

Gc t contain the contributions both of ordinary graphs and the supergraphs. A
)

bound on m,  can now arise, combining Egs. (20) and (21).

The Kobayashi-Maskawa angles are not known, except for the Cabibbo angle
8, = GC. However, they are constralned experimentally to be within some regions2o).
In numerical calculations, we scan the whole allowed regicn of angles, imposing

the constraint that the CP violating parameter ¢ is of the order
s 21),22) %) o
~ 2.1078 ' .

To present a rather model-independent analysis, we take mii and mﬁi in

Eg. (9) sc that mﬁi z mﬁi = p2m?2  + m?  where "r"™ is a renormalization

factor**) and we have assumed thgézthe ué term contribution is negligible. For
squarks, "r" is of the order of three when the gaugino mass MO at MX is
taken to be equal to m,,,. When Mg << My/2s the "r" 1is of the order of unity.
For the sleptons, r = O(l1) because of the absence of strong interacticns. In
general, "r" is model-dependent. Since we do not want to commit ourselves tc a
particular model, we rescale the gravitino mass ms/2 and the A defining the

rescaled gquantities
m, = A=A
3 - T‘rn?é ) T /C (22)

We remind the reader that A is the renormalized value of the A parameter at

scales O(Mw)d

That done, the mass spectrum as given by Eg. {9) is

-+ 1 L .
= M- = + A, )
Su; due mg T E A My My (23)

'*' B B
) Actually, |em|=|e|x 2.107% if one employs the fact that le'/e|v]2E/2+ep|<

< 0(10-%) Csee Ref. 21)1. In our numerical calculations, we constrain

{sm/2.10‘3| to lie within 0.2 and 5. That is, we allow for a "tolerance

factor of about =5.

) Actually, the different squark fields have different renormalization factors,
but for our calculations to a good approximation, we have put them equal.
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The relation of the physical gravitino mass My, to mg and of the ‘4 to the

effective Ar is given through Eq. (22). HNotice that as r > 1, My, < mg
and A 2 Ar. Given the choice of "R" we are then left with three parameters
My 5 mg and Ar at Mw, which enter into the equations, and hence for a fixed

Ar the bound on KL - u—u+ can give us the allowed mg’ m, values when scanning

the whole range of the angles, as discussed préviously.

In Fig. 3, we plot the ratios Btt/Bzzdlnary

typical top quark masses m, = 20 GeV and 70 GeV. The A's were taken as

as a function of mg for two

=0 and lAr' = 2. We observe that the ratios are very close to unity,
approaching one asymptotically when mg grows. The corresponding ratios fopr
BCt and B stay even closer to one, due to the smallness of the charm=quark
masses, Thls shows that the supersymmetry effect on the K -K nass difference

is quite negligible. On the contrary, the effect of supers;mmgtry on KL > U u

can be quite substantial. 1In fact, graphs with winos and squarks carry a negative
sign relative to the ordinary graphs while they are of the same order of magnitude,
resulting in a cancellation which makes the A(K > uu * amplitude smaller than
that of the ordinary theory Aordln'(K > uu *). This weakens the bound of Eq, {21},

thus allowing for higher values of m These conclusions are independent of the

specific values of Ar chosen. In oﬁder to have a feeling of what may happen,
we take @, = 5% 6, =13° and § = 0.5° for a1 =2, m = 60GeV and m, =
= 20 GeV in the free quark model. In this case, le| = 2.107%. For these values,
the bound of the right-hand side of Eq. (21) is =~ (0.20)10"%, while

IAOPdin‘(KL > u-u+)[ is (0.25}107%, exceeding this upper bound. However, at the

sane time, A(K ~+ W p*)  stays well below the bound since IA/Aordlnary’ = 0.5,

In Fig. 4, we have plotted the boundaries of the allowed regicns in the M, s

mg plane for the cases Ar = 0 and IAPI = 2 for the free quark model {FQM), and
also when QCD corrections are taken into account., For other values of Ar within
O<fAr[<2, the boundary lies between those of A =0 and [API = 2, and hence
there is no substantial change. The values taken for the parameter R are close

to unity {bag models) and close to 1.3 {PCAC calculation}; for the "vacuum inser-
tion" values, R = 0.42, we Found no bound on m , mg at least in the range

= 0(100 GeV),
ss2 < 020 Gev).
Alse, if one pushes up mg to have rather large values = 0(150 GeV), the top
quark mass is forced to be < 0(50 GeV)} in the QCD case and < O{70 GeV) in the

FQM. This may indicate that models with large teop quark mass (> 100 GeV) may be

m, < 300 GeV. For the bag models, we observe that in order to have m,

we need mg = 0(20 GeV) and consequently light gravitino masses n

in trouble and violate the Buras limit. However, one cannot derive a definite

conclusion unless all the details of the specific models are taken into account.
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For values of R = 1.3 (PCAC), the situation is even more restrictive (see Fig. 4),
since one has m, < 0(80 GeV) in the FOM and m, < O(70 GeV) in the QCD case.

If the PCAC approach is the most reliable one for calculating the value of R,

then one draws the conclusion that a reasonable upper bound for the top quark mass
is 80 GeV. Notice that, for R = 1.3, in the QCD case, the Buras upper bound

on my in conjunctionliith the lower bound of ~ 60 GeV, coming from the radia-
tive breaking scenario of the electroweak SU(2) x U{l), fecrces the m to

be between ~ 60 and ~ 70 GeV, while at the same time mg and hence m

are less than OC{50 GeV).

2

For other values of lAr' larger than two, the squark masses are not posi-
tive definite, as is seen from Eq. (23), and hence one has to impose the condition

(m:u_)a, (mtu }2 » 0. In reality, these masses should be greater than = 20 GeV,
3 2

as dictated by experimental information from PETRA and PEP. This constrains the
allowed region for My s mg a great deal, especially for |Ar‘ > 3, in addition

to the constraints coming from the Buras limit, In Fig. 5, we bave depicted the

+
disallowed (shadowed) regions when (m;t)2 i.mé’ m being the experimental lower
bound on msquark
for ]Ar] < 2, the boundary of the allowed region in the M, mg plane is the

which presently has a value of about 20 GeV. We observe that

segment of an ellipse passing through the points (mo,o) and (o,mo) and whose
semi-major axis lies on the diagonal and has a length of V2 mO/(Z—[AP[)I/Z. For
|Ar[ = 2, the boundary becomes the two straight-lines mg =+m + {tan n/h)mt.
Finally, for |Arl > 2, the corresponding boundary consists of the segments of

two hyperbolae passing through (mo,o) and (o,mo), with the lines mg = (tan 9)m
and m_ = (cot e)mt respectively as asymptotes; the angle & is given by /4 -

- are tan(]AP]-Z/]Ar|+2)1/2. The allowed area in this case is very limited,
especially for large values of 1Ar|’ This, in combination with the Buras limit,

imposes tighter constraints on the top quark mass.

Finally, we come to examine a realistic model based on N = 1 supergravity.

11)

We take the model of Ellis, Hagelin, Nanopoulos and Tamvakis and consider their
case of having m ® 70 GeV and m, = 88 GeV respectively. The effective Ar

in the first case is approximately AP =z 0.6, in the second case AP ~ 0.85, and
in both cases mg is related to the physical gravitino mass M3 /2 through

m_ = 2.5 My e This is because the top squark renormalization factor is about

g

2.5. In Fig. 3, we have plotted the ratioc Btt/Bgzdlnary for both cases, and

we see that the ratio is close to unity, &s expected from the previous general analysis.

In Fig. 6, we give the maximum value of the parameter R allowed as a function

of mg. We observe that in the first case, one can have 0.9 S R g 1 (bag models)
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for mg < 65 Gev, that is, for a relatively light gravitine mass My /s < 25 GeV,
The second case is not consistent with bag or PCAC type calculations, as expected,
since the top quark mass in this case is quite heavy (88 GeV).

In'conclusion, we have shown that in N = 1 local Supersymmetric theories,
the Buras upper bound on the top quark mass can be pushed upwards (v 100 GeV)
witﬁout too many problems. There is enough space for the top quark mass to be
between its lower bound of ({50-60 GeV) necessary for radiative 38U(2) x U(1}
breaking and its super-Buras bound of (80-100 GeV). Interestingly enough, large
values (v 100 GeV) for the top quark force the gravitine to have a low mass of
about 020 GeV). " '
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FIGURE CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. &

Graphs contributing to the sd - sd effective Lagrangian involving

squarks and winos.

Graphs contributing to the 5d » Wy effective Lagrangian involving

squarks and winos.

Values for the ratios Bt /Bordlnary as functions of the rescaled

AR A
gravitino mass mg for top quark masses m = 20 GeV and m, = 70 GeV.
The solid lines correspond to A = 0 and the dashed lines to IAPI = 2.
The dashed-dotted lines are the Ellis, Hagelin, Nanopoulos and Tamvakis

model (EBNT) for m, = 70 GeV and 88 GeV respectively.

Boundaries of the allowed region in the T, mg plane for R = 1

(bag models) and R = 1.3 (PCAC), when the Buras limit is imposed.
The solid line is for A =0 and the dashed line for |[A_| = 2.

FOM and QCD stand for the free guark and QCD models regpectively., The
allowed region in each case lies on the left of the boundary.

The disallowed regions (shadowed) in the m, m plane when the con-
straint m  >m  is imposed for ]Arl < 2, ‘Arl = 2, and IArl > 2.
(See also main text}.

The maximum value of R (Rmax)

as a function of the mass mg for the
model of Ellis, Hagelin, Nanopoulos and Tamvakis for the cases

m = 70 GeV {solid curve) and m = 88 GeV (dashed curve).
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