

CERN-EP/83-84 21 June 1983

PRODUCTION AND DECAY PROPERTIES OF D AND D* MESONS IN π^-Be INTERACTIONS

ACCMOR Collaboration

 $Amsterdam^{1}$ - $Bristol^{2}$ - $CERN^{3}$ - $Cracow^{4}$ - $Munich^{5}$ - $Rutherford^{6}$ Collaboration

- R. Bailey⁶⁾, D.G. Bardsley²⁾, H. Becker⁵⁾, G. Blanar⁵⁾, T. Böhringer³⁾, M. Bosman³⁾, M. Cerrada³⁾, V. Chabaud³⁾, C. Damerell⁶⁾, C. Daum¹⁾,
- H. Diet1⁵⁾, H. Dijkstra¹⁾, A. Dwurazny⁴⁾, W. Faissler^{5*)}, M. Gettner^{5*)},
- D. Giddings⁶⁾, A. Gillman⁶⁾, R. Gilmore²⁾, L. Görlich^{5**)}, Z. Hajduk⁴⁾, C. Hardwick⁶⁾, L.O. Hertzberger¹⁾, W. Hoogland¹⁾, B.D. Hyams³⁾,
- R. Jongerius¹⁾, R. Klanner⁵⁾, E. Lorenz⁵⁾, G. Lütjens⁵⁾, G. Lutz⁵⁾,
- J. Malos²), W. Männer⁵), G. Polok^{4**}), M. Rozanska⁴), K. Rybicki⁴),
 - T.W.L. Sanford⁵⁾, H.J. Seebrunner⁵⁾, P. Sharp⁶⁾, W. Spierenburg¹⁾, U. Stierlin⁵⁾, R.J. Tapper²⁾, H.G. Tiecke¹⁾, M. Turala⁴⁾,
 - J. Vermeulen3), G. Waltermann5), P. Weilhammer3), R.J. Whyley2),
 - F. Wickens⁶), L.W. Wiggers¹), A. Wylie³) and T. Zeludziewicz^{5**})

ABSTRACT

 $D^{*\pm}$, D^{\pm} , D^{0} , and \overline{D}^{0} production has been observed in π^{-} Be interactions at 120, 175, and 200 GeV. The dependence of the D cross-section on transverse and longitudinal momentum is presented. The ratio of D^{*} to D and charged to neutral D production is determined. Leading particle effects in D production are investigated. Relative branching ratios for several D decay modes are evaluated. A limit on $D^{0}-\overline{D}^{0}$ mixing is given.

(Submitted to Physics Letters)

¹⁾ NIKHEF-H, Amsterdam, The Netherlands.

²⁾ University of Bristol, Bristol, UK.

³⁾ CERN, Geneva, Switzerland.

⁴⁾ Institute of Nuclear Physics, Cracow, Poland.

⁵⁾ Max Planck Institut für Physik, Munich, Fed. Rep. Germany.

⁶⁾ Rutherford Laboratory, Chilton, Didcot, UK.

^{*)} Visitor from Northeastern University, Boston, Mass., USA.

^{**)} Visitor from Institute of Nuclear Physics, Cracow, Poland.

1. INTRODUCTION

In an accompanying letter [1] we have discussed the observation of D* and D meson production in π^- Be interactions at 120, 175, and 200 GeV. In this contribution we present results on properties of charmed meson production -- including differential cross-sections of longitudinal and transverse momentum, ratio of D* to D production, and possible evidence for leading particle effects. We also give results on relative branching ratios for several decay channels and on a limit on $D^0-\overline{D}^0$ mixing.

For this study we use only the 175 and 200 GeV data. The 120 GeV data do not allow a meaningful analysis of the production characteristics by themselves because of their small statistics; they are, however, checked for consistency with the high-energy data.

2. PRODUCTION CHARACTERISTICS

The production characteristics of D mesons in π^- Be interactions at 175 and 200 GeV/c have been investigated. Significant signals are only seen in the data sample with best invariant mass resolution (all particles passing through both spectrometer magnets, see ref. [1] and for $x_F > 0.2$. We use those signals to determine the p_T^2 and x_F dependence.

2.1 Transverse momentum dependence of the cross-section

For the determination of the differential cross-section $d\sigma/dp_T^2$ of inclusive D production, the inclusive $(\bar{D})^{\,0} \to K\pi$ signal has been used. The mass spectra, grouped in Δp_T^2 bins of 0.8 GeV², have been fitted by a polynomial background and a Gaussian for the D signal. The result, corrected for acceptance, is shown in fig. 1. Parametrizing the experimental distributions by $d\sigma/dp_T^2 \propto \exp{(-bp_T^2)}$ yields b = 1.1 \pm 0.5 GeV⁻².

2.2 Longitudinal momentum dependence of the cross-section

The differential cross-section $d\sigma/dx_F^-$ has been determined for the two production processes: (i) $D^* \to D^0(K\pi) + \pi$ for $x_F^- > 0.2$, and (ii) inclusive D^0 , \overline{D}^0 , and D^\pm production for $x_F^- > 0.2$. We can add the $D^0 \to K\pi$ and $D^\pm \to K\pi\pi$ channels, since their acceptance is very similar. The differential cross-section $d\sigma/dx_F^-$

has been parametrized by $d\sigma/dx_F^{\alpha} \propto (1-x_F^{\alpha})^n$ and fitted to the acceptance-corrected and background-subtracted data. The fits yield for the two processes:

(i) $n = 3.2 \pm 1.5$, the rather large error being due to low statistics, and (ii) $n = 0.8 \pm 0.4$ (fig. 2).

Assuming the \mathbf{x}_F distribution in the interval $0 < \mathbf{x}_F < 0.2$ to be the same as the one measured above $\mathbf{x}_F = 0.2$, we can explain that we see no charm signal at low \mathbf{x}_F . Most of the events in the \mathbf{x}_F region below $\mathbf{x}_F = 0.2$ are of the type where π 's pass only through the first magnet. This data sample has lower acceptance, a three times higher combinatorial background, and about two times worse mass resolution. Hence the signal-to-background ratio is too small to allow observation of a charm signal.

We have also investigated possible leading particle effects in the differential cross-section ${\rm d}\sigma/{\rm d}x_{\rm F}$. Some quark-parton models, for example that of Gunion [2], predict a higher cross-section and a flatter $x_{\rm F}$ distribution for outgoing particles containing a common valence quark with the beam particle. For incoming π^- one might therefore expect more D^{*-} than D^{*+} and more directly produced D^- and D^0 than D^+ and \bar{D}^0 at high $x_{\rm F}$. We do not observe a difference for D^* production [(15 ± 5) D^{*+} compared to (13 ± 5) D^{*-}], but we do find an excess of inclusive D^- and D^0 over D^+ and \bar{D}^0 at higher $x_{\rm F}$. The integrated $x_{\rm F}$ distributions for D^- and D^0 , and D^+ and \bar{D}^0 , for $x_{\rm F} > 0.3$ are shown in fig. 3. The shapes of the two $x_{\rm F}$ distributions are similar: for the ratio of events we find $N(D^- + D^0)/N(D^+ + \bar{D}^0) = 2.0 \pm 1.0$.

2.3 Ratio of D* to D production

The ratio α of D^* to D production can be determined from the measured number of $D^* \to D^0(K\pi) + \pi$ events and inclusive $D^0 \to K\pi$ events, and the known branching ratio $D^{*\pm} \to (\overline{D})^0\pi^\pm \begin{bmatrix} 3 \end{bmatrix}$ of 44%. Since we do not measure D^{*0} production we have to assume that charged and neutral D^* 's are produced at the same rate. We then determine $\alpha = 0.9 \buildrel {}^{+3.1}_{-0.6}$.

The ratio of $(\overline{D})^0$ to D^\pm is found to be 1.4 \pm 0.8, using the measured $D^0 \to K\pi$ and $D^\pm \to K\pi\pi$ branching ratios [4] and relative acceptances. This ratio is in agreement with α = 0.9.

DECAY PROPERTIES

3.1 Branching ratios of the $\stackrel{\longleftrightarrow}{D}$ and D^{\pm}

We have observed, in various decay channels, \sim 60 D*'s and \sim 320 D's with a signal-to-background ratio of 1/1 and 1/4, respectively. This allows us to determine ratios of relative decay widths.

From the signals in the decay chain $D^{\star}\to D^0\pi,$ with the D^0 decaying into $K\pi$ and $K\pi\pi\pi$, we obtain

$$\frac{\Gamma(\overline{D}^0 \to K^{\mp}\pi^{\pm}\pi^{\mp}\pi^{\pm})}{\Gamma(\overline{D}^0 \to K^{\mp}\pi^{\pm})} = (2.0 \pm 1.0)$$

compared with the value of 1.9 ± 0.6 from e⁺e⁻ experiments [4].

Both the $D^{*\pm} \to \overset{\longleftarrow}{D^0}(K\pi\pi\pi) + \pi^\pm$ channel and the inclusive $K\pi\pi\pi$ spectra show significant $\overset{\longleftarrow}{D^0}$ signals when $K^{\pm}\pi^{\mp}$ and $\pi^{\pm}\pi^{\mp}$ combinations in the K^{*0}_{890} (0.84 < $m_{K\pi}$ < < 0.94 GeV) and the ρ region (0.61 < $m_{\pi\pi}$ < 0.93 GeV) are selected. In the case of the $D^{*\pm}$ channel (fig. 4) we determine the fractions of $\overset{\longleftarrow}{D^0} \to K^{*0}\rho^0$, $\overset{\longleftarrow}{D^0} \to K\pi\rho^0$, and $\overset{\longleftarrow}{D^0} \to K^{*\pi\pi}$ decays of all $D \to K\pi\pi\pi$ decays:

$$\frac{BR(D^{0} \to K^{*0}\rho^{0})}{BR(D^{0} \to K\pi\pi\pi)} = 0.5 \pm 0.2 , \frac{BR(D^{0} \to K\pi\rho^{0})}{BR(D^{0} \to K\pi\pi\pi)} = 0.2 \pm 0.2 , \frac{BR(D^{0} \to K^{*}\pi\pi)}{BR(D^{0} \to K\pi\pi\pi)} < 0.18 \ 90\% \ C.L.).$$

No signal is observed in the D $^\pm$ \rightarrow K $^\mp\pi^\pm\pi^\mp\pi^\pm\pi^\pm$ decay channel. We obtain

$$\frac{\Gamma(D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm})}{\Gamma(D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm})} < 0.16 \text{ with 90\% C.L.}$$

compared with the limit of 0.65 with 90% C.L. obtained by the Mark II experiment [5].

No signal is observed in the $D^{\pm} \rightarrow K^{*0}\pi^{\pm}$ channel. We obtain

$$\frac{\Gamma(D^{\pm} \rightarrow {}^{\prime}\overline{K})^{*0}\pi^{\pm})}{\Gamma(D^{\pm} \rightarrow K^{\mp}\pi^{\pm}\pi^{\pm})} < 0.22 \text{ with 90% C.L.}$$

compared with the limit of 0.39 with 90% C.L. from the MARK II experiment [5]. 3.2 $D^0-\overline{D}^0$ mixing

As with the $K^0-\overline{K}^0$ system, transition between D^0 and \overline{D}^0 can occur via common Cabibbo suppressed decay modes. Within the standard models of the 3 \times 3 mixing matrix, the effect is expected to be very small $(10^{-4}-10^{-7})$ [6]. The present

best upper limit of 4.4% on $D^0-\overline{D}^0$ mixing comes from a hadronic beam dump experiment comparing the rate of μ pairs with equal and opposite charges [7].

This experiment can detect $D^0-\overline{D}^0$ mixing either via the decay chains $D^{*+}\to \overline{D}^0 (\to K^+\pi^-)\pi^+$ and $D^{*-}\to D^0 (\to K^-\pi^+)\pi^-$ or by observing $D^0\to K^-\pi^+$ or $\overline{D}^0\to K^+\pi^-$ decays in which the kaon has the opposite charge to the trigger electron. No significant signal has been found, thus resulting in an upper limit for the transition probability $D^0-\overline{D}^0$:

$$T(D^0 \to \overline{D}^0) < 7\% \text{ at } 90\% \text{ C.L.}$$
.

4. DISCUSSION OF THE RESULTS

Production of D^* and D mesons has been observed in a counter experiment in π^- Be interactions at 120, 175, and 200 GeV. The following conclusions can be drawn.

- i) The differential cross-section $d\sigma/dp_T^2$ for \overrightarrow{D}^0 production can be parametrized by $e^{-bp_T^2}$ with $b=1.1\pm0.5~{\rm GeV}^{-2}$. The differential cross-section $d\sigma/dx_F$ for D production for $x_F>0.2$ can be described by $(1-x_F)^{0.8\pm0.4}$, which rules out gluon-gluon fusion or quark-antiquark annihilation [8] as the dominant process in this kinematic range. Models including the charm excitation process [9] are able to explain qualitatively the shape of $d\sigma/dx$.
- ii) The data do not support the prediction that charm mesons containing a valence quark of the beam particle (e.g. $\pi^- \to D^{*-}$ or D^- or D^0) are produced with a flatter $\mathbf{x_F}$ distribution than charm particles which do not contain a common valence quark with the beam particle [2], but they seem to be produced more abundantly.
- iii) The following production ratios have been determined:

$$D^*/D = 0.9 + 3.1 - 0.6$$
 $(-7)_0/D^{\pm} = 1.4 \pm 0.8$.

iv) The following relative decay widths of D's have been measured:

$$\Gamma(D^{0} \to K\pi\pi\pi)/\Gamma(D^{0} \to K\pi) = 2.0 \pm 1.0$$

$$\Gamma(D^{0} \to K^{*}\rho^{0})/\Gamma(D^{0} \to K\pi\pi\pi) = 0.5 \pm 0.2$$

$$\Gamma(D^{0} \to K\pi\rho^{0})/\Gamma(D^{0} \to K\pi\pi\pi) = 0.2 \pm 0.2$$

$$\Gamma(D^{0} \to K^{*}\rho^{\pi}\pi)/\Gamma(D^{0} \to K\pi\pi\pi) < 0.18 \text{ with } 90\% \text{ C.L.}$$

$$\Gamma(D^{\pm} \to K^{\mp}\pi^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\pm})/\Gamma(D^{\pm} \to K^{\mp}\pi^{\pm}\pi^{\pm}) < 0.16 \text{ with } 90\% \text{ C.L.}$$

$$\Gamma(D^{\pm} \to (K^{\mp})^{*}\rho^{\pi}\pi^{\pm})/\Gamma(D^{\pm} \to K^{\mp}\pi^{\pm}\pi^{\pm}) < 0.22 \text{ with } 90\% \text{ C.L.}$$

v) An upper limit for the transition probability $D^0-\overline{D}^0$ is given: $T(D^0\to \overline{D}^0) < 7\% \text{ at } 90\% \text{ C.L. .}$

REFERENCES

- [1] R. Bailey et al., Observation of $D^{*\pm}$ and $(\bar{D})^0/D^{\pm}$ production in high energy π^- Be interactions at the SPS, submitted to Phys. Letters B.
- [2] J.F. Gunion, Phys. Lett. 88B (1979) 150, and Proc. 15th Rencontres de Moriond, Les Arcs, Savoie (Editions Frontières, Dreux, 1980), p. 151.
- [3] M.W. Cole et al., Phys. Rev. D 26 (1982) 2190.
- [4] Particle Data Group, Review of Particle Properties, Phys. Lett. 111B (1982).
- [5] R.H. Schindler et al., Phys. Rev. D <u>24</u> (1981) 78.
- [6] Ling-Lie Chau, Preprint BNL-31859-R, July 1982, to be published in Phys. Reports.
- A. Bodek et al., Univ. Rochester preprint UR 802, COO-3065-315 (1981).
 L.M. Segal, Proc. 21st Int. Conf. on High Energy Physics, Paris, 1982,
 J. Phys. 43, Suppl. 12, C-3, 22 (1982).
- [8] See the review of R.J.N. Phillips, Proc. Int. Conf. on High-Energy Physics,
 Madison, 1980 (eds. L. Durand and L.G. Pondrom) (Amer. Inst. Phys.,
 New York, 1981), p. 1470.
- [9] B. Combridge, Nucl. Phys. <u>B151</u> (1979) 429.
 - F. Halzen, Proc. 21st Int. Conf. on High-Energy Physics, Paris, 1982,
 - J. Phys. 43, Suppl. 12, C-3, 381 (1982).

Figure captions

- Fig. 1 : $d\sigma/dp_T^2$ for inclusive $(\bar{D})_0$ production at 175/200 GeV. The line is a fit of an $e^{-bp_T^2}$ distribution, yielding $b = 1.1 \pm 0.5$.
- Fig. 2 : $d\sigma/dx_F$ for inclusive $\overset{\text{(-)}}{D}{}^0$ + D^\pm production at 175/200 GeV. The abscissa is logarithmic in $(1-x_F)$. The straight line is a fit of a $(1-x_F)^n$ distribution with $n=0.8\pm0.4$.
- Fig. 3: Integrated x_F distribution for inclusive D production. The black dots are the data for $D^- + D^0$ production; the solid line is a fit of $(1 x_F)^{n+1}$ with n = 1. The open triangles are the data for $D^+ + \overline{D}{}^0$ production; the dotted line is a fit to $(1 x_F)^{n+1}$ with n = 1.
- Fig. 4: Projections of bands in a scatter plot of mass $m(K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp})$ versus mass difference $\Delta m = m(K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}) m(K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp})$ with $x_{\mathbf{F}}(K\pi\pi\pi\pi) > 0.5$. The bands selected are $143 \leq \Delta m \leq 148$ MeV and $1.84 \leq m_{K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}} \leq 1.88$ GeV. The fits parametrize the data with a Gaussian plus a polynomial. In (c) and (d) the $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$ combination is considered only if it fulfils the $K^{*0}\rho^{0}$ criteria defined as $0.84 \leq m_{K^{\pm}\pi^{\mp}} \leq 0.94$ GeV and $0.61 \leq m_{\pi^{\pm}\pi^{\mp}} \leq 0.93$ GeV.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

