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Abstract. While the constrained minimal supersymmetric standard model (CMSSM) with universal gaug-
ino masses, m1/2, scalar masses, m0, and A-terms, A0, defined at some high energy scale (usually taken
to be the GUT scale) is motivated by general features of supergravity models, it does not carry all of the
constraints imposed by minimal supergravity (mSUGRA). In particular, the CMSSM does not impose a
relation between the trilinear and bilinear soft supersymmetry breaking terms, B0 = A0 −m0, nor does it
impose the relation between the soft scalar masses and the gravitino mass, m0 = m3/2. As a consequence,
tan β is computed given values of the other CMSSM input parameters. By considering a Giudice-Masiero
(GM) extension to mSUGRA, one can introduce new parameters to the Kähler potential which are asso-
ciated with the Higgs sector and recover many of the standard CMSSM predictions. However, depending
on the value of A0, one may have a gravitino or a neutralino dark matter candidate. We also consider the
consequences of imposing the universality conditions above the GUT scale. This GM extension provides a
natural UV completion for the CMSSM.
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1 Introduction

One of the most commonly studied variants of the min-
imal supersymmetric standard model is the constrained
model (CMSSM) [1, 2]. This is in part due to its simplic-
ity (it is specified by four parameters), and its connection
to supergravity [3–5]. The CMSSM also provides a nat-
ural dark matter candidate [6], the neutralino, for which
the relic density may be brought into the range specified
by WMAP [7] relatively easily. Furthermore, these models
generally predict a relatively light mass for the Higgs bo-
son (mh . 130 GeV) [8]. Not only is the theory testable,
but is currently under scrutiny from the ongoing experi-
ments at the LHC [9], resulting in strong constraints on
the CMSSM parameter space, particularly when recent
constraints from Higgs searches [11] are applied [12].

The CMSSM is defined by choosing universal soft su-
persymmetry breaking parameters input at the grand uni-
fied (GUT) scale, i.e., the scale at which gauge coupling
unification occurs. These are the universal gaugino mass,
m1/2, scalar mass,m0, and trilinear term, A0. The motiva-
tion of this universality stems from minimal supergravity
(mSUGRA) and indeed the two theories are often con-
fused.

Minimal supergravity is defined by a Kähler potential
with minimal kinetic terms (in Planck units) 1,

G = K(φi, φi
∗, zα, z∗α) + ln(|W |2) , (1)

with
K = K0 = φiφi

∗ + zαz∗α , (2)

where W = f(zα) + g(φi) is the superpotential, assumed
to be separable in hidden sector fields, zα, and standard
model fields, φi. The scalar potential can be derived once
the superpotential is specified. Assuming that the origin
of supersymmetry breaking lies in the hidden sector, the
low energy potential is derived from

V = eK
(
KIJ̄DIWD̄J̄W̄ − 3|W |2

)

= eG
(
GIG

IJ̄GJ̄ − 3
)
, (3)

1 There are various usages of mSUGRA in the literature.
Often mSUGRA is used as another name for the CMSSM.
We follow the original definition of mSUGRA from Ref. [4, 5]
based on a flat Kähler metric which is clearly distinct from the
CMSSM. More general Kähler potentials or SUGRA models
which preserve flavour symmetries are possible. Though these
are also termed mSUGRA models in the literature, they nec-
essarily involve additional parameters (such as the GM model
discussed below).
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with DIW ≡ ∂IW +KIW and dropping terms inversely
proportional to the Planck mass, we can write [5]

V =

∣∣∣∣
∂g

∂φi

∣∣∣∣
2

+
(
A0g

(3) +B0g
(2) + h.c.

)
+m2

3/2φ
iφ∗i ,(4)

where g(3) is the part of the superpotential cubic in fields,
and g(2) is the part of the superpotential quadratic in
fields. The trilinear term is given by

A0g
(3) =

(
φi
∂g(3)

∂φi
− 3g(3)

)
m3/2 +KαDαf(z̄)g

(3) . (5)

Note that for trilinears, the first term in Eq. (5) vanishes,
leaving

A0 = KαDαf(z̄) , (6)

while for bilinears (B-terms - defined in Eq. (5) with the
replacement g(3) → g(2)), it is −m3/2 yielding the familiar
Kähler-flat supergravity relation B0 = A0 − m0. In Eq.
(4), the gravitino mass is given by

m2
3/2 = eG , (7)

and the superpotential has been rescaled by a factor e−〈zz∗〉/2.
Finally, gaugino mass universality stems from a choice of
a gauge kinetic term which is of the form hAαβ = h(z)δαβ .

Soft terms for matter fields in supergravity have a nice
geometrical structure. For F-term SUSY breaking, they
are given by [13]

m2
ij̄ = m2

3/2 (Gij̄ −Rij̄αβ̄G
αGβ̄ ) ,

(B µ)ij = m2
3/2 (2∇iGj +Gα∇i∇jGα) ,

(A y)ijk = m2
3/2 (3∇i∇jGk +Gα∇i∇j∇kGα) ,

µij = m3/2 ∇iGj ,

mA
1/2 =

1

2
(Re hA)

−1m3/2 ∂αhA Gα , (8)

where yijk are Yukawa couplings, hA are the gauge kinetic
functions and ∇i denotes Kähler covariant derivatives

∇iGj = ∂iGj − Γ k
ijGk , (9)

where
Γ k
ij = Gkl̄∂iGjl̄ , (10)

is the Kähler connection. Rij̄αβ̄ is the Riemann tensor of
the Kähler space spanned by chiral (super)fields. Taking
into account the known string compactifications, there is
no reason to believe that they are given by very simple or
even flavor universal expressions. In order to make contact
with low-energy phenomenology and in the absence of a
complete viable string theory model, one is forced, how-
ever, to resort to simplifying assumptions, for example,
minimal supergravity as defined in Eq. (2).

In the CMSSM, however, it is customary to drop the
mSUGRA relation between B0 and A0. Instead, B0 and
the Higgs mass mixing term, µ, are solved using the low
energy electroweak symmetry breaking conditions, i.e., from

the minimization of the Higgs potential at Mweak. Fur-
thermore, in the CMSSM, the relation between m0 and
the gravitino mass is lost, though scalar mass universality
is maintained. As a results, phenomenological constraints
in the CMSSM can be displayed on a (m1/2,m0) plane,
for fixed A0 and tanβ. Note the sign of the µ parameter
must also be specified. In contrast, in mSUGRA models,
because of the relation between B0 and A0, tanβ is no
longer a free parameter [14], and we are left with three
free parameters (rather than four).

An interesting extension of minimal supergravity is one
where terms proportional g(2) are added to the Kähler
potential as in the Giudice-Masiero mechanism [15]. For
example, consider an additional contribution to K,

∆K = cHH1H2 + h.c. , (11)

where cH is a constant, and H1,2 are the usual MSSM
Higgs doublets. Notice that in string theory cH < 1 is
needed for the viability of the effective field theory limit [16].
The effect of ∆K, is manifest on the boundary conditions
for both µ and the B term at the supersymmetry breaking
input scale, Min. The µ term is shifted to

µ+ cHm0 . (12)

Note that while in principle we can define an input value
for µ (µ0), it is not determined by supersymmetry break-
ing and furthermore, since we solve for µ at the weak scale,
its UV value is fixed by the low energy boundary condi-
tion. The boundary condition on µB shifts from µB0 to

µB0 + 2cHm
2
0 . (13)

It is clear therefore, that using the GM mechanism, one
can avoid altogether a dimensionful quantity in the su-
perpotential (i.e., one can set g(2) = 0) and obtain a weak
scale µ proportional to cHm0. While the extension in Eq.
(11) is perhaps the simplest extension which affects the
B-term, it is by no means unique. However, the GM ex-
tension is the simplest mechanism to solve the µ-problem,
that plagues SUGRA realizations of the MSSM.

In principle, we can also use ∆K to better connect
the CMSSM to supergravity. Indeed, by allowing cH 6= 0,
we can once again fix tanβ and derive µ and Bµ at the
weak scale. The presence of the extra term in the Kähler
potential allows one to match the supergravity boundary
conditions atMGUT . In particular, by running our derived
value of B(MW ) up to the GUT scale, we can write

B(MGUT ) = (A0 −m0) + 2cHm
2
0/µ(MGUT ) . (14)

Indeed, we can use Eq. (14) to derive the necessary value of
cH . So long as cH . O(1), we can associate the CMSSM
with this non-minimal version of supergravity which we
will refer to as GM supergravity.

For numerical computations we employed the program
SSARD [17], which uses 2-loop RGE evolution for the MSSM
and 1-loop evolution for minimal SU(5) to compute the
sparticle spectrum. These are passed to FeynHiggs [18] for
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computation of the light Higgs boson mass, mh. Through-
out this paper we take the top quark massmt = 173.1 GeV [19]

and the running bottom quark massmMS
b (mb) = 4.2 GeV [20].

In section 2, we consider this connection between the
CMSSM and GM supergravity. In particular, we will show
that for essentially all CMSSM models of interest, the
values of cH are small enough to remain in the pertur-
bative regime. We next consider a super-GUT version
of the CMSSM based on minimal SU(5) for which the
supersymmetry breaking input scale is increased above
MGUT [21, 22]. We first demonstrate that in the context
of mSUGRA, the standard boundary conditions for the
B-term are very difficult to satisfy and generally require
that the coupling, λ between the Higgs five-plets and the
Higgs adjoint is small (close to 0). This is similar to what
was found for a no-scale supergravity GUT [23]. Gener-
ally the no-scale sparticle spectrum is problematic unless
one moves the input supersymmetry breaking scale above
MGUT [24]. As a consequence, strong constraints can be
derived on the coupling λ [25]. In section 3.2, we will show
the effect of turning on the coupling cH (now defined as a
coefficient of the five-plets, H1H2). In this case, CMSSM-
like planes can be defined, albeit with strong constraints
on the coupling λ. That is, while the boundary conditions
can be matched, the resulting solution for cH becomes
wildly non-perturbative. In section 3.3, we show that these
constraints can relaxed if we turn on an additional con-
tribution to the Kälher potential, namely cΣTrΣ

2 + h.c.,
which can be associated with the µ and B terms of the
Higgs adjoint. This will in principle, lead to a family of so-
lutions relating cH and cΣ. Our conclusions will be given
in section 4.

2 GUT Scale Universality

We will begin by exploring the bridge between the CMSSM
and mSUGRA via an addition to the Kähler potential
when the input supersymmetry breaking scale is Min =
MGUT . The addition to the Kähler potential can be cho-
sen as given in Eq. (11). In the CMSSM, µ and B are
normally solved for in terms of mZ and tanβ:

µ2 =
m2

1 −m2
2 tan

2 β + 1
2m

2
Z
(1 − tan2 β) +∆

(1)
µ

tan2 β − 1 +∆
(2)
µ

,

Bµ = −1

2
(m2

1 +m2
2 + 2µ2) sin 2β +∆B , (15)

where ∆B and ∆
(1,2)
µ are loop corrections [26–28], and

m1,2 are the Higgs soft masses (here evaluated at the weak
scale). As a result, there is usually a one-to-one correspon-
dence between B and tanβ, so that there is perhaps a
single value for tanβ for which the GUT-scale2 boundary
condition, B0 = A0 −m0 is satisfied.

2 The GUT scale, MGUT , is defined as the scale where SU(2)
and U(1) gauge couplings unify and is approfimately 1.5 ×

1016 GeV.

We show in Fig. 1 the allowed parameter space in a
(m1/2,m0) plane for mSUGRA with A0 = 0 (left) and
A0 = 2m0 (right) (updated from Ref. [14]). Here, and
in subsequent figures, the regions forbidden because the
lightest supersymmetric particle (LSP) is charged (either
τ̃1 or t̃1) are shaded brown, the regions excluded by b →
sγ [29] are shaded green, the regions favored by gµ−2 [30]
at the ±2 − σ level are shaded pale pink, with the ±1 −
σ region bordered by dashed curves. The near vertical
black dashed line is the chargino mass mχ±

1

= 104 GeV

contour and the red dot-dashed lines show contours of
the Higgs mass, mh as labelled. Unlike the CMSSM, each
point on the plane corresponds to a value of tanβ and
these are shown by the gray-colored curves for tanβ = 3
and in increments of 5 (most are labeled on the figure).
For A0/m0 = 0, much of the plane at large m0 has small
tanβ . 5 and a correspondingly small value of mh. For
A0/m0 = 2, higher values of tanβ are found and they
extend up to ∼ 39 in the region plotted.

The dark blue shading in Fig. 1 indicates the region
where the relic density falls within the WMAP range,
0.097 ≤ ΩCDMh

2 ≤ 0.122. We also plotted the limit
MLSP = m3/2 shown as the light blue diagonal line under
which the gravitino is the LSP. It corresponds roughly to
the line m0 = 0.4m1/2. Another diagonal line (brown dot-
ted) shows the contour for which the lightest neutralino
mass mχ is equal to the mass of the lighter stau, mτ̃1 . For
A0/m0 = 0, the latter appears below the gravitino LSP
line, and as such, τ̃1 is never the LSP. As a consequence,
only the dark blue shaded region at low m1/2 above the
light blue line corresponds to neutralino dark matter at
the WMAP density. The dark blue shaded region below
the light blue line corresponds to the gravitino LSP at
the WMAP density assuming that there is no nonthermal
contribution to the gravitino density (valid for example in
models where the inflationary reheat temperature is rather
low). Here, the gravitino density is determined from the
relic annihilations of either the neutralino or stau (if be-
low the dotted line) and Ω3/2h

2 = (m3/2/mχ,τ̃1)Ωχ,τ̃1h
2.

However, in regions with a gravitino LSP, there are ad-
ditional constraints from big bang nucleosynthesis (not
considered here) which may impact its viability [31]. This
is in fact a conservative constraint as the gravitino relic
density maybe higher if a large abundance of gravitinos
are produced during reheating after inflation.

As shown previously [14], one observes that an ex-
tended region respecting the WMAP relic density with
a neutralino LSP appears for larger values of A0 as a re-
sult of stau coannihilation [32] as seen in the right panel
of Fig. 1. Indeed, for large values of the trilinear coupling,
the mass of the lighter stau, τ̃1, is lower which pushes the
coannihilation channel to regions of the parameter space
where mχ0

≃ mτ̃1 > m0 = m3/2 . In this case, it is even
possible to satisfy WMAP with a relatively heavy Higgs
(mh & 122 GeV for tanβ & 37). Notice in this case, be-
low the co-annihilation strip, there is a region (as in the
CMSSM) where τ̃1 is the LSP and hence shaded brown. At
still lower m0, the gravitino is once again the LSP with
a τ̃1 being the next to lightest supersymmetric particle
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(NLSP). Note also, that the region excluded by b → sγ
(shaded green) is significantly more important than the
case with small A0. In fact, for A0/m0 = 2, we see that the
excluded region is split. This occurs because BR(b→ sγ)
is too large at small m1/2, falls through the acceptable
range as m1/2 increases, becoming unacceptably small be-
cause of cancellations over a range of m1/2, before rising
towards the Standard Model value at large m1/2.

When the Giudice-Masiero term (11) is included [15],
one can deduce the (GUT) boundary conditions for µ and
B

µ = µ0 + cHm0 , (16)

B0 = A0 −m0 + 2cHm
2
0/µ0 . (17)

Of course the first of these is irrelevant as we still solve
for µ at the weak scale using (15) and µ0 is arbitrary.
However, Eq. (17) now allows one to solve for B at the
weak scale for an arbitrary tanβ, and still satisfy the
GUT scale supergravity boundary condition, thus solv-
ing for cH . Therefore, relaxing the condition between A0

and B0 and considering tanβ as an input, as is done in the
CMSSM, is equivalent to “switching on” the coefficient cH
in Eq. (17). In other words, for a given value of tanβ and
A0, at each point (m1/2,m0) there may exist a single value
of cH respecting Eq. (17). We display the iso-cH contours
in Fig. 2 for A0 = 0 and tanβ = 10 and 40.

The (m1/2,m0) planes shown in Fig. 2 resemble stan-
dard CMSSM planes [6] as recently updated in [33]. The
first remarkable result seen in these figures, is the “natu-
ral” values of cH that one obtains in the region of parame-
ter space of interest: 0.1 . cH . 1. As might be expected,
values of cH become very large at small m0, i.e., in the
gravitino LSP region. While we can forgo the relation be-
tween B0 and tanβ in GM supergravity, we can not escape
the relation m3/2 = m0. Thus for tanβ = 10, as seen in
the left panel of Fig. 2, the WMAP co-annihilation strip
largely falls in the gravitino LSP region. The unmarked
contours of cH between 0.5 and -4 correspond to (0.2, 0.1,
0, -0.1, -0.2, -0.5, -1, -1.5, and -2). The contour for cH = 0
is slightly thicker and notice that this corresponds exactly
to the contour for tanβ = 10 in Fig. 1. For tanβ = 40 as
seen in the right panel of Fig. 2, there is a co-annihilation
strip between m1/2 ≃ 300 − 700 GeV which extends to
Higgs masses up to ∼ 119 GeV. However, here, the values
of cH ∼ 1.5 − 2. The familiar stau co-annihilation region
is limited to relatively low m1/2. Towards the upper left
of this panel, there is a region where there is no consistent
electroweak vacuum and it is shaded (darker) pink. The
thin dark blue strip following that border corresponds to
the focus point region [34].

The parameter plane becomes even more interesting
if A0 6= 0 as shown in Fig. 3 for A0/m0 = 2.5 for the
same two values of tanβ. In each of these panels, we show
regions shaded brown in the upper left corner correspond-
ing to the parameter space with a stop LSP. Though it
is difficult to see, there is a stop co-annihilation [35] strip
running along side of it, however, in the case of tanβ = 40,
this strip is excluded by b → sγ [33]. For tanβ = 10 the
stop co-annihilation strip (with mh ≃ 119 GeV), remains

viable, however, the stau co-annihilation strip, lies pre-
dominantly in the gravitino LSP region.

For tanβ = 40, there exists a region of the parameter
space where the model can fulfill the WMAP constraint
and reach a Higgs mass of 125 GeV for cH ≃ −0.25. We
can easily understand why higher values of the trilinear
coupling A0 leads to smaller values for the parameter cH .
From Eq. (17), for a given value of m0, increasing A0 re-
quires a decrease in cH if one is to conserve the same value
of B at GUT scale (and thus the same value of tanβ). This
is clearly illustrated by comparing Figs. 2 and 3 where,
for example, the point m1/2 = m0 = 1000 GeV needs
cH ≃ 0.6 if A0 = 0 and cH ≃ −0.25 when A0 = 2.5m0.
This property of the dependence of the cH coefficients
will play an important role when we will analyze the case
Min > MGUT .

In Fig. 4, we show analogous planes for tanβ = 55
and A0 = 0 (left) and A0 = 2.0m0 (right). For A0 = 0, all
of the regions with acceptable relic density correspond to
a neutralino LSP. In this case, we see the appearance of
the rapid Higgs annihilation funnel [2,36] where neutrali-
nos annihilate primarily through s-channel heavy Higgs
exchange. As one can see, the funnel lies in an area where
cH < 1.5 and the Higgs mass reaches ∼ 122 GeV. We
again see a region (in the upper left) with no electroweak
symmetry breaking and a focus point strip which tracks it
near the cH = 0.1 contour. For A0 = 2.0m0, the τ̃1 being
even lighter (even tachyonic for lowm0), one finds the cor-
rect relic abundance and mh = 125 GeV for cH = 0.1 (the
unmarked Higgs mass contours in this panel correspond
to 125 and 126 GeV). Notice that there is no gravitino
LSP region for the parameters displayed.

3 Super-GUT Scale Universality

While it is common to assume that the input supersym-
metry breaking scale is equal to the GUT scale, it is quite
plausible that Min may be either below [37] (as in mod-
els with mirage mediation [38]) or above [21, 22, 39–41]
the GUT scale. Here, we will consider the latter. Increas-
ing Min increases the renormalization of the soft masses
which tends in turn to increase the splittings between the
physical sparticle masses [39]. As a consequence, the coan-
nihilation strip is moved to lower values of m1/2 In addi-
tion, the focus-point strip often moves out to very large
values of m0. This feature of super-GUT models is essen-
tial for models such as those described in Ref. [42] in which
gaugino masses (and A-terms) are produced via anoma-
lies while scalar masses remain equal to m3/2 atMin, thus
requiring very large m0.

To realize Min > MGUT , we need to work in the con-
text of a specific GUT. Here, we use the particle content
and the renormalization-group equations (RGEs) of min-
imal SU(5) [39, 43], primarily for simplicity: for a recent
review of this sample model and its compatibility with ex-
periment, see [44]. As this specific super-GUT extension
of the CMSSM was studied extensively in Refs. [21, 25],
we refer the reader there for details of the model.
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Fig. 1. The (m1/2, m0) planes for minimal supergravity model with A0/m0 = 0 (left) and A0/m0 = 2(right). The relic density
is within the WMAP range in the blue strip. The pink region between the black dashed (solid) lines is allowed by gµ−2 at the 1-σ
(2-σ) level. The gravitino is the LSP below the diagonal light blue line and mτ̃1 < mχ below the brown dotted curve. The brown
and green colored regions are excluded by the requirements of a neutral LSP, and by b → sγ, respectively. The contours for mh

are labeled in the figure and are shown as red dot-dashed curves and the contours for tanβ are shown as solid gray curves. The
black dashed curve is the m
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+
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= 104 GeV contour. More details can be found in the text.
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We note here that in our super-GUT framework, we
integrate out all extra multiplets at the scale MGUT , so
the theory below MGUT has the same field content as in
the MSSM. However, this differs from the CMSSM, as the
RGE running above the GUT scale generates a particular
non-universal pattern for MSSM soft terms atMGUT . This
model then also differs from commonly studied NUHM
models [45], where the non-universality is present only in
the Higgs soft masses. Here, gaugino masses as well as
sfermion masses are non-universal at MGUT . The degree
of non-universality will depend on Min as well as GUT-
specific couplings. Furthermore because of the matching
atMGUT of the B-terms (there are two in minimal SU(5)),
the mSUGRA relation between the MSSM A and B-terms
will not hold at MGUT (though an analogous relation at
Min will be valid) and hence the superGUT theory we de-
scribe is (in principle) distinguishable from mSUGRA and
thus have the appearance of a more general SUGRA model
with non-universal soft masses. Thus while the mSUGRA
model we describe is a subset (a one-parameter reduction)
of the CMSSM, mSUGRA and the CMSSM are only part
of the superGUT family in the limit that Min →MGUT .

The model is defined by the superpotential

W5 = µΣ Tr Σ̂2 +
1

6
λ′ Tr Σ̂3 + µHĤ1Ĥ2 + λĤ1Σ̂Ĥ2

+(h10)ij ψ̂iψ̂jĤ2 + (h
5
)ij ψ̂iφ̂jĤ1 , (18)

where φ̂i (ψ̂i) correspond to the 5 (10) representations of

superfields, Σ̂(24), Ĥ1(5) and Ĥ2(5) represent the Higgs
adjoint and five-plets. Here i, j = 1..3 are generation in-
dices and we suppress the SU(5) index structure for brevity.

There are now two µ-parameters, µH and µΣ , as well as
two new couplings, λ and λ′. Results are mainly sensitive
to λ and the ratio of the two couplings. In what follows,
we will fix λ′ = 1.

In the context of GM supergravity, the Kähler poten-
tial can be written as

K = K0 + cHH1H2 +
1

2
cΣ TrΣ2 + h.c. , (19)

where H1,2 are scalar components of the Higgs five-plets
and Σ is the scalar component of the adjoint Higgs. Thus
in principle, we have two extra parameters which can be
adjusted to relate the CMSSM and supergravity boundary
conditions for Min > MGUT .

The breaking SU(5) → SU(3)c × SU(2)L × U(1)Y
arises from the Standard-Model singlet component Σ̂24,
that develops a vev of O(MGUT ),

〈Σ̂〉 = 〈σ̂〉 diag(2, 2, 2,−3,−3). The latter can be decom-
posed as

〈σ̂〉 = 〈σ〉 + θ2〈F24〉, (20)

where σ and F24 are, respectively, the scalar and auxiliary
field components of the superfield σ̂. Note that since SU(5)
is broken at the scale 〈σ̂〉 ∼ MGUT and the supersymme-
try breaking scale is ∼Mweak, the dominant contribution
to the scalar component vev is v24 = 2

√
30µΣ/λ

′ and is
O(MGUT ), while the corresponding contribution to the
auxiliary field is of the order of the weak scale.

Ignoring the couplings to matter fields, the correspond-
ing scalar potential including soft SUSY-breaking lagrangian
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terms is

V (H1,H2, σ) =

∣∣∣∣
∂W5

∂H1

∣∣∣∣
2

+

∣∣∣∣
∂W5

∂H2

∣∣∣∣
2

+

∣∣∣∣
∂W5

∂σ

∣∣∣∣
2

+ (∆µH
2 + 2µH∆µH +m2

H1
)|H1|2

+ (∆µH
2 + 2µH∆µH +m2

H2
)|H2|2

+ (∆µΣ
2 + 2µΣ∆µΣ +m2

Σ)|σ|2

+

[
1

2
bΣσ

2 + bHH1H2 −
1

6
√
30
Aλ′λ′σ3

−1

2

√
6

5
AλλH1H2σ − λ′

2
√
30
∆µHσ|σ|2

−1

2

√
6

5
µΣλH1σ

∗H2 + h.c.

]
, (21)

The additional terms in the Kähler potential (19) intro-
duce new terms in the scalar potential that are of sim-
ilar structure to those coming from the superpotential
µ-terms. Therefore it is convenient to define effective µ
parameters as

µ̃Σ = µΣ +∆µΣ , (22)

such that at the scale Min,

µ̃Σ(Min) = µΣ(Min) + cΣm0 , (23)

and similarly for µ̃H . We also define an effective b = Bµ
term as

b̃Σ = bΣ +∆bΣ , (24)

which at Min is given by

b̃Σ(Min) = bΣ(Min) + 2cΣm
2
0 , (25)

and similarly for b̃H .

Then, at the scale Min, we impose universal SUGRA
boundary conditions

m0 = m
5
= m10 = mH1

= mH2
= mΣ ,

A0 = A
5
= A10 = Aλ = Aλ′ ,

m1/2 = M5 , (26)

where M5 is the SU(5) gaugino mass, and evolve all pa-
rameters toMGUT using the SU(5) RGEs. In addition, we
must impose the SUGRA relation on B-terms,

BH = BΣ = B0 ≡ A0 −m0 . (27)

At the GUT scale, the SU(5) parameters must be matched
to their MSSM counterparts. This matching has been stud-
ied carefully in Ref. [46], and we make use of their results
here. Of interest to us here, are the matching conditions
for the µ- and B-terms.

The MSSM Higgs bilinears µ and B can be expressed
in terms of SU(5) parameters as

µ = µH − 3√
30
λ〈σ〉 = µ̃2 + δµ2,

b ≡ Bµ = bH − 3√
30
λ (Aλ〈σ〉 + 〈F24〉)

= b̃2 + δb2 . (28)

B2 and µ2 (and therefore b2) are the corresponding bilin-
ears of the electroweak doublets inside the five-plets and
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are given by

µ̃2 = µ̃H − 6
λ

λ′
µΣ ,

δµ2 = 6
λ

λ′
(BΣ −Aλ′ −∆µΣ),

b̃2 = b̃H − 6
λ

λ′
µΣ(Aλ −Aλ′ +BΣ)

= BHµ2 +∆bH + 6
λ

λ′
µΣ∆,

δb2 = −6
λ

λ′
[
(BΣ −Aλ′)(BΣ −Aλ) +m2

Σ

+(Aλ −Aλ′ )∆µΣ +∆bΣ] , (29)

where µ2 = µ̃2−∆µH . The quantity ∆ ≡ BH−Aλ−BΣ−
Aλ′ that appears in the third expression of (29) is RGE
invariant (at one loop) and it is equal to zero by universal
boundary conditions (26) and (27). The first of the ex-
pressions in (29) represents the well-known doublet-triplet
fine-tuning which balances the two GUT-scale quantities,
µH and µΣ to obtain the weak-scale µ2.

Note that the MSSM parameters µ and b are fixed at
the weak scale by the minimization of the Higgs poten-
tial as in the CMSSM. These quantities can be run up to
the GUT scale using common MSSM RGEs. While the
couplings λ and λ′ are fixed at the GUT scale, they can
be run up to Min so that the quantities δµ2 and δb2 can
be unambiguously fixed at Min. Both of these depend on
the GM parameter cΣ. With the help of the RGE’s given
below, δµ2 and δb2 can be run down to MGUT . AtMGUT ,
the quantities µ̃2 and b̃2 are computed using expressions
(28) and need to be evolved back to Min. At Min, the

SUGRA boundary conditions for b̃2 allow us to solve for
cH (for a given cΣ) leading to the expression

cH =
b̃2 + (m0 −A0)µ̃2

m0(3m0 −A0)
. (30)

From their expressions (29) we see3 that µ̃2 and b̃2
evolve as µH and bH , respectively, i.e. their RGEs are

dµ̃2

dt
=

1

16π2
µ̃2

[
48h2

10
+ 2h2

5
+

48

5
λ2 − 48

5
g25

]
,

db̃2
dt

=
b̃Σ
16π2

[
48h2

10
+ 2h2

5
+

48

5
λ2 − 48

5
g25

]

+
µ̃2

8π2

[
48A10h

2
10

+ 2A
5
h2
5
+

48

5
Aλλ

2 − 48

5
g25

]
.(31)

On the other hand, ∆µΣ and ∆µΣ are set at Min by (23)
and (25) and need to be evolved down to MGUT . Their

3 The quantity λµΣ = λ′v24 evolves as µH , hence µ2 and b2
evolve as µH and bH , respectively [46]. Quantities µ̃H and b̃H
evolve also as µH and bH , since they are represent the same
terms in the Lagrangian.

RGEs are the same as the ones for µΣ and bΣ , respectively:

d∆µΣ

dt
=

1

8π2
∆µΣ

[
λ2 +

21

20
λ′

2 − 10g25

]
,

d∆bΣ
dt

=
∆bΣ
8π2

[
λ2 +

21

20
λ′

2 − 10g25

]

+
∆µΣ

8π2

[
2Aλλ

2 +
42

20
Aλ′λ′

2
+ 20M5g

2
5

]
. (32)

Other relevant RGE’s can be found in Refs. [21, 25, 39].
We now successively consider the impact of Min >

MGUT in the context of supergravity. We first turn off
the GM terms, which leave us with an mSUGRA model
with Min > MGUT . Next, as in the previous section, we
consider the effect of cH 6= 0, which will already allow us to
break the mSUGRA relation for b2 as seen in Eq. (29) by
the additional term ∆bH . As we will see, in some portions
of the parameter space, cH is rather large and we explore
the possibility that cH can be adjusted by taking cΣ 6= 0.

3.1 cH = 0, cΣ = 0

As noted earlier, imposing the boundary conditions at
Min > MGUT dramatically changes the picture of the
mSUGRA model. In Fig. 5, we show the (m1/2,m0) plane

for mSUGRA with Min = 1017 GeV, A0 = 0, and λ = 0
(left) and λ = 0.1 (right). This should be compared with
Fig. 1 with GUT scale universality. The region where the
mτ̃1 < mχ has effectively disappeared. The region where
the relic density matches the WMAP determination is
present only in the lower left corner of the figure. Once
again, tanβ is solved at each point, and we show contours
of fixed tanβ.

However, as one can see in the right panel of Fig. 5, a
non-zero value for λ, even as small as 0.1, can almost en-
tirely close the mSUGRA parameter space due to the lack
of solutions to the electroweak symmetry breaking condi-
tions at the weak scale. This behavior can be understood
from the b-term. For vanishing A0, b̃2 starts out negative
at Min. The running of the b-term is small because the
gauge and yukawa contributions are opposite and almost
cancel each other. As a result, B < 0 and small values
of tanβ are required to satisfy the EWSB condition (15).
As λ increases, B is driven more negative because of the
increasingly negative contribution from δb2. This leads to
quickly diminishing values of tanβ until the EWSB con-
dition can no longer be satisfied [25]. This conclusion is
amplified if Min is increased further. Since the results are
qualitatively similar, we keep Min fixed at 1017 GeV. For
higher value of λ, there are no solutions to the supergrav-
ity boundary conditions which yield a solution for tanβ.
For λ & 0.5, the entire space (for the parameter range
shown) is closed.

Increasing the value of A0 reopens the parameter space
because it increases the value of b̃2(Min), and, since its
contribution to the RGE between MGUT and Mweak is
negative, it can counterbalance the influence of λ. As seen
in Fig. 6, for A0 = 2m0 the EWSB condition can easily be
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Fig. 5. As in Fig. 1, but for the minimal SU(5) with A0/m0 = 0, Min = 1017 GeV, λ′ = 1, and λ = 0 (left) and λ = 0.1
(right).

satisfied over the entire parameter plane. However, larger
A0 also lowers sfermion masses due to RGE effects and
increased left-right mixing. For λ = 0, as seen in the left
panel of Fig. 6, a region with mτ̃1 < mχ has reappeared,
now to the right of plane, a portion of which is above
the gravitino LSP line, and thus shaded brown. There is
another brown shaded region to the left of the plane, where
mt̃1 < mχ. As in the right panel of Fig. 1, there is also a
large region where the constraint from b→ sγ is relevant.
As expected, values of tanβ and mh are higher relative to
the case with A0 = 0.

When λ = 0.1 as in the right panel of Fig. 6, values
of tanβ are very different demonstrating the dependence
on the ratio λ/λ′ in Eq. (29). In this case, the stop co-
annihilation region is pronounced and there is a region
of good relic density which tracks along side of it with
mh ≈ 119 GeV. As mentioned earlier, larger λ leads to
smaller values of tanβ. This, in turn, lowers the t̃1 mass
so that the excluded stop-LSP region grows larger in the
right panel. Smaller tanβ has the opposite effect on the τ̃1
mass: a smaller tau Yukawa coupling produces a smaller
downward push in the m2

τ̃R
running, and since τ̃1 ≃ τ̃R,

mτ̃1 becomes larger. Hence, the stau-LSP excluded region
disappears in the right panel. For couplings λ & 0.8, we
again lose our ability to solve for tanβ.

As in the case of GUT-scale universality, we can in
principle, restore some of the conclusions found for the
CMSSM with Min > MGUT , by considering GM super-
gravity. In the next section, we will analyze how these dif-
ferent contributions affect the CMSSM parameter space
and determine the required values of cH .

3.2 cH 6= 0, cΣ = 0

Next we show results for Min = 1017 GeV when we allow
cH 6= 0. As in the case of GUT input scale supersymmetry
breaking, with cH 6= 0, we can in principle fix tanβ and
solve for cH for any givenm1/2,m0 and A0. When cΣ = 0,
the expression for δb2 takes its mSUGRA form [46], and
the boundary condition for b2 is once again, b2(Min) =
(A0−m0)µ2(Min)+2cHm

2
0, where µ2(Min) is determined

by running µ2(MGUT ) = µ(MGUT ) − δµ2(MGUT ) up to
Min.

For tanβ = 10, shown in Fig. 7, we see a viable re-
gion for neutralino dark matter only for λ = 0 along the
focus point strip. (The blue strip here lies under the con-
tour for cH = 0.) In fact, this plane resembles that in
Fig. 5, with contours of tanβ being replaced by contours
of cH and a different slope for the Higgs mass contours.
Values of cH are acceptable except at high m1/2 and low
m0. Notice that unlike the case for cH = 0, the param-
eter space does not ‘close’ when λ is increased. In fact,
in the right panel of Fig. 7, we show results for λ = 1,
a value that would not be possible in mSUGRA (or in
the no-scale supergravity [25]). We see that for λ = 1 the
focus point region is pushed to extremely high values of
m0 (in excess of 15 TeV). This is due to the additional
downward push from the trilinear couplings in the Higgs
mass-squared RGEs that makes µ larger [21]. Also val-
ues of cH are significantly higher now: cH > 6 everywhere
across the plane (the gravitino LSP boundary almost co-
incides with the cH = 10 contour in this case).

In Fig. 8, we show results for cH for higher values of
tanβ = 40 and 55 with λ = 0 and A0 = 0. For tanβ = 40,
the parameter plane is similar to that for tanβ = 10,
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with slightly higher values of cH and a more prominent
constraint from b→ sγ. Again, the focus point strip is the
only real viable strip for neutralino dark matter. For the
larger value of tanβ = 55, we see the appearance of the
rapid annihilation funnel with cH ∼ 1 and Higgs masses
up to 122.5 GeV. The focus point strip is now clearly
seen. The effect of increasing λ can be ascertained from
comparing the left and right panels of Fig. 7. For both
tanβ = 40 and 55, the focus point region (and the region

with no electroweak symmetry breaking) will be pushed
beyond the scope of the figure for λ & 0.5 [21], and cH
values will be higher. In fact, in both cases, the contours
for cH will be in roughly the same position as seen in the
right panel of Fig. 7.

Also notice a there is a wispy secondary WMAP com-
patible strip for λ = 0 at m1/2 & 1000 GeV just above
the cH = 1 contour. Here mτ̃1 ≃ mA/2 which enhances
τ̃1 pair annihilation through A and H Higgs bosons in the
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s−channel. That enhancement allows one to overcome the
suppression in stau coannihilation due to large χ− τ̃1 mass
gap and lowers Ωχh

2 to the WMAP range.
As in the case of GUT scale supergravity, going to

higher values of A0/m0 provides solutions with higher
Higgs masses. The case for tanβ = 10 and A0/m0 = 2.0
is shown in Fig. 9. Here again, we have a viable stop co-
annihilation strip, now with relatively high Higgs masses
mh ∼ 124 GeV. For example, for m1/2 ∼ 500 GeV and
m0 = 2500 GeV, mχ ∼ 240 GeV and one can obtain a
neutralino relic density in the WMAP range due to coan-
nihilations with a light stop (mt̃1 ∼ 270 GeV). At this
value of m0, all other sfermions masses are & 1700 GeV
and as a consequence, the contributions to b → sγ and
Bs → µ+µ− are acceptably small. Of course at this value
of m0, there is no way to resolve the gµ − 2 discrepancy.
As seen in the figure mh ∼ 124 GeV and cH = −0.36 at
this particular point.

While we are now free to increase λ as seen in the right
panel of Fig. 9, where λ = 1, we see that the (m1/2,m0)
plane now looks very different. A larger value of λ causes
an increased downward push of the Yukawa terms in the
A10 RGE, resulting in a smaller value of At atMGUT . This
in turn reduces the downward push in m2

t̃R
running below

MGUT through the top Yukawa coupling, resulting in a
larger value at Mweak. Consequently, t̃1 becomes heavier,
for given values of m0 and m1/2, and the stop LSP region
and the stop co-annihilation strip are moved to higher m0

values beyond the limit of the frame plotted. In addition,
as we have seen before, values of cH are now significantly
higher.

The plane for tanβ = 40 is shown in Fig. 10. At first
sight, the left panel with λ = 0, resembles closely the plane
shown in Fig. 6. However, this should not be a surprise as
the mSUGRA solution for tanβ with Min = 1017 GeV
and A0/m0 = 2, is around 40. Indeed, the cH = 0 contour
in Fig. 10 matches the tanβ = 40 contour in Fig. 6. In this
case, there are some regions with neutralino dark matter
along the stau co-annihilation strip with mh ∼ 120 GeV.
For larger λ = 1, the co-annihilation strip is somewhat
diminished, but again, we see that values of cH are now
significantly higher. For still higher values of tanβ with
A0/m0 = 2 and Min = 1017 GeV, we lose the ability to
generate sensible spectra (non-tachyonic or neutral LSPs).
Therefore we do not show the analogous plane for tanβ =
55.

As in the left panel of Fig. 8, there is also a wispy
secondary WMAP compatible strip for λ = 1 at large
m1/2 and m0 ≃ (1200− 1500) GeV due to rapid s-channel
τ̃1 annihilation.

3.3 cH 6= 0, cΣ 6= 0

The potential problem of large values of cH seen in the
previous subsection can in principle be alleviated by turn-
ing on the second GM parameter, cΣ. This allows us to
more easily satisfy the supergravity boundary conditions
for reasonable values of both cH and cΣ .

One of the reasons that solutions for mSUGRA or
no-scale supergravity with Min > MGUT are only ob-
tained when λ/λ′ is small, is the matching of the b-term
in Eq. (28) at MGUT . Since b is dependent on tanβ, and
b2 and δb2 are fixed by boundary conditions, there is little
flexibility in the matching condition. When λ/λ′ is order
1, the contribution from δb2 is significant and matching
at any value of tanβ is not guaranteed. While this prob-
lem is alleviated when cH 6= 0, we still have no guarantee
that a particular solution will result in a reasonable value
of cH . From the definitions in Eq. (29), we see that in
principle, a non-zero cΣ can be used to effectively cancel
other contributions in δb2. That is we can insure that δb2
is small even though λ/λ′ is not. Of course we have no
guarantee that a reasonable value of cΣ can accomplish
this cancellation.

In the left panel of Fig. 11, we have chosen four points
with m1/2 = 1000 GeV and tanβ = 40; with m0 =
200 GeV and 1000 GeV for A0 = 0 and for A0 = 2m0. All
four of the points have relatively high cH when cΣ = 0. As
one can see, the dependence of cH on cΣ depends heav-
ily on the particular point. We can get some idea of what
drives this behavior from Eq. (30). cH is proportional to
µ̃2 which (at the GUT scale) is µ − δµ2. The latter is
linear in cΣm0. When m0 is small, the change in µ̃2 is
moderate and cΣ is determined by the behavior of b̃2/µ̃2

as compared with A0 −m0. This could lead to a positive
or negative slope. For the particular cases shown, we see
a negative slope when A0 = 2m0, and a nearly flat de-
pendence when A0 = 0. In contrast, when m0 is large,
the effect on µ̃2 dominates leading to a positive slope. In
the right panel, we see the relative insensitivity to A0 and
tanβ whenm0 is large. Indeed, in these cases, it is possible
to dial down cH using reasonably small values of cΣ .

4 Conclusions

While often confused in the literature, the CMSSM and
mSUGRA are not equivalent theories nor do they gener-
ate the same low energy phenomenology. The CMSSM is
a four-parameter theory (actually five if you include the
gravitino mass). mSUGRA instead is a three-parameter
theory. It is also well known that the extra degrees of
freedom in the CMSSM permit the theory to yield a more
successful phenomenology, and in particular, it more easily
accommodates the existence of a dark matter candidate
with the correct relic density [14, 47].

There is however a natural bridge between the two the-
ories. By minimally extending the Kähler potential by in-
cluding an additional term of the form given in Eq. (11) [15],
which introduces one new parameter, one can restore many
of the predictions from the CMSSM consistent with a UV
completion based on supergravity. However in this case
(like in mSUGRA), the gravitino mass remains associated
with m0 leaving open the possibility for a gravitino dark
matter candidate. Here, we have shown that not only is
it possible to reformulate mSUGRA in this way, but it
is possible with reasonably small values of the new pa-
rameter, cH . In the case of GUT scale mSUGRA models,
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regions with an acceptable neutralino dark matter den-
sity are found for relatively large values of A0/m0. For
A0/m0 = 2, there is an extended stau co-annihilation strip
with mh ∼ 120 GeV. Therefore, most of the promising
prediction of the CMSSM can be recovered in GM super-
gravity including the possibility of a relatively heavy Higgs
boson, with mass around 125 GeV.

Like the case of no-scale supergravity [25], in mSUGRA
with a superGUT supersymmetry input scale, the extended

running from Min to MGUT makes the phenomenology
more difficult, and it is difficult to find solutions for tanβ.
In essence, δb2 in Eq. (29) is relatively large unless the
ratio λ/λ′ is small. For λ = 0, solutions for tanβ are read-
ily obtained as we saw in Figs. 5 and 6. At low A0/m0,
solutions for tanβ require a very small ratio of the SU(5)
Higgs couplings. At higher A0/m0, we did find solutions
for neutralino dark matter along a stop co-annihilation
strip but this still required relatively low λ/λ′. Once again,
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the difficulty in finding solutions for arbitrary λ/λ′ can, in
principle, be overcome by introducing a GM extension. In
this case, we can add two terms to the Kähler potential as
in Eq. (19). Adding cH alone is sufficient for obtaining so-
lutions for arbitrary tanβ. However, unlike the preceeding
GUT case, here we often find that cH is large (& 1) par-
ticularly when λ/λ′ is large. In some cases, (for example
at large m0), cH can be tuned down by allowing non-zero
cΣ .

Ultimately we hope that it will be experiment that
sheds light on the viability of these CMSSM/mSUGRA
theories. Here we have tried to explicitly construct a UV
completion to the CMSSM consistent with supergravity
in both the case with GUT scale input supersymmetry
breaking and with an input scale above the GUT scale. De-

spite the extra degree of freedom associated with the lat-
ter, the additional running from the input scale to MGUT

presents some phenomenological challenges.
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6 Erratum

In the original version of the paper, there was an ambigu-
ity between the value of µ before and after the shift due
to the Giudice-Masiero (GM) term. Here, we will clarify
the equations which were affected. We define µ0 as the
µ-term in the superpotential defined at the input univer-
sality scale Min. µ(Min) will refer to the µ-term after the
shift induced by the GM contribution to the Kähler poten-
tial also defined at the input scale. Then Eq. (12) becomes

µ(Min) = µ0 + cHm0 . (12)

Similarly, µB(Min) is defined as

µB(Min) = µ0B0 + 2cHm
2
0 , (13)

which replaces Eq. (13). As a consequence, we would find

B(Min) = (A0 −m0)µ0/µ(Min) + 2cHm
2
0/µ(Min) . (14)

This clarification affects the result only in section 2
of the paper. For Min = MGUT , and when the Giudice-
Masiero term (11) is included [15], one can deduce the
(GUT) boundary conditions for µ and B

µ(MGUT ) = µ0 + cHm0 , (16)

B(MGUT ) = (A0 −m0)µ0/µ(MGUT )

+2cHm
2
0/µ(MGUT ) . (17)

This allows us to solve for cH where we obtain an equation
similar to Eq. (30)

cH = (B(MGUT )−A0 +m0)µ(MGUT )/(3m
2
0 −A0m0) .

These changes affect the contours in Figures 2-4. In
Figure 2, with A0 = 0, all contour labels should be multi-
plied by 2/3. In Figure 3, with A0 = 2.5m0, all contours
should be multiplied by 4.0. In Figure 4a, with A0 = 0,
all contour labels should be multiplied by 2/3. Finally, in
Figure 4b, with A0 = 2.0m0, all contour labels should be
multiplied by 2.0.

All results and figures in Sections 3 and 4 remain un-
affected.
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