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The LHC has started to constrain supersymmetry-breaking parameters by setting bounds on possible

colored particles at the weak scale. Moreover, constraints from Higgs physics, flavor physics, the

anomalous magnetic moment of the muon, as well as from searches at LEP and the Tevatron have set

additional bounds on these parameters. Renormalization group invariants provide a very useful way of

representing the allowed parameter space by making a direct connection with the values of these

parameters at the messenger scale. Using a general approach, based on the phenomenological minimal

supersymmetric standard model parametrization of the soft supersymmetry-breaking parameters, we

analyze the current experimental constraints to determine the probability distributions for the renormal-

ization group invariants. As examples of their application, we use these distributions to analyze the

question of gaugino mass unification and to probabilistically determine the parameters of general and

minimal gauge mediation with arbitrary Higgs mass parameters at the messenger scale.

DOI: 10.1103/PhysRevD.86.075025 PACS numbers: 12.60.Jv

I. INTRODUCTION

The Standard Model (SM) provides an excellent de-
scription of all experimentally measured observables at
present. Mass generation relies on the Higgs mechanism,
which is based on the introduction of an elementary scalar
field transforming in the fundamental representation of the
SUð2ÞL group. The vacuum expectation value (vev) of this
scalar field sets the weak scale, which is then proportional
to the magnitude of the square root of the negative squared
mass parameter in the scalar Higgs potential [1,2]. The SM
provides no explanation for the magnitude of this mass
parameter, which is sensitive via radiative corrections to
new physics at high scales.

The minimal supersymmetric extension of the Standard
Model (MSSM) has most of the virtues of the SM [3–5].
Apart from a loop factor, the magnitude of the Higgs mass
parameter is determined by the size of the supersymmetry-
breaking parameters of the third generation squarks. These
also determine the value of the SM-like Higgs mass at
the loop level. Values of the third generation squark masses
of about 1 TeV lead to SM-like Higgs masses in the
115–130 GeV range [6–15]. Hence, recent hints of a
Higgs mass of about 125 GeV are consistent with MSSM
predictions [16].

The supersymmetry-breaking mass parameters depend
on the unknown mechanism of supersymmetry breaking
and on the messenger scale, at which supersymmetry
breaking is transmitted to the observable sector. Recent

experimental bounds from the LHC set strong constraints
on colored particles at the TeV scale, and therefore on the
parameters of minimal models of supersymmetry breaking.
Several works have studied the relationship of the super-

symmetric mass parameters between the messenger scale
and theweak scale [17–32]. It would be very useful to have a
method that allowed us to set bounds on the supersymmetry-
breaking parameters at the messenger scale, independent of
the unknown supersymmetry-breaking scheme and of the
unknown value of the messenger scale. Renormalization
group invariants (RGIs) [33–41] provide such a method.
Determination of the value of the RGIs at the TeV scale
sets their values at the messenger scale. One can then use the
information provided by the RGIs to set constraints on
general classes of models [39,41]. An exhaustive analysis
of the RGIs for different supersymmetry-breaking scenarios
is performed in Ref. [42].
The effects of various pre-LHC and LHC results

on the phenomenological MSSM (pMSSM) parameter
space have been studied in detail in Refs. [21–27]. In this
article, we use the pMSSM parametrization of the soft
supersymmetry-breaking parameters [21] to determine
the current probability distribution of the RGIs at the
TeV scale. We shall compare the situation before and after
constraints from the LHC are imposed.
To illustrate the power of this framework, wewill use the

pMSSM RGI probability distributions to analyze three
particular issues:
(i) possible scale of gaugino mass unification,
(ii) messenger scale parameters in a realization of

general gauge mediation, and*http://theory.fnal.gov
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(iii) messenger scale parameters associated with mini-
mal gauge mediation.

The probabilistic interpretation of the RGIs can be applied
to other quantities of interest in the MSSM using for
example the analysis presented in Ref. [42].

In Sec. II we list the RGIs to be used in this paper,
outlining the methodology to be used in our analyses. We
then compute the RGI probability distributions obtained by
imposing current experimental constraints. In Sec. III we
study the question of gaugino mass unification and the
consistency of the scale of this gaugino mass unification
with experimental constraints. In Sec. IV we look at gen-
eral gauge mediation and determine the probability distri-
bution of the relevant parameters of this model. Section V
discusses the probability distributions for the minimal
gauge mediated parameters. We reserve Sec. VI for our
conclusions. Details about our probability analysis are
given in Appendix A. Appendix B gives the specific defi-
nition of the pMSSM. Appendix C gives the inverted
relationships between the soft masses of the pMSSM and
the RGIs. Appendix D lists these in the case of flavor-blind
models.

II. RG INVARIANTS:
PROBABILISTIC INTERPRETATION

A. RGI-pMSSM basis

There are 14 relevant RGIs, analyzed in Refs. [39,41],
involving the soft supersymmetry-breaking parameters,
which we will use as the basis of our current work.
These are summarized at one-loop accuracy in Table I;
two-loop corrections were studied in Ref. [39] and shown
to be of order of a few percent or less. Moreover, there are 2

RGIs relating only the gauge couplings (Ig2 and Ig3), which

we can use to redefine the other 12 RGIs in terms of just the
soft masses and the scale. These soft masses, ignoring
possible small flavor dependence of the sfermion and
Higgs mass parameters, are given by a total of 17 scalar
masses plus 3 gaugino masses. One can make the addi-
tional well-motivated assumption of degeneracy for the
first and second generation sfermion mass parameters. In
such a case, one is left with 12 scalar masses. Therefore,
the 12 RGIs, which are linearly independent, can be in-
verted to give 12 soft supersymmetry-breaking masses in
terms of these RGIs as a function of 3 given soft masses.
In the pMSSM, apart from the 15 soft supersymmetry-

breaking parameters discussed above, there are 3 soft
supersymmetry-breaking parameters, Af, (f ¼ t, b, �)

denoting the mixing of the left- and right-handed third
generation sfermions, and tan�, the ratio of the Higgs
vevs (or equivalently the soft supersymmetry-breaking
parameter B�). These 19 parameters then give the com-

plete basis for the pMSSM.
The Higgs soft supersymmetry-breaking parameters

may be determined, up to loop corrections, as a function
of the Higgsino mass parameter, �, the CP-odd Higgs
mass, mA, and tan�. The tree-level expressions for � and
mA in terms of mHu

and mHd
are given by

�2 ¼ m2
Hu
tan2��m2

Hd

ð1� tan2�Þ � 1

2
m2

Z; (2.1)

m2
A ¼ ðm2

Hu
�m2

Hd
Þ

cos2�
�m2

Z: (2.2)

These can be inverted to give the Higgs soft
supersymmetry-breaking mass parameters:

TABLE I. One-loop RG invariants in the MSSM.

RGI Definition in terms of soft masses MGMðMÞ GGMðMÞ CMSSMþ NUHMðMÞ
DB13

2ðm2
~Q1
�m2

~Q3
Þ �m2

~u1
þm2

~u3
�m2

~d1
þm2

~d3
0 0 0

DL13
2ðm2

~L1
�m2

~L3
Þ �m2

~e1
þm2

~e3
0 0 0

D�1
3ð3m2

~d1
� 2ðm2

~Q1
�m2

~L1
Þ �m2

~u1
Þ �m2

~e1
0 0 5m2

0

DY13H

m2
~Q1
� 2m2

~u1
þm2

~d1
�m2

~L1
þm2

~e1

� 10
13 ðm2

~Q3
� 2m2

~u3
þm2

~d3
�m2

~L3
þm2

~e3
þm2

Hu
�m2

Hd
Þ � 10

13 ð�u � �dÞ � 10
13 ð�u � �dÞ � 10

13 ð�u � �dÞ

DZ 3ðm2
~d3
�m2

~d1
Þ þ 2ðm2

~L3
�m2

Hd
Þ �2�d �2�d �2�d

IY� ðm2
Hu

�m2
Hd

þP
genðm2

~Q
� 2m2

~u þm2
~d
�m2

~L
þm2

~eÞÞ=g21 ð�u � �dÞ=g21 ð�u � �dÞ=g21 ð�u � �dÞ=g21
IBi

Mi=g
2
i B Bi m1=2=g

2
i

IM1
M2

1 � 33
8 ðm2

~d1
�m2

~u1
�m2

~e1
Þ 38

5 g
4
1B

2 g41ðB2
1 þ 33

10A1Þ m2
1=2 þ 33

8 m
2
0

IM2
M2

2 þ 1
24 ð9ðm2

~d1
�m2

~u1
Þ þ 16m2

~L1
�m2

~e1
Þ 2g42B

2 g42ðB2
2 þ 1

2A2Þ m2
1=2 þ 5

8m
2
0

IM3
M2

3 � 3
16 ð5m2

~d1
þm2

~u1
�m2

~e1
Þ �2g43B

2 g43ðB2
3 � 3

2A3Þ m2
1=2 � 15

16m
2
0

Ig2 1=g21 � 33=ð5g22Þ � �10:9 � �10:9 � �10:9

Ig3 1=g21 þ 11=ð5g23Þ � 6:2 � 6:2 � 6:2
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m2
Hu

¼ 1

2
½ð1þ cos2�Þm2

A þm2
Z cos2�� 2�2�; (2.3)

m2
Hd

¼ 1

2
½ð1� cos2�Þm2

A �m2
Z cos2�� 2�2�: (2.4)

Using the above relations, one can define a 1-to-1 cor-
respondence between the 19 pMSSM parameters and the
12 RGIs, complemented by �, mA, tan�, the 3 mixing
parameters At, Ab, and A� and one third generation squark

mass parameter, for instance mQ3
. The expressions for the

soft masses in terms of the RGIs are given in Appendix C.

B. Methodology

In Ref. [25], the probability distributions of the 19
pMSSM parameters were computed, analyzing the differ-
ences between the results for these distributions consider-
ing some pre-LHC measurements (listed in Table II)
and after including various 1 fb�1 LHC results (listed in

TABLE II. The pre-LHC experimental results that are the basis of our pMSSM parameter scan using Markov Chain Monte Carlo
(MCMC) sampling. We reweight a posteriori with the limit BRðBs ! ��Þ � 1:08� 10�8 at 95% C.L. [43]. However, this hardly has
any effect. In evaluating the Higgs mass limit, we apply a Gauss-distributed theoretical uncertainty with � ¼ 1:5 GeV to the mh

computed by SoftSUSY.

Observable Experimental result Likelihood function

i �i Di LðDij�iÞ
1 BRðb ! s�Þ ð3:55� 0:34Þ � 10�4 [44,45] Gaussian

2 BRðBs ! ��Þ � 4:7� 10�8 [46] 1=ð1þ expð�2�D2

0:01D2
ÞÞ

3 RðBu ! �	Þ 1:66� 0:54 [46] Gaussian

4 �a� ð28:7� 8:0Þ � 10�10½eþe�� [47] Weighted Gaussian average

ð19:5� 8:3Þ � 10�10½�þ��� [47]
5 mt 173:3� 1:1 GeV [48] Gaussian

6 mbðmbÞ 4:19þ0:18
�0:06 GeV [46] Two-sided Gaussian

7 �sðMZÞ 0:1176� 0:002 [49] Gaussian

LEP and Tevatron mh sampled from Gaussðmh; 1:5Þ
8 mh (HiggsBounds [50]) L8 ¼ 1 if allowed.

L8 ¼ 10�9 if excluded.

9 sparticle LEP L9 ¼ 1 if allowed

masses Neutral LSP (MicrOMEGAs [51]) L9 ¼ 10�9 if excluded

TABLE III. LHC measurements used in the current study. The �T variable is effective in suppressing background from light-quark
QCD. Same sign (SS) 2‘ and opposite sign (OS) 2‘ denote same-sign and opposite-sign dileptons, respectively. The �T [52], SS [53],
and OS [54] results were published by the CMS Collaboration. We reweight a posteriori with the limit BRðBs ! ��Þ � 4:5� 10�9 at
95% C.L. [55]. This has an effect only on DZ, which depends on the Higgs mass parameter m2

Hd
. We also update the Higgs bounds,

imposing the constraints from the CMS diphoton searches [56], which do not have a strong effect on the probability distribution of the
soft supersymmetry-breaking parameters.

j
Analysis and search region

(values in GeV)

Observed event

count ðNjÞ
Data-driven SM background

estimate (Bj � �Bj)

1 �T hadronic, 275 � HT < 325 782 787:4þ31:5
�22:3

2 �T hadronic, 325 � HT < 375 321 310:4þ8:4
�12:4

3 �T hadronic, 375 � HT < 475 196 202:1þ8:6
�9:4

4 �T hadronic, 475 � HT < 575 62 60:4þ4:2
�3:0

5 �T hadronic, 575 � HT < 675 21 20:3þ1:8
�1:1

6 �T hadronic, 675 � HT < 775 6 7:7þ0:8
�0:5

7 �T hadronic, 775 � HT < 875 3 3:2þ0:4
�0:2

8 �T hadronic, 875 � HT 1 2:8þ0:4
�0:2

9 SS 2‘, HT > 400, 6ET > 120 1 2:3� 1:2
10 OS 2‘, HT > 300, 6ET > 275 8 4:2� 1:3

Observable Experimental result Likelihood function

11 BRðBs ! ��Þ � 4:5� 10�9 [55] 1=ð1þ expð�11�D11

0:01D11
ÞÞ

12 mh
�ðH!��Þ

�ðH!��ÞSM [56] L12 ¼ 1 if allowed.

L12 ¼ 10�9 if excluded.
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Table III). We refer the reader to Ref. [25] for specific
details about the likelihood analysis. We shall use the set of
pMSSM points and their corresponding pre-LHC and LHC
likelihoods from Ref. [25] and obtain the probability dis-
tributions for the RGIs in Table I projected to 5 fb�1 of
LHC data.

In Ref. [25], a flat prior for the all the soft
supersymmetry-breaking parameters was used. The scalar
masses were varied between 0 and 3 TeV. The gaugino
masses and the� parameter were scanned between�3 and
3 TeV, and the mixing parameters, Af, were scanned from

�7 to 7 TeV. The range of tan� considered was 2–60.
The RGIs, are functions of the soft mass parameters and

therefore a flat prior for the later does not imply a flat prior
for the RGIs. In particular, even in the simplest cases, the
fact that the parameters have boundary values imply that
certain regions are preferred. As an example, consider the
subtraction of two mass-squared parameters,

fða; bÞ ¼ m2
a �m2

b: (2.5)

If both ma and mb have a uniform distribution between 0
and 3 TeV, it is clear that the probability of fða; bÞ ’
�ð3 TeVÞ2 will be much smaller than the probability of
fða; bÞ ’ 0. This is because in the former case one of the
mass parameters has to be equal to 0 while the other is
3 TeV, while the later situation comprises of all cases in
which ma ’ mb, independent of their value. Therefore, in
order to determine the probability distributions of the
invariants (and other functions considered later), one should
normalize them such that they can be compared to a flat
prior for the functions under consideration and not for the
masses. In order to do this, we have rescaled the experimen-
tally weighted probability distributions of the RGIs by the
probability distributions for these quantities obtained by
varying the mass parameters with a flat uniform distribution
in the region originally scanned. We will refer to the later
distributions as the ‘‘flat unweighted’’ distributions. The
details of the exact procedure are given in Appendix A.

The results are shown in Figs. 1 and 2. The shaded green
region represents the flat unweighted distribution for the
RGI being considered. For the IBi

s, which depend only on,

and are linearly proportional to, the gaugino masses, this
distribution is flat (apart from a small variation with the
gauge couplings). However, for the other RGIs, these dis-
tributions acquire definite features. Thegreen line represents
the probability distribution obtained considering only the
pre-LHC constraints listed in Table II. These depend heavily
on the constraints on theweak eigenstates coming fromLEP
and (g� � 2), the bounds on theCP-odd and charged Higgs

masses, and third generation masses coming from the
BRðb ! s�Þ and the LEP/Tevatron Higgs results. The red
line, instead, represents the probability distributions
obtained after the LHC results are considered (Table III).

The details on the computation of the final resultant
distribution we label as ‘‘pð
jExpÞ Reweighted’’ are given

explicitly in Appendix A. However, the method can be
simply understood by noting that, as discussed in
Appendix A, the ratio of the difference of any 2 probabil-
ities with the flat distribution, ðp1 � pfÞ=ðp2 � pfÞ, is
preserved when the scan range on the original masses is
changed. Therefore, we first subtract the probability distri-
bution determined after the LHC measurements (red line)
from the one obtained with the flat masses prior (shaded
green) and then shift this distribution by the minimum,
setting the minimum at zero. Once this is done, we rescale
the distribution such that the total probability is 1. This
then gives the dashed black line denoting our final resultant
distribution. This distribution is flat in regions not scanned
or impacted by experiment and enhances and reflects the
actual effect of the experiments on the RGIs. Larger values
of this distribution highlight the regions where experimen-
tal input has increased the likelihood and values less than
the flat probability show regions where experiments
disfavor model space.
Because of this method of rescaling and subtracting the

probabilities, one has to be careful when using these
distributions to calculate resultant quantities of interest
(as will be done, for example, when calculating product
probabilities). One needs to convert the distribution back to
a true probability via the scale factor SF (labeled ‘‘SF’’ in
plots) defined in Appendix A:

pð
jpost-LHCÞ ¼ pð
jFlatÞ þ 1

SF
½pð
jExpÞReweighted

� pð
jFlatÞ�; (2.6)

where pð
jFlatÞ ¼ 1=ðno: binsÞ. Unless otherwise noted,
no: bins ¼ 100 in all plots, implying pð
jFlatÞ ¼ 0:01.

C. Results

Here we will discuss the probability distributions pre-
sented in Figs. 1 and 2 for the different RG invariants. We
do not analyze DY13H

and DY�
since these two depend on

almost all the soft masses, and the current experimental
bounds on these combinations are too weak to show an
effect on the probability distributions.
The first three distributions displayed in Fig. 1 are for the

three IBi
which are equal to the gaugino masses divided by

the square of the corresponding gauge coupling, Mi=g
2
i .

The LEP constraints on charginos, sleptons and gluinos,
together with the requirement of a neutral particle to be the
lightest supersymmetric one, lead to a preference towards
low values of the bino mass,M1, increasing the probability
for small IB1

. The LHC modifies this distribution indi-

rectly, through the updated bounds on the gluino and
squark masses. This is due to the requirement of having a
neutral particle as the lightest supersymmetric particle
(LSP): When at least one of the squarks and/or the gluino
is light, one neutralino or a sneutrino is forced to be even
lighter. Of all the neutral particles, the bino is the only one
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that is not related to the mass of other charged particles and
therefore is not pushed to larger values. Hence, the bino
can be very light increasing its probability of being the
LSP. For heavier squarks and gluinos, the neutral particles
can be heavier and consequently the bino mass probability
distribution moves to larger values. Regarding IB2

, the LEP

constraints on chargino masses, together with the bounds
on (g� � 2), restrict small values ofM2, while leading to a

preference for values of M2 near the weak scale. The LHC
does not significantly modify this constraint. Sincewe have

not implemented the Tevatron bounds on the squark and
gluino masses, the pre-LHC constraints on IB3

are domi-

nated by the indirect effect of requiring that a gluino cannot
be the LSP, which therefore disfavors the region of small
values of this quantity. The LHC SUSY searches further
constrain values of M3 up to �1 TeV, which is clearly
shown in the IB3

distribution.

Looking at IM1
, also displayed in Fig. 1, the lower bound

on the slepton and squark masses from LEP disfavor the
lowest values of this RGI. The LHC further strengthens this
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FIG. 1 (color online). Distribution of the RGIs before and after the LHC constraints are added (green (light gray) and red (dark gray)
lines), flat distribution (shaded green (gray)), and subtracted probability distribution (dashed black line).
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trend by increasing the bounds on the squark masses. IM2
is

strongly shifted to lower values by (g� � 2), which leads

to a preference towards small values of M2 and the left-
handed slepton masses. The LHC data does not modify this
trend in any significant way. Finally, for IM3

, the previously

discussed bounds on the gluino (and similar bounds on the
squark) masses, push them to larger values, leading to a
preference towards nonzero values of this RGI. The LHC,
with significantly larger bounds on the gluino mass, leads
to a further preference towards larger values of this RGI.
The asymmetry between positive and negative values
comes from the fact that the gluino has a larger cross
section and is constrained to be heavy even in the case in
which only the third generation squarks are lighter than the
gluinos. Individual squark species, on the other hand, have
lower cross sections and therefore have a higher probabil-
ity of being lighter in the pMSSM [25].

In order to understand the behavior of the other four
invariants displayed in Fig. 2, it is convenient to analyze
the results of Ref. [25]. The bound on the Higgs mass leads
to a preference for larger values of the third generation
masses, beyond the bounds on the first and second genera-
tion masses obtained at the Tevatron. Since the Higgs mass
bounds are approximately symmetric in their dependence

on mQ3
and mu3 and the negative weight of mQ3

on DB13
is

twice as large as the positive one of mu3 , we see a prefer-

ence towards negative values of DB13
. The LHC SUSY

searches have not yet changed this tendency in a significant
way. Regarding DL13

, the preference towards small values

of (g� � 2) lead to a preference towards small left-handed

second generation sleptons, beyond the LEP constraints,
and therefore towards lower values of this RGI. The LHC,
again, does not have a strong impact on this distribution.
Lower values of the left-handed slepton masses also affect
the pre-LHC distribution ofD�1

, pushing it to lower values.

At the LHC, there is a somewhat stronger constraint on the
left-handed squarks with respect to the right-handed ones,
leading to slightly lower values of D�1

. Finally, DZ is

strongly dominated by the bounds on the CP-odd Higgs
mass coming from Bs ! ��, which push m2

Hd
to larger

values and DZ to lower ones.

III. GAUGINO MASS UNIFICATION

Gaugino mass unification is a common feature of models
in which supersymmetry breaking occurs at scales larger
than the grand unified theory (GUT) scale. In such a case,
up to threshold corrections, one should expect that due to
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FIG. 2 (color online). Distribution of the RGIs before and after the LHC constraints are added (green (light gray) and red (dark gray)
lines), flat distribution (shaded green (gray)), and subtracted probability distribution (dashed black line).
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the extended gauge structure, the gaugino masses associ-
ated with the SUð3Þc, SUð2ÞL, and Uð1ÞY unify at the
GUT scale.

At scales lower than the GUT scale, however, threshold
corrections can be large and could lead to quite different
values of the three gaugino masses. This happens, in
particular, if the gaugino masses receive large contribu-
tions induced by gravitational interactions governed by the
scale anomaly. These contributions are proportional to the
� function coefficients of the respective gauge couplings.

Further contributions to the gaugino masses may come
from gauge mediation, induced by messengers charged
under the SM gauge groups and with direct coupling to
the supersymmetry-breaking sector. In minimal models,
the gauge mediated gaugino mass contributions at the
messenger mass scale are proportional to the value of the
square of the gauge couplings at the same scale.

The simplest contributions to the gaugino masses at the
messenger scale are then given by

Mi ¼ A�ig
2
i þ Bg2i 
ðM2

mess �Q2Þ þ M1=2

g2GUT
g2i ; (3.1)

where the coefficients A, B, and M1=2 parametrize the

anomaly mediated, minimal gauge mediated, and minimal
SUGRAmediated contributions to the gaugino masses. We
have inserted a 
 function to denote the fact that the gauge
mediated contribution is only relevant at energy scales, Q,
below the messenger mass scale, Mmess.

The condition of gaugino mass unification can bewritten
in terms of RGIs. Indeed, assuming that the gaugino
masses unify at some scale, Munif ,

�2IB1
� �1IB2

�2

g2
1

� �1

g2
2

¼ Mg;
�3IB1

� �1IB3

�3

g2
1

� �1

g2
3

¼ Mg; (3.2)

where �i ¼ f33=5; 1;�3g for i ¼ f1; 2; 3g, gi are the gauge
couplings at the gaugino mass unification scale and Mg is

the common gaugino mass. The denominators in the above
equation are nothing but Ig2 and �3Ig3 , respectively. The

value of the gauge couplings at the gaugino unification
scale may be obtained by just dividing the above expres-
sions by the corresponding IBi

invariant. In particular [39],

g21ðMunifÞ ¼
�2 � �1IB2

=IB1

Ig2
’ �2 � �1IB2

=IB1

2ð�2 � �1Þ ;

g21ðMunifÞ ¼
�3 � �1IB3

=IB1

�3Ig3
’ �3 � �1IB3

=IB1

2ð�3 � �1Þ ;

(3.3)

where we have used the fact that g2GUT ’ 1=2. From the

equality of the first and second line in Eq. (3.3), one can see
that gaugino mass unification requires that

ð�3��2ÞIB1
�ð�3��1ÞIB2

þð�2��1ÞIB3
¼0; (3.4)

or, inserting the numerical values of the �i coefficients
[39],

12IB2
� 5IB1

� 7IB3
¼ 0: (3.5)

Using the expression for the gaugino mass, Eq. (3.1), we
get that at the weak scale,

IBi
¼ A�i þ ðBþM1=2=g

2
GUTÞ ¼ A�i þ C; (3.6)

where we have joined the scale and gauge mediated con-
tributions, C � ðBþM1=2=g

2
GUTÞ, since they cannot be

distinguished at low energies. Note that this is similar to
the case of Mirage mediation [57–59]. Observe that the
condition given in Eq. (3.4) is always satisfied in this case.
Interestingly enough, inserting Eq. (3.6) in both the

expressions for g21ðMunifÞ in Eq. (3.3), the same equation
is obtained, giving the necessary condition for the unifica-
tion of gaugino masses at some scale,

g21ðMunifÞ ’ 1

2
� C

Cþ A�1

: (3.7)

In addition, the above expression is independent of �2;3.

In general, for positive values of A and C, depending on
which supersymmetry-breaking mechanism is dominant,
the apparent gaugino unification scale can vary from the
infrared to the GUT scale. In order for gaugino mass
unification to take place at a physical scale, however,
we need that 0:5 	 g21ðMunifÞ 	 0:2, which sets interest-
ing constraints on the values of A and C. For A ¼ 0, one
gets that unification is at the GUT scale. For C ¼ 0,
instead, one obtains that unification occurs for
g21ðMunifÞ ’ 0, which is an unphysical value, and for
which IB1

diverges unless the gaugino mass also vanishes.

Let us remark, however, that the unification of gaugino
masses obtained by extrapolating the RG evolution into
unphysical scale values, at which the physical spectrum is
not the MSSM one, could still say something relevant
about the supersymmetry-breaking mechanism. For
example, the unphysical g21ðMunifÞ ’ 0 for C ¼ 0 is the
expected apparent unification value in anomaly mediation
scenarios. It is therefore very interesting to use the above
expressions, Eq. (3.3), to check the consistency of
gaugino mass unification, and to obtain information about
the scale at which it may occur.
Let us elaborate further on the above point. Although we

computed the gaugino unification scale by using g21, we
could have used any other gauge coupling, and the condi-
tion in Eq. (3.7) would be the same, with g21 and �1

replaced by the corresponding g2i and �i. The fact that
the conditions one obtains are consistent with each other
can be obtained by rewriting Eq. (3.7) for any g2i , in the
following way:

1

g2i ðMunifÞ
¼ 2

�
1þ A

C
�i

�
: (3.8)

This has the correct form for the evolution equation for the
gauge couplings from the scale MGUT, where 1=g

2
i ¼ 2, to

other energies, provided we interpret
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log

�
MGUT

Munif

�
¼ 16�2 A

C
; (3.9)

or, equivalently

Munif ¼ MGUT exp

�
�16�2 A

C

�
;

’ MGUT exp

�
� 8�2

�i

�
1

g2i ðMunifÞ
� 2

��
: (3.10)

Since �3 is negative, for large values of A=C, the effective
scale, Qunif , may be below the QCD Landau pole and
therefore g23, from Eq. (3.8) becomes negative, and so

clearly unphysical. Negative values of g21;2 may also be

obtained for negative values of A or C.
In order to analyze the experimental impact on the scale

of gaugino mass unification, we have studied the two
possible independent determinations of g21ðMunifÞ coming

from the ratios IB2
=IB1

and IB3
=IB1

, Eq. (3.3), respectively.

If gaugino masses unify at a certain scale, those two
determinations should lead to the same value of
g21ðMunifÞ. Since the unification scale is not necessarily

the messenger scale, we have only restricted the value of
the gauge coupling, g21ðMunifÞ, to lie between 0 and 1.
Figure 3 represents the probability distributions of

g21ðMunifÞ obtained by the two ways described above
[Eq. (3.3)]. The green, red, and black curves and the shaded
green area have the same interpretation as the one in Figs. 1
and 2. The results are very interesting, since values of the
gauge coupling of about its weak scale value g21ðMunifÞ ’
0:2 are clearly disfavored, while unification at the GUT
scale g21ðMunifÞ ’ 0:5 or at values consistent with anomaly

mediation g21ðMunifÞ ’ 0 are somewhat preferred.
Figure 4 shows a two-dimensional representation of

these results, comparing the results for g21ðMunifÞ obtained
by the two different equations. The left panel shows the
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1B/I

2B)(1 - (33/5)(I
g2

) = (1/I
unif

(M2
1

g
0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 (GeV)unifM  (GeV)unifM
3

10
9

10 1210 15
10

18
10

20
10 3

10
9

10 1210 15
10

18
10

20
10

 | Flat Unweighted)θp(

 | pre-LHC)θp(

 | post-LHC)θp(

 | Exp.) Reweightedθp(

SF=0.39

))
1B/I

3B)(1 + (11/5)(Ig3) = (1/Iunif(M2
1

g
0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08
 | Flat Unweighted)θp(

 | pre-LHC)θp(

 | post-LHC)θp(

 | Exp.) Reweightedθp(

SF=1

FIG. 3 (color online). Distributions of the value of the gauge coupling g21 at the gaugino mass unification scale before and after LHC
constraints (green (light gray) and red (dark gray) lines), flat distribution (shaded green (gray)), and subtracted probability distribution
(dashed black line). No: bins ¼ 50 for these plots, implying pð
jFlatÞ ¼ 0:02.
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results after LHC constraints are used, and the right panel
shows the difference between pre- and post-LHC. Dark
(light) blue is strongly (weakly) disfavored, while the green
regions provide an acceptable description. Yellow (red) is
weakly (strongly) preferred. The black diagonal line shows
the (equal) values that should be obtained for gaugino mass
unification to be realized. From the right panel in this
figure, we see that the LHC has had a pretty significant
effect on the expectation of Munif . We clearly see that
scales of order 108–1015 GeV have become more favored,
whereas there is a clear depletion of probability near the
weak scale.

Figure 5 shows the final product probability distribution
for g21ðMunifÞ of the two distributions in Fig. 3, demanding

that both expressions in Eq. (3.3) agree. The result, not
surprisingly, leads to a current preference towards small
values of g21ðMunifÞ or values of g21ðMunifÞ * 0:4.

IV. GENERAL GAUGE MEDIATION

Gauge mediated SUSY breaking is generically defined
as a model in which supersymmetry breaking is trans-
mitted to the observable sector via gauge interactions,
leading therefore to flavor-blind parameters [60–65]. In
Ref. [66] general gauge mediation (GGM) was defined as
any theory in which all SUSY-breaking effects decouple
from the MSSM in the limit of vanishing MSSM gauge
couplings.

The soft sfermion masses in GGM can be parametrized
by a set of three parameters, Ai,

m2
~f
¼ X3

i¼1

g4i CiðfÞAi; (4.1)

where the sum runs over the gauge groups of the MSSM.
Here CiðfÞ is the quadratic Casimir of the superfield f
under the gauge group i, which, for a fundamental repre-
sentation of SUðNÞ takes the value CiðfÞ ¼ ðN2 � 1Þ=2N,
while for Uð1Þ, C1ðfÞ ¼ Y2=4. Observe that we are im-
plicitly working with a normalization of the gauge cou-
plings consistent with their unification at the GUT scale, so
g21 ¼ 5g21ðSMÞ=3, and Y2=4 ¼ 3=5� ðQ� T3Þ2.
The gaugino masses are expressed in terms of three

more parameters, Bi, given by

Mi ¼ g2i Bi: (4.2)

In order to generate a Higgsino mass parameter, �, and
soft term, B�, of the correct order, gauge mediation may

need to be supplemented by additional SUSY-breaking
contributions in the Higgs sector. Therefore, we assume
that in the case of the soft Higgs masses, the expression
given in Eq. (4.1) may be modified,

m2
Hu

¼ m2
~L3
þ �u; m2

Hd
¼ m2

~L3
þ �d: (4.3)

Because of flavor independence,DB13
andDL13

vanish in

GGM. Moreover, the RGI D�1
also vanishes, as can be

easily checked using its definition in Table I. The invariant
DZ presents a simple dependence on the mass parameters
and provides information on �d. Therefore, the probability
distribution for �d in GGM can be read directly from the
one of DZ presented before in Fig. 2. Of the other RGIs,
there are six that probe the high-scale mass parameters of
pure GGM, namely, the IBi

s and the IMi
s. We shall mostly

concentrate on those invariants in this section.
As mentioned in Sec. II C, we exclude the other two

invariants, IY�
and DY13H

as they depend on too many

parameters, and currently it is difficult to obtain mean-
ingful information from them. Observe that, eventually, the
invariantsDY13H

and IY� can be used to determine the gauge

couplings at the high scale and also probe possible non-
universal corrections to the Higgs soft masses [39].
As emphasized above, we shall concentrate on the RGIs

with explicit dependence on the gaugino mass parameters
to extract information about the Ai and Bi. From the IBi

we

immediately obtain

Bi ¼ IBi
; (4.4)

and these distributions can be seen in Fig. 1.
In order to obtain information on the Ai, both IBi

and IMi

must be used:

A1 ¼ 10

33

�
IM1

g41
� I2B1

�
; A2 ¼ 2

�
IM2

g42
� I2B2

�
;

A3 ¼ � 2

3

�
IM3

g43
� I2B3

�
; (4.5)
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fication scale, demanding that both determinations of g21 shown

in Fig. 3 agree and apparent gaugino mass unification takes place
at the scale Munif . The number of bins is taken to be 50 for this
plot, implying pð
jFlatÞ ¼ 0:02.
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where the gi are the gauge couplings at the messenger
scale, M.

The probability distributions for the Ai for three different
values of the messenger scale are given in Fig. 6. The
shaded green area as well as the green, red, and black lines
have the same interpretation as in Figs. 1 and 2.

From Fig. 6, it is clear that positive and sizable values of
A1 are preferred, independent of the messenger scale. On
the other hand, values of A2 close to zero are somewhat
favored, although sizable values are equally likely. Finally,
A3 can be small and negative, but positive and sizable
values are equally or more likely than the negative ones.
One can check that if the values of the A3 are the ones
associated with the regions of maximal likelihood, which

correspond to negative values of this parameter, and
assume A2 to be small, the boundary condition for the
left-handed squarks square mass parameters would be
negative, unless the largest values of A1 at each messenger
scale are selected. These boundary conditions, together
with the ones for the Bi, would then lead to somewhat light
left-handed sfermions compared to the right-handed ones.

V. MINIMAL GAUGE MEDIATION

Minimal gauge mediation (MGM) is a particular gauge
mediated model in which the soft supersymmetry-breaking
parameters are obtained through the interaction of messen-
ger particles that transform under the 5þ �5 representation
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FIG. 6 (color online). Distribution of the GGM parameters Ai before and after the LHC constraints are added (green (light gray) and
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of SUð5Þ. The general assumption is that these messengers
acquire mass via their interaction with a singlet superfield.
When this superfield acquires a vev, it fixes the messenger
scale, and its F term, FS, fixes the scale of soft
supersymmetry-breaking parameters through the identity

Mi ¼ g2i
16�2

FS

S
: (5.1)

Hence in minimal gauge mediated models

Bi ¼ B ¼ FS

16�2S
; (5.2)

with i ¼ 1, 2, 3. Moreover, the scalar masses at the mes-
senger scale are obtained at the two-loop level and acquire
the value

m2
~f
¼ X3

i¼1

2
g4i ðMÞ
ð16�2Þ2 CiðfÞF

2
S

S2
: (5.3)

Hence, in MGM

Ai ¼ A ¼ 2F2
S

ð16�2SÞ2 ¼ 2B2: (5.4)

Therefore, minimal gauge mediation is a model with just
two parameters, B and the messenger scale, M (g2 and g3
can be written in terms of g1 through the RGIs Ig2 and Ig3 ,

which is then just a function of M).
In order to determine the probability distribution for the

parameters B and g21ðMÞ, we use the ones of the IMi
s and

the IBi
s. From Table I, we see that the IMi

must fulfill the

following relations:

IM1
� 38g41ðMÞB2

5
¼ 0; IM2

� 2g42ðMÞB2 ¼ 0;

IM3
þ 2g43ðMÞB2 ¼ 0; (5.5)

which together with the equations IBi
¼ B define a system

of 6 equations with only 2 unknowns. For every value of IBi

one can obtain a value of B that leads, from the 3 equations
in Eq. (5.5), to 9 independent values of g21ðMÞ. In addition,
these 3 equation lead to 3 different sets of simultaneous
equations that can be solved for B and g21ðMÞ indepen-
dently. This leads to another 6 solutions for B and 3 for
g21ðMÞ, leading to a total of 9 solutions for B and 12 for
g21ðMÞ.

The set of 9 solutions that we use to compute the
probability distributions for B are

B1 ¼ IB1
; (5.6)

B2 ¼ IB2
; (5.7)

B3 ¼ IB3
; (5.8)

B4;5 ¼ 
 5Ig2ð33IM1

ffiffiffiffiffiffiffi
IM2

p þ ffiffiffiffiffiffi
95

p ffiffiffiffiffiffiffi
IM1

p
IM2

Þffiffiffi
2

p ð1089IM1
� 95IM2

Þ ; (5.9)

B6;7 ¼ 
 5Ig3ð11IM1

ffiffiffiffiffiffiffiffiffiffiffiffi�IM3

p þ ffiffiffiffiffiffi
95

p ffiffiffiffiffiffiffi
IM1

p
IM3

Þffiffiffi
2

p ð121IM1
þ 95IM3

Þ ; (5.10)

B8;9 ¼ 
 5ðIg2 � Ig3ÞIM2

ffiffiffiffiffiffiffiffiffiffiffiffi�IM3

p
11

ffiffiffi
2

p ðIM2
þ 3

ffiffiffiffiffiffiffi
IM2

p ffiffiffiffiffiffiffiffiffiffiffiffi�IM3

p Þ : (5.11)

The corresponding set of 12 solutions for the gauge
coupling at the messenger scale, g21ðMÞ, are instead
given by

g211 ¼
ð�33

ffiffiffiffiffiffiffi
IM1

p þ ffiffiffiffiffiffi
95

p ffiffiffiffiffiffiffi
IM2

p Þ
Ig2

ffiffiffiffiffiffiffiffiffiffiffiffi
95IM2

p ; (5.12)

g212 ¼
ð�11

ffiffiffiffiffiffiffi
IM1

p � ffiffiffiffiffiffi
95

p ffiffiffiffiffiffiffiffiffiffiffiffi�IM3

p Þ
Ig3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�95IM3

p ; (5.13)
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FIG. 7 (color online). Final product distribution of the MGM
parameters B and g21ðMÞ.
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g213 ¼
ð ffiffiffiffiffiffiffi
IM2

p þ 3
ffiffiffiffiffiffiffiffiffiffiffiffi�IM3

p Þ
ðIg2

ffiffiffiffiffiffiffi
IM2

p þ 3Ig3
ffiffiffiffiffiffiffiffiffiffiffiffi�IM3

p Þ ; (5.14)

g214 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
5IM1

38I2B1

vuut ; (5.15)

g215 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
5IM1

38I2B2

vuut ; (5.16)

g216 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
5IM1

38I2B3

vuut ; (5.17)

g217 ¼
5

ffiffiffiffiffiffiffi
IM2

p
ð33 ffiffiffi

2
p

IB1
þ 5Ig2

ffiffiffiffiffiffiffi
IM2

p Þ ; (5.18)

g218 ¼
5

ffiffiffiffiffiffiffi
IM2

p
ð33 ffiffiffi

2
p

IB2
þ 5Ig2

ffiffiffiffiffiffiffi
IM2

p Þ ; (5.19)

g219 ¼
5

ffiffiffiffiffiffiffi
IM2

p
ð33 ffiffiffi

2
p

IB3
þ 5Ig2

ffiffiffiffiffiffiffi
IM2

p Þ ; (5.20)

g2110 ¼
5

ffiffiffiffiffiffiffiffiffiffiffiffi�IM3

p
ð11 ffiffiffi

2
p

IB1
� 5Ig3

ffiffiffiffiffiffiffiffiffiffiffiffi�IM3

p Þ ; (5.21)
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FIG. 8 (color online). Distribution for the MGM parameter B before and after the LHC constraints are added (green (light gray) and
red (dark gray) lines), flat distribution (shaded green (gray)) and subtracted probability distribution (dashed black line). The different
sets are associated with different probability distributions listed in Eq. (5.6).
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g2111 ¼
5

ffiffiffiffiffiffiffiffiffiffiffiffi�IM3

p
ð11 ffiffiffi

2
p

IB2
� 5Ig3

ffiffiffiffiffiffiffiffiffiffiffiffi�IM3

p Þ ; (5.22)

g2112 ¼
5

ffiffiffiffiffiffiffiffiffiffiffiffi�IM3

p
ð11 ffiffiffi

2
p

IB3
� 5Ig3

ffiffiffiffiffiffiffiffiffiffiffiffi�IM3

p Þ : (5.23)

The probabilities corresponding to each of these are
plotted in Figs. 8–10.

Observe that, as is apparent from Eq. (5.5) and Table I,
MGM is associated with negative values of IM3

and posi-

tive values of IM1;2
. As can be seen from Fig. 1, these values

of the RGIs are not the most likely ones consistent with the
present constraints. However, whether a given model is
likely or not is a very scan dependent question and hence

we will not address that here. Instead, the probability
distributions for the MGM parameters are computed for
those configurations for which these conditions are ful-
filled. The final distribution is obtained by multiplication of
the independent probabilities of the 9 Bi and 12 g21iðMÞ
solutions given in Eqs. (5.6), (5.7), (5.8), (5.9), (5.10),
(5.11), (5.12), (5.13), (5.14), (5.15), (5.16), (5.17), (5.18),
(5.19), (5.20), (5.21), (5.22), and (5.23). The results are
depicted in Fig. 7.
The messenger scale may be obtained from the value of

the gauge coupling at this scale by using Eq. (3.10), replac-
ing Munif by Mmess. However, in contrast to the gaugino
mass unification scale, the messenger scale is always a
physical scale and therefore expected to take values be-
tween tens of TeV and the GUT scale, or equivalently,
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FIG. 9 (color online). Distribution of the gauge coupling, g21, at the messenger scale before and after the LHC constraints are added
(green (light gray) and red (dark gray) lines), flat distribution (shaded green (gray)), and subtracted probability distribution (dashed
black line). The different sets are associated with different probability distributions given in Eq. (5.23).
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gauge coupling values of 0:2 & g21ðMmessÞ & 0:5. Figure 7
shows that values of the gauge couplings g21ðMmessÞ * 0:6
tend to be preferred, which lie outside the physical region.
Considering only the physical range, values of the mes-
senger scale close to the GUT scale are slightly preferred.
The most probable values of the parameter B are about 1.25
and 4.25 TeV. Using the relation Mi ¼ g2i B and the values
of the gauge couplings at the weak scale, Mmess ’
1:25 TeV would lead to a bino mass of the order of
250 GeV, a wino mass of about 500 GeV, and a gluino
mass of about 1.5 TeV. The larger value of B would lead to
gaugino masses 3.5 times heavier than those.

VI. CONCLUSIONS

Supersymmetric extensions of the Standard Model pro-
vide a relationship between the weak scale and the scale of
the supersymmetry-breaking parameters, rendering it stable
under quantum corrections. In theMSSM, the SM-likeHiggs
particle is predicted to be light. The fast decoupling of the
supersymmetric particles from the precision electroweak
observables make the MSSM predictions consistent with
those of the SM with a light Higgs boson, in full consistency
with what current data seems to suggest. However, no direct
hint of supersymmetric particles has been observed experi-
mentally, and hence no information of the structure and
origin of the supersymmetry-breaking parameters is pro-
vided by current experiments, apart from perhaps the indirect
hints provided by the anomalous magnetic moment and the
Higgs mass range. Once additional information from direct
searches becomes available, a method to determine the
structure of supersymmetry-breaking parameters at the mes-
senger scale, as well at the messenger scale itself, would be
desirable. RGIs provide such a method, establishing a direct
relationship between the observables at the weak scale and
the messenger scale parameters.

In this article we have studied the probability distribu-
tions of a set of RGIs in the MSSM arising from symmetry
arguments. The distributions are analyzed at the TeV scale
by making use of the constraints coming from flavor

physics, LEP and Tevatron searches, Higgs physics, and
the anomalous magnetic moment of the muon, and sepa-
rately from those, by constraints provided by the LHC. We
have used a flat prior for the soft supersymmetry-breaking
masses, using a pMSSM approach. The current constraints
already provide interesting features in the probability
distributions.
As an example of the application of the RGIs, we have

used them to analyze the question of gaugino mass uni-
fication and also the possible realization of general and
minimal gauge mediation. The methods described here are
quite general and may be applied to analyze the ultraviolet
properties of the MSSM parameters in other interesting
supersymmetery-breaking scenarios.
We noticed that the scale of gaugino mass unification is

not necessarily identified with the messenger scale, but it
can provide nontrivial information on the realization of
minimal models of supersymmetry breaking. GGM pro-
vides a well-motivated example of flavor-independent,
supersymmetry-breaking models. The probability distribu-
tions for the GGM parameters can be determined from
those of the RGIs and present some interesting features
as well. They also lead to information on possible nonun-
iversal Higgs mass parameters at the messenger scale. The
determination of the messenger scale in GGM through
RGIs demands the measurement of both the first and third
generation fermion masses as well as the Higgs masses,
and hence it is not practical at this moment. We also
analyze the more simplistic subset of models given by
MGM. Since the entire model space of MGM is deter-
mined by only 2 parameters, we are able to extract infor-
mation about the possible scale of SUSY particles as well
as the messenger scale in this scenario.
It would be interesting to perform a similar analysis in

other supersymmetric extensions of the SM, like the next to
minimal supersymmetric standard model or models with
extended Uð1Þ gauge sectors, in which the required
125 GeV Higgs mass may be obtained without the need
of very heavy stops. In these models, electroweak symme-
try breaking may be realized more naturally without large
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FIG. 10 (color online). Distribution of the gauge coupling, g21, at the messenger scale before and after the LHC constraints are
added (green (light gray) and red (dark gray) lines), flat distribution (shaded green (gray)), and subtracted probability distribution
(dashed black line). The different sets are associated with different probability distributions given in Eq. (5.23).
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fine-tuning. The renormalization group invariants for some
of these extensions are given, for instance, in Ref. [34].

It is clear that although the analysis we describe already
has interesting features, the probability distributions of the
RGIs will become particularly useful when the LHC starts
revealing the presence of supersymmetric particles at the
weak scale. In such a case, the probability distribution of
the RGIs will become sharper and will start showing
important features of the supersymmetry-breaking mass
parameters at the messenger scale. Because of the higher
cross sections for the production of supersymmetric parti-
cles, the higher luminosities and the higher energy reach,
the 8 TeV run this year will lead to relevant constraints
on the supersymmetric particle masses. It could also lead to
the first hint of the presence of supersymmetry, beyond the
indirect ones associated with Higgs search results. It will
be, therefore, very interesting to repeat the analysis of the
RGI distributions once the 2012 results are available.
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APPENDIX A: PROBABILITY REWEIGHTING
AND RESCALING

We are interested in a quantity that quantitatively reflects
the probability distributions of general functions of the
masses, given the probability distributions for the masses
themselves. The Markov Chain Monte Carlo method is
used to scan over the pMSSM parameters in the range
considered to be probed at the LHC. For each point corre-
sponding to a model, a likelihood is computed, given
certain experimental constraints. Since the MCMC tech-
nique scans the given parameter space along the isocon-
tours of likelihood due to pre-LHC constraints listed in
Table II, the ratio of the number of points scanned for any
given value of a parameter to the total number of points
gives the probability for that parameter value. This proba-
bility for a given point can then be reweighted by the post-
LHC likelihoods to compute the current probabilities. We
note, however, that the boundaries defining the pMSSM
region scanned introduce an artificial effect in the resulting
probability distributions. In the following, we will describe
a method that can be used for eliminating this effect. In this
method, we make the assumption that the LHC (as well as
the pre-LHC) measurements will not be able to shed any
light on the pMSSM parameter regions that are not scanned
due to kinematic constraints, and assign a flat probability to
these insensitive regions outside the scan boundary.

Let us consider a two-dimensional probability distribu-
tion pðx; yjOÞ of parameters x and y defined in a box where

the variables x and y vary in the ranges fx1; x2g, fy1; y2g,
given some observables O. Assume that x and y have flat
priors corresponding to the soft parameters that were
scanned over in the MCMC. We are then interested in
the probability distribution of some function, 
ðx; yÞ, given
O: pð
ðx; yÞjOÞ. As explained in Sec. II B, the naive com-
putation of this probability, especially using a flat prior

pf
0ðx; yÞ ¼ constant, will heavily reflect the size of the box

alongside any other inherent probability distribution of this
function. The aim is to define a probability pð
ðx; yÞjOÞ
such that, if there is no condition on 
ðx; yÞ, then a flat
distribution is obtained for p0ð
ðx; yÞÞ. Any variations of
this flatness should be something that reflects the actual
variation of the probability due to the effect of O rather
than the effect of having a bounded box, as is the case in the
example given in Sec. II A.
Let us assume that the box contains a bins in x and b

bins in y. The flat distributions are defined such that in the
absence of any additional condition

pf
0ðxÞ ¼

1

a
; (A1)

pf
0ðyÞ ¼

1

b
; (A2)

pf
0ðx; yÞ ¼

1

ab
; (A3)

pf
0ð
iÞ ¼

X
Allfx;yg: 
ðx;yÞ¼
i

pf
0ðx; yÞ: (A4)

Note that pf
0ð
Þ is defined as the distribution that

would be obtained for 
ðx; yÞ if x and y have flat priors.
This is the distribution that is referred to in the text
as ‘‘pð
jFlat UnweightedÞ’’. This distribution itself is
generally not flat but will have a distinct shape reflecting
the boundary conditions of the original x, y variables.
Analogously, the probability for 
ðx; yÞ given O is

pð
ijOÞ ¼ X
Allfx;yg: 
ðx;yÞ¼
i

pðx; yjOÞ; (A5)

where this is referred to as ‘‘pð
jpre=post-LHCÞ’’ in the
text. An easy way to normalize this probability to obtain a
flat distribution for the function 
ðx; yÞ in the absence of

nontrivial conditions is to weight each bin, 
i, by 1=p
f
0ð
iÞ:

pAð
ijOÞ / pð
ijOÞ
pf
0ð
iÞ

: (A6)

The superscript A denotes the fact that this effectively gives
the average probability per unique fx; yg combination for
each 
i. However, this has the effect of washing out small
effects on the probability distribution from O, when 
i is
such that a large number of unique combinations of fx; yg
contribute to a given value of 
ðx; yÞ.
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We propose an alternative method. First, instead of

taking the ratio we shall consider the difference: pð
ijOÞ �
pf
0ð
iÞ. Clearly this quantity is not always positive and

cannot be identified with a probability distribution. It has,
however, the property that it becomes positive whenever
the probability of 
i is enhanced by the observationsO and
negative in the opposite case. We shall, hence, define a
renormalized distribution pRð
ijOÞ in the following way:

pf
0ð
mÞ ¼ Max½pf

0ð
iÞ�; (A7)

pRð
ijOÞ / pð
ijOÞ þ ½pf
0ð
mÞ � pf

0ð
iÞ�; (A8)

which is always positive since pð
ijOÞ is positive and
so is the quantity between brackets. The above quantity,
Eq. (A8) has a clear interpretation: Let us first stress that,
by definition, 
m is such that it has the largest number of
unique combinations of fx; yg contributing to it, with x and
y varying with a flat distribution in the box. Let us call
ki the number of combinations corresponding to 
i.
Therefore, all 
i have a smaller number than 
m, ki < km.
This is reflecting the fact that for i � m, the range of the
original variables scanned over, x and y, did not include all
the combinations necessary to weight the i bin of 
 the
same asm. We have made the argument that the values of x
and y not scanned are ones that will not be affected by LHC
measurements. Hence we propose that these combinations

are given the same weight as pf
0ð
iÞ=ki ¼ 1=ab. This

leads, after proper normalization, to nothing more than
the last term, between square brackets, in Eq. (A8), and
hence the quantity pRð
ijOÞ reflects the actual probability
distribution of 
i given O, taking away the effect of the
range of the original scan. For this quantity to represent a
probability distribution in the strictest sense, it must be

normalized to 1. Since pð
ijOÞ and pf
0ð
iÞ are quantities

that are normalized to 1, assuming that the function 
i is
evaluated in l different bins, the normalization factor is

nothing more than C ¼ 1=ðpf
0ð
mÞlÞ. Hence the properly

normalized probability distribution for 
 is given by

pRð
ijOÞ¼ 1

pf
0ð
mÞl

fpð
ijOÞþ½pf
0ð
mÞ�pf

0ð
iÞ�g: (A9)

We can see that this behaves thewaywe expect it to by noting
that when O has not impacted the probability of 
, i.e.,

pð
ijOÞ ¼ pf
0ð
iÞ, pRð
ijOÞ ¼ 1=l, we obtain a flat distri-

bution. On the other hand, if thepf
0ð
iÞ is a constant, meaning

that 
i has a flat distribution in the same flat basis as the

original variables x and y, then pf
0ð
iÞ ¼ pf

0ð
mÞ ¼ 1=l, and
we recover pð
ijOÞ without any modification, as we should.

In order to emphasize the impact of the experimental
constraints in a more clear way, however, we have gone a
step further. Because we assumed that the probability out-
side the range we scanned is flat, the ratio of the difference
of any two probabilities from flat, ðpRð
ijOÞ � 1=lÞ=

ðpRð
jjOÞ � 1=lÞ, will remain invariant if we extend the

range of the original scan, increasing the box size.
Therefore, this quantity is than also invariant under an
overall rescaling of the differences with the flat probability.
Let us assume that there is a nontrivial impact of experi-

ments on the RGI distributions, namely, pRð
ijOÞ � 1=l
for at least one i. Considering

pRð
njOÞ ¼ Min½pRð
ijOÞ�; (A10)

we define a scale factor, SF, such that the difference of this
minimum with 1=l is scaled to be 1=l:

SF

�
1

l
� pRð
njOÞ

�
¼ 1

l
(A11)

) SF�1 ¼ 1� pRð
njOÞl: (A12)

We use the scale factor above to define a modified
distribution

pSSð
ijOÞ ¼ 1

l
þ SF

�
pRð
ijOÞ � 1

l

�
; (A13)

¼ 1

pf
0ð
mÞl

fpf
0ð
mÞ þ SF½pð
ijOÞ � pf

0ð
iÞ�g: (A14)

Once the scale factor SF is given, it is easy to translate
this modified distribution, Eq. (A14), to the original one,
Eq. (A9). The quantity pSSð
ijOÞ has the virtue that when
for a particular bin pRð
ijOÞ ¼ 1=l, meaningO has had no
impact on the 
i probability, one obtains p

SSð
ijOÞ ¼ 1=l.
On the other hand, when pRð
ijOÞ ¼ pRð
njOÞ, meaning
when O has maximally decreased the probability for
that 
i, p

SSð
ijOÞ ¼ 0.
The fact that pSSð
ijOÞ will be invariant under a change

in scan range of the original variables can be seen by
inspecting Eq. (A13) and noting that under a change of
scan range, pSSð
ijOÞ ¼ 1=l when pRð
ijOÞ ¼ 1=l and by
definition pSSð
njOÞ ¼ 0.
Even though pSSð
ijOÞ cannot be technically defined as

a probability, it quantitatively reflects the actual impact of
O on the probability distribution of 
 in a way that is
independent of the artificial impact of scanning a finite
region, and, as stressed above, may be easily connected
with pRð
ijOÞ, Eq. (A9). We ran extensive numerical
checks to make sure that this quantity indeed behaves in
the expected manner. We have therefore used pSSð
ijOÞ
to represent the probability distribution of the RGIs,
giving the associated scale factor SF for every RGI distri-
bution. In the text, in order to be more explicit about the
meaning of these distributions, pð
jOÞ was renamed
‘‘pð
jpre=post-LHCÞ’’, while pSSð
jOÞ was renamed
‘‘pð
jExpÞ Reweighted.’’

APPENDIX B: PMSSM PARAMETRIZATION

The pMSSM, a 19-dimensional realization [67] of the
R-parity conserving MSSM with parameters defined at the
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SUSY scale,MSUSY ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m~t1m~t2

p
, employs only a few plau-

sible assumptions motivated by experiment: there are no
new CP phases, the sfermion mass matrices and trilinear
couplings are flavor diagonal, the first two generations of
sfermions are degenerate, and their trilinear couplings are
negligible. In addition, we assume that the lightest super-
symmetric particle is the lightest neutralino, ~�0

1. We thus
arrive at a proxy for the MSSM characterized by 19 real,
weak scale, SUSY Lagrangian parameters:

(i) 3 gaugino mass parameters M1, M2, and M3;
(ii) the ratio of the Higgs vevs, tan� ¼ v2=v1;
(iii) the Higgsino mass parameter, �, and the pseudo-

scalar Higgs mass, mA;

(iv) 10 sfermion mass parameters m ~F, where ~F ¼ ~Q1,
~U1, ~D1, ~L1, ~E1, ~Q3, ~U3, ~D3, ~L3, ~E3 (imposing
m ~Q1

� m ~Q2
, m ~L1

� m ~L2
, etc.); and

(v) 3 trilinear couplings At, Ab, and A�, in addition to
the SM parameters.

For each pMSSM point, SOFTSUSY 3.1.6 [68] was used to
compute the SUSY spectrum, SUPERISOV 3.0 [69] was used
to compute the low-energy constraints, MICROMEGAS 2.4

[51] was used for the SUSYmass limits, and HIGGSBOUNDS

2.0.0 [50] was used for the limit on the h0 mass.1 Moreover,

SUSYHIT (SDECAY 1.3B, HDECAY 3.4) [70] was used to pro-

duce SUSY and Higgs decay tables, and MICROMEGAS 2.4

[51] was used to compute the LSP relic density and direct
detection cross sections. The various codes were interfaced
using the SUSY Les Houches Accord [71].

APPENDIX C: SOFT MASS
PARAMENTERS AND RGIS

As mentioned in Sec. II, one can make use of the RGIs
and three independent masses to determine all other soft
breaking masses. As an example, we write down 2 sets of
solutions with different unknown masses. All the masses
and gauge couplings are at the same scale. The gaugino
masses in both cases are given by

Mi ¼ IBi
g2i ; i ¼ 1; 2; 3: (C1)

We write the first set of solutions in terms of 3 third
generation masses: mQ3

, mu3 , and me3 ,

m2
H2

¼ DB13

2
�DZ

2
� 5IM1

66
þ 3IM2

2
þ 4IM3

3
�DL13

� 247DY13H

220
þD�1

40
þ 3IY�

g21
22

þ 5

66
I2B1

g41

� 3

2
I2B2

g42 �
4

3
I2B3

g43 þ
3m2u3

2
; (C2)

m2
Hd

¼ 3DB13

2
�DZ

2
þ 2IM1

33
� 3IM2

þ 4IM3

3
�DL13

2

� 13DY13H

44
þ 3D�1

8
� 5IY�

g21
22

� 2

33
I2B1

g41 þ 3I2B2
g42

� 4

3
I2B3

g43 þ
m2

e3

2
þ 3m2

Q3
� 3m2

u3

2
; (C3)

m2
d3

¼ DB13
þ IM1

11
� 3IM2

� 13DY13H

165
þ 3D�1

10
� 2IY�

g21
33

� 1

11
I2B1

g41 þ 3I2B2
g42 þ 2m2

Q3
�m2

u3 ; (C4)

m2
Q1

¼ 1

3960
ð20IM1

þ 5940IM2
� 3520IM3

þ 78DY13H

� 627D�1
þ 60IY�

g21 � 20I2B1
g41

� 5940I2B2
g42 þ 3520I2B3

g43Þ; (C5)

m2
L3
¼ 1

220
ð�10IM1

þ330IM2
�110DL13

�26DY13H
�11D�1

�20IY�
g21þ10I2B1

g41�330I2B2
g42þ110m2

e3Þ; (C6)

m2
L1

¼ 1

440
ð20IM1

þ 660IM2
� 26DY13H

� 11D�1

� 20g21ðIY�
þ I2B1

g21Þ � 660I2B2
g42Þ; (C7)

m2
d1

¼ 1

1980
ð40IM1

� 1760IM3
þ 78DY13H

þ 33D�1

þ 60IY�
g21 � 40I2B1

g41 þ 1760I2B3
g43Þ; (C8)

m2
u1 ¼

1

990
ð80IM1

� 880IM3
� 78DY13H

� 33D�1

� 60IY�
g21 � 80I2B1

g41 þ 880I2B3
g43Þ; (C9)

m2
e1 ¼

1

220
ð40IM1

þ 26DY13H
þ 11D�1

þ 20IY�
g21 � 40I2B1

g41Þ: (C10)

Alternatively, the second set of solutions is given in
terms of the 2 soft masses for the Higgs, mHu

and mHd
,

and a third generation squark mass, mQ3
:

m2
u3 ¼ �DB13

3
þDZ

3
þ 5IM1

99
� IM2

� 8IM3

9
þ 2DL13

3

þ 247DY13H

330
�D�1

60
� IY�

g21
11

� 5

99
I2B1

g41

þ I2B2
g42 þ

8

9
I2B3

g43 þ
2m2

Hu

3
; (C11)

m2
e3 ¼ �4DB13

þ 2DZ þ
IM1

33
þ 3IM2

� 16IM3

3
þ 3DL13

þ 156DY13H

55
� 4D�1

5
þ 2IY�

g21
11

� 1

33
I2B1

g41 � 3I2B2
g42

þ 16

3
I2B3

g43 þ 2m2
Hd

þ 2m2
Hu

� 6m2
Q3
; (C12)

1In evaluating the Higgs mass limit, a Gauss-distributed theo-
retical uncertainty of � ¼ 1:5 GeV was applied to the mh com-
puted with SOFTSUSY; cf. row 8 in Table II and row 12 in Table III.
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m2
Q1

¼ 1

3960
ð20IM1

þ 5940IM2
� 3520IM3

þ 78DY13H
� 627D�1

þ 60IY�
g21 � 20I2B1

g41

� 5940I2B2
g42 þ 3520I2B3

g43Þ; (C13)

m2
d3

¼ 4DB13

3
�DZ

3
þ 4IM1

99
� 2IM2

þ 8IM3

9
� 2DL13

3

� 91DY13H

110
þ 19D�1

60
þ IY�

g21
33

� 4

99
I2B1

g41

þ 2I2B2
g42 �

8

9
I2B3

g43 �
2m2

Hu

3
þ 2m2

Q3
; (C14)

m2
L3

¼ �2DB13
þDZ �

IM1

33
þ 3IM2

� 8IM3

3
þDL13

þ 13DY13H

10
� 9D�1

20
þ 1

33
I2B1

g41 � 3I2B2
g42

þ 8

3
I2B3

g43 þm2
Hd

þm2
Hu

� 3m2
Q3
; (C15)

m2
L1

¼ 1

440
ð20IM1

þ 660IM2
� 26DY13H

� 11D�1

� 20g21ðIY�
þ I2B1

g21Þ � 660I2B2
g42Þ; (C16)

m2
d1

¼ 1

1980
ð40IM1

� 1760IM3
þ 78DY13H

þ 33D�1

þ 60IY�
g21 � 40I2B1

g41 þ 1760I2B3
g43Þ; (C17)

m2
u1 ¼

1

990
ð80IM1

� 880IM3
� 78DY13H

� 33D�1

� 60IY�
g21 � 80I2B1

g41 þ 880I2B3
g43Þ; (C18)

m2
e1 ¼

1

220
ð40IM1

þ 26DY13H
þ 11D�1

þ 20IY�
g21 � 40I2B1

g41Þ: (C19)

APPENDIX D: FLAVOR-BLIND MODELS

The most immediate consequence of flavor blindness is
the vanishing of DB13

and DL13
. Therefore these invariants

provide us with a direct test of the flavor-independent
hypothesis with a minimal set of measurements. More
precisely, they allow this hypothesis to be ruled out:
measuring DB13

� 0 or DL13
� 0 at the low scale implies

high-scale family nonuniversality; however, as noted in
Ref. [33], measuring DB13

¼ 0 and DL13
¼ 0 at the low

scale does not necessarily indicate high-scale universality.

Current experimental data from flavor physics
strongly motivates a flavor-universal mediation mecha-
nism for SUSY breaking. Accordingly, if DB13

and DL13

are found to vanish, it is reasonable to proceed a step
further and attempt to extract constraints on the high-
scale values of the flavor-blind MSSM soft parameters
from the RGIs.
The 7 scalar and 3 gaugino soft mass parameters in the

flavor-blind MSSM can be expressed uniquely in terms of
the 10 invariants D�1

through IM3
listed in Table I. These

are listed in Eqs. (C1) and (D1)–(D7). Note that these
relations depend on the 3 gauge couplings, and further all
couplings and soft parameters are assumed to be given at
the messenger scale:

m2
~L
¼ � 1

440
ð26DY13H

þ 11D�1
þ 20ððg41I2B1

þ 33g42I
2
B2
Þ

� ðIM1
þ 33IM2

Þ þ g21IY�ÞÞ; (D1)

m2
Hd

¼ m2
~L
� 1

2
DZ; (D2)

m2
Hu

¼ m2
~L
� 1

2
DZ � 13

11
DY13H

þ g21
11

IY�; (D3)

m2
~e ¼

1

220
ð26DY13H

þ 11D�1

� 20ð2ðg41I2B1
� IM1

Þ � g21IY�ÞÞ; (D4)

m2
~u ¼ � 1

990
ð78DY13H

þ 33D�1
þ 20ð4ððg41I2B1

� 11g43I
2
B3
Þ

� ðIM1
� 11IM3

ÞÞ þ 3g21IY�ÞÞ; (D5)

m2
~d
¼ 1

1980 ð78DY13H
þ 33D�1

� 20ð2ððg41I2B1
� 44g43I

2
B3
Þ

� ðIM1
� 44IM3

ÞÞ � 3g21IY�ÞÞ; (D6)

m2
~Q1

¼ 1

3960
ð78DY13H

� 627D�1

� 20ððg41I2B1
þ 297g42I

2
B2

� 176g43I
2
B3
Þ

� ðIM1
þ 297IM2

� 176IM3
Þ � 3g21IY�ÞÞ: (D7)

Using the invariants Ig2 and Ig3 these may be expressed

entirely in terms of g1. Equivalently, one can reduce the
degrees of freedom at the high scale to a single parameter,
which can be taken to be the value of that scale. In
particular this permits tests of more restrictive flavor-
universal models such as mSUGRA, taking g1 at the
GUT scale.
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