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Abstract: We determine the spatial (impact parameter) dependence of nuclear parton

distribution functions (nPDFs) using the A-dependence of the spatially independent (av-

eraged) global fits EPS09 and EKS98. We work under the assumption that the spatial

dependence can be formulated as a power series of the nuclear thickness functions TA.

To reproduce the A-dependence over the entire x range we need terms up to [TA]
4. As

an outcome, we release two sets, EPS09s (LO, NLO, error sets) and EKS98s, of spatially

dependent nPDFs for public use. We also discuss the implementation of these into the

existing calculations. With our results, the centrality dependence of nuclear hard-process

observables can be studied consistently with the globally fitted nPDFs for the first time.

As an application, we first calculate the LO nuclear modification factor R1jet
AA for primary

partonic-jet production in different centrality classes in Au+Au collisions at RHIC and

Pb+Pb collisions at LHC. Also the corresponding central-to-peripheral ratios R1jet
CP are

studied. We also calculate the LO and NLO nuclear modification factors for single inclu-

sive neutral pion production, Rπ0

dAu, at mid- and forward rapidities in different centrality

classes in d+Au collisions at RHIC. In particular, we show that our results are compatible

with the PHENIX mid-rapidity data within the overall normalization uncertainties given

by the experiment. Finally, we show our predictions for the corresponding modifications

Rπ0

pPb in the forthcoming p+Pb collisions at LHC.
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1 Introduction

In a high-energy hadronic or nuclear collision of particles A and B the inclusive cross

sections for hard processes involving a large interaction scale Q2 ≫ Λ2
QCD can be computed

using the QCD collinear factorization theorem [1, 2],

dσAB→k+X =
∑

i,j,X′

fAi (Q2)⊗ fBj (Q2)⊗ dσ̂ij→k+X′

+O(1/Q2), (1.1)

where dσ̂ represents the perturbatively computable partonic pieces (cross sections in lowest

order), and fAi (fBj ) is the parton distribution function (PDFs) for a given parton flavor i in
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the colliding particle A (and correspondingly for the flavor j in B). The PDFs are universal,

process-independent functions of nonperturbative origin, whose evolution in the scale Q2

can, however, be obtained from the DGLAP equations [3–6] derived from perturbative

QCD.

A precise knowledge of the universal PDFs is thus vital for interpreting any hard-

process results at the present colliders BNL-RHIC and CERN-LHC. This holds as well for

proton-proton collisions as for proton-nucleus and nucleus-nucleus collisions. To determine

the nonperturbative input in the PDFs, one has developed global analyses which exploit

a multitude of experimental hard-process data and the DGLAP evolution. Excellent fits

for the free proton PDFs have been obtained, and sets like CT10 [7], MSTW [8], and

NNPDF2.0 [9] are nowadays available.

It is well known that the PDFs of nucleons bound to a nucleus, the nuclear PDFs

(nPDFs), are modified relative to the free-nucleon PDFs. Analogously to the free-proton

case, global DGLAP analyses have been developed also for the nPDFs. The further com-

plication with these is that in addition to the usual x and Q2 dependences also the nuclear

mass-number (A) dependence of the PDFs needs to be dealt with. The global nPDF fits

have so far resulted in leading-order (LO) nPDF sets EKS98 [10], HKM [11] and HKN04

[12], and next-to-leading order (NLO) sets nDS [13], HKN07 [14], EPS09 [15], nCTEQ

[16, 17], and DSZS [18]. Importantly, and similarly to the free proton case, with the error

sets of EPS09 (and similar sets in DSZS), one can nowadays quantify how the uncertainties

remaining in the nPDFs, illustrated in Fig. 1, are transmitted to the nuclear hard-process

cross-sections.

The global analyses mentioned above have all considered only the spatially averaged

nPDFs, probed in minimum-bias nuclear collisions with no cuts on the collision centrality

(impact parameter). In particular, as the modest amount of available nuclear hard-process

data severely limits the number of possible fit parameters, it has so far been impossible to

embed the spatial dependence, or the impact-parameter dependence, of the nPDFs directly

into the global analysis. An obvious drawback with the globally analysed nPDFs then is

that it has not been possible to consistently compute nuclear hard-process cross-sections

in different centrality classes.

The purpose of this study is to consider this problem by pinning down the spatial

dependence of the nPDFs, i.e. the dependence of the nuclear modifications of the PDFs

on the nucleon’s position in a nucleus. We do this in a manner which is for the first time

fully consistent with the nPDFs from a global analysis. Earlier attempts to this direction,

lacking however such a consistency, can be found in Refs. [19–22]. A further motivation for

the current study is the Gribov-Glauber modeling of nuclear shadowing, reviewed lately in

Ref. [23], whose output nPDFs are not a result of a global analysis like EPS09 but which

have so far been the only ones where the spatial dependence arises in a self-consistent

manner from modeling the physics origin of the nuclear effects. On the experimental side,

the current study is inspired by e.g. the measurements of single hadron production [24–30]

and J/Ψ production [31, 32] in different centrality classes in d+Au collisions at RHIC, as

well as by the hard-process measurements in the forthcoming p+Pb collisions at the LHC.

Also the theoretical modeling of the J/Ψ production discussed recently in Ref. [33] has
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Figure 1. The nuclear modifications and their uncertainties in a lead nucleus (A = 208) for

different parton flavors from EPS09NLO at the EPS09 initial scale Q2
0 = 1.69 GeV2 (upper panel),

and from EPS09LO and EKS98 at the EKS98 initial scale Q2
0 = 2.25 GeV2 (lower panel).

motivated our study.

Our basic idea for uncovering the spatial dependence in the EKS98 and EPS09 nPDFs

is straightforward: We first introduce the spatial dependence of the nuclear modification

to the nPDF of each parton type i in each nucleus A at each x and Q2 in terms of a power

series of the standard nuclear thickness functions TA. Then, we determine the coefficients

of each power of TA by exploiting the A-dependence of the EPS09 and EKS98 nPDFs

(these sets, through the global fits, represent the experimental data here). As an output,

we provide the numerical routines named EPS09s (LO and NLO as well as error sets for

both) and EKS98s for computing the spatially dependent nPDFs which – simultaneously

for all nuclei considered – normalize to the corresponding spatially independent EPS09 and

EKS98 nPDFs. These new sets will be downloadable at the link [34].

As concrete examples of how to easily implement our spatially dependent nPDFs and

the nuclear collision geometry in the computation of nuclear hard-process cross-sections

in different centrality bins, we first discuss the centrality dependence of the LO nuclear

modification ratios R1jet
AA (pT ) of primary partonic-jet production in Au+Au collisions at
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RHIC and Pb+Pb collisions at the LHC. We also study the nuclear modification factors of

inclusive π0 production, Rπ0

dAu, in d+Au collisions at RHIC and Rπ0

pPb in p+Pb collisions at

the LHC, both at mid- and forward rapidities, and considering both the NLO and LO cases.

For Rπ0

dAu we also make, to our knowledge, a first comparison with the PHENIX centrality

dependent data [26] where the overall normalization errors of the data are accounted for

in detail. Due to the planned p+Pb program at the LHC, the ratio Rh
pPb(pT ) for single

hadron production has been of growing interest recently [35–40], and we will show also

here how interesting and useful this ratio would be from the point of view of constraining

the nPDFs further.

The paper is organized as follows: In Sec. 2 we define the model framework and explain

the fitting procedure. In Sec. 3 we show the results for the spatially dependent nuclear

modifications of PDFs. Also a comparison with selected other works is presented here.

Applications of our results are discussed in Sec. 4. For clarity, a summary of the standard

elements used in the applications here, the formulation of the nuclear collision geometry,

different overlap functions and the optical Glauber model, is given in the Appendix A.

2 The Analysis Framework

2.1 Definitions of the Nuclear Modifications

First we need to define how we introduce the spatial dependence to the nPDFs in terms

of the hard-process cross-sections. Let us start with the usual spatially averaged nPDFs.

The number distribution of an observable k produced in a collision of nuclei A and B at

an impact parameter b is given by

dNAB→k+X(b) = TAB(b)dσ
AB→k+X , (2.1)

where TAB(b) is the standard nuclear overlap function normalized to AB (cf. Eq. (A.20)

in App. A.2, see the nuclear collision geometry in Fig. 20), and dσAB→k+X is the b-

independent inclusive hard cross-section of Eq. (1.1) containing the nPDFs and pertur-

bative pieces. The spatially averaged nPDFs in a nucleus A with Z protons and A − Z

neutrons are now given by

fAi (x,Q2) =
Z

A
f
p/A
i (x,Q2) +

A− Z

A
f
n/A
i (x,Q2), (2.2)

where the nPDFs of a bound neutron, f
n/A
i , may be (approximately) obtained from those

of the bound proton, f
p/A
i , by using the isospin symmetry (see [15]). As in EKS98 and

EPS09, we define the nPDF for each parton flavor in terms of the spatially averaged nuclear

modification RA
i (x,Q

2) and the corresponding free proton PDF fpi (x,Q
2),

f
p/A
i (x,Q2) ≡ RA

i (x,Q
2)fpi (x,Q

2). (2.3)

To lighten the notations, we express the nPDFs in Eq. (2.2) as

fAi (x,Q2) =
1

A

∑

N

R
N/A
i (x,Q2)fNi (x,Q2), (2.4)
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where the sum runs over all the nucleons N = 1, . . . , A.

Decomposing the TAB into the standard nuclear thickness functions (cf. Eq. (A.20)),

and using Eq. (1.1) we may write

dNAB→k+X(b) =
∑

i,j,X′

1

AB

∑

NA,NB

∫

d2s1 TA(s1)R
NA/A
i (x1, Q

2) fNA

i (x1, Q
2)⊗

∫

d2s2 TB(s2)R
NB/B
j (x2, Q

2) fNB

j (x2, Q
2)⊗ dσ̂ij→k+X′

δ(s2 − s1 − b).

(2.5)

From this, we see that a suitable definition of the spatially dependent nuclear modification

rAi (x,Q
2, s) for the PDF of parton flavor i (per nucleon) is

RA
i (x,Q

2) ≡ 1

A

∫

d2sTA(s) r
A
i (x,Q

2, s), (2.6)

where the thickness function TA is normalized to A and where the case of no nuclear effects

corresponds to RA
i = rAi = 1. Using these definitions, we can now generalize Eq. (2.5) to

include the spatially dependent nuclear modifications,

dNAB→k+X(b) =
∑

i,j,X′

1

AB

∑

NA,NB

∫

d2s1 TA(s1) r
A
i (x1, Q

2, s1) f
NA

i (x1, Q
2)⊗

∫

d2s2 TB(s2) r
B
j (x2, Q

2, s2) f
NB

j (x2, Q
2)⊗ dσ̂ij→k+X′

δ(s2 − s1 − b).

(2.7)

As a consistency check, we note that the definition in Eq. (2.6) guarantees that the

minimum-bias cross sections, which are obtained by integrating Eq. (2.7) over the whole

b space, become simply AB times the hard cross-section computed with the spatially

averaged nPDFs,

dσAB→k+X
MB =

∫

d2bdNAB→k+X(b) = AB
∑

i,j,X′

fAi (x,Q2)⊗fBj (x,Q2)⊗dσ̂ij→k+X′

. (2.8)

The key assumption in the present analysis is that the spatial dependence of rAi (x,Q
2, s)

is a function of the nuclear thickness TA(s). The motivation for this comes mainly from

the shadowing region at small x, where the partons of sufficiently small values of x may

interact with partons from any other nucleon near enough in the transverse direction. Also

in the Gribov-Glauber modeling [23] of the initial state nPDFs the nuclear effects become

essentially functions of TA. The functional form we choose to use and test here is a simple

power series of the thickness functions,

rAi (x,Q
2, s) = 1 +

n
∑

j=1

cij(x,Q
2) [TA(s)]

j . (2.9)

Here we would like to emphasize the following points: First, all the A dependence

is now in the thickness functions which are fully known, and all the coefficients cij(x,Q
2)

which will be our fit parameters, depend on x and Q2 but not on A. Second, the power

series of the form 1 + . . . also fixes by construction that rAi (x,Q
2, s) → 1 when |s| → ∞,
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which means that the nucleons at the very edge of the nucleus are essentially regarded as

free nucleons. Third, what is known from the EKS98 and EPS09 -types of analyses, are

only the spatially averaged nuclear modifications and their A systematics, i.e. TA-weighted

integrals of Eq. (2.9) over s for each nucleus. Fourth, since the EKS98 and EPS09 global

analyses have not been constructed to reproduce any specific theoretically motivated A

dependence of the nPDFs, we can test the validity of the assumption of Eq. (2.9), as well

as the number of terms needed, only a posteriori.

Using the definitions above, we can see why the simplest 1-parameter approach with

n = 1 in Eq. (2.9) (which is used e.g. in [19–22] as well as in e.g. the HIJING event

generator [41]) is not fully consistent with the observed A systematics of the nuclear data.

In this case, rAi (x,Q
2, s) = 1 + ci(x,Q2)TA(s), and from the definition in Eq. (2.6), one

obtains ci(x,Q2) = [RA
i (x,Q

2) − 1]A/TAA(0), where R
A
i is given by the globally analysed

nPDFs (i.e. nuclear data). The problem then is that the coefficient ci(x,Q2) may depend

in fact quite strongly on A, which indicates that the simplest assumption of terminating the

power series at the first nontrivial term does not correctly capture the spatial dependence

of the measured nuclear structure functions. This redundant A dependence is illustrated

in Fig. 2 for gluons in a lead nucleus at x = 0.01 at the initial scales of the sets EKS98,

EPS09LO1 and EPS09NLO1. We can see that especially for the NLO set the problem is

more serious. One of the driving motivations for the present study is to solve the problem

of recovering the A systematics in the spatially dependent nPDFs.
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Figure 2. The problematic A dependence of the parameter cg(x,Q2) = [RA
g (x,Q

2)− 1]A/TAA(0)

for EPS09NLO1 and EPS09LO1 (EKS98) gluons at x = 0.01 and Q2 = 1.69 (2.25) GeV2 in the 1-

parameter approach where one includes only the first nontrivial term in the power series in Eq. (2.9).

2.2 Fitting Procedure

To extract the A-independent coefficients cij(x,Q
2), we need to introduce a fitting proce-

dure, where we utilize the definition (2.6) and the A dependence of the EKS98 and EPS09
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nuclear modifications at different values of x and Q2 for each parton flavor i. To reproduce

the A systematics in the spatially independent nuclear modifications with the power-series

ansatz of Eq. (2.9), we minimize the χ2 defined as

χ2
i (x,Q

2) ≡
∑

A

[

RA
i (x,Q

2)− 1
A

∫

d2sTA(s) r
A
i (x,Q

2, s)

WA
i (x,Q2)

]2

, (2.10)

where the spatially averaged modifications RA
i (x,Q

2) from EKS98 and EPS09 now rep-

resent the ”experimental” data. The weight factors WA
i (x,Q2) are artificial errors which

control the quality of the fit and which are set by hand. Our numerical observation is that

for good fits we need 4th-order polynomials in TA, i.e. n = 4 in Eq. (2.9). Furthermore, best

fits were obtained with the weight WA
i (x,Q2) = RA

i (x,Q
2)−1 for EKS98 (this corresponds

to fitting the deviations from unity within a constant relative error) and WA
i (x,Q2) = 1

for EPS09 (corresponds to fitting the modifications within a constant error).

By construction, both EKS98 and EPS09 give no nuclear modifications for deuterium.

This cannot be reproduced with the functional form we selected for rAi (x,Q
2), and we do

not expect the fit form of Eq. (2.9) work for the smallest values of A, either. Consequently,

we exclude the nuclei A < 16 from the fit. Thus for EKS98 the sum runs over A =

16, 20, . . . , 300 (i.e. emphasising the large nuclei) and for EPS09 we use all the A ≥ 16

values for which these sets are currently available.

3 Results

3.1 Quality of the fit

First, we demonstrate that our fit framework manages to reproduce the spatially averaged

nuclear modifications and especially their A dependence indeed very well. Figure 3 shows

the obtained spatially dependent gluon modifications integrated over the transverse plane

according to Eq. (2.6), and the corresponding input modifications at different fixed values of

Q2 from the NLO set EPS09NLO1 (left panel), and from the LO sets EPS09LO1 and EKS98

(right panel), for a lead nucleus. In what follows, we refer to these cases as ”EPS09sNLO1”,

”EPS09sLO1” and ”EKS98s” where ”s” is for ”spatial” and ”1” for the central sets. As

seen in the figure, the match with the input and output distributions is very good; for all

parton flavors and the nuclei included in our fits it is within 2 % at x < 0.75 for EPS09NLO,

1 % at x < 0.85 for EPS09LO, and 0.2 % at x < 0.95 for EKS98. Importantly, the key-

feature here, the A dependence of EPS09 and EKS98, is similarly well reproduced, as is

demonstrated by Fig. 4 below.

Recall also that in the EPS09 global analysis in addition to the best fit there are also

30 error sets, which enables one to compute how the uncertainties of the nPDFs propagate

into physical observables. The above fitting and determination of the spatial dependence

are done also for each of these error sets, both in LO and in NLO, and the fit quality is

similar as in Figs. 3 and 4. Thus the error propagation calculations (as instructed in [15])

for centrality-dependent nuclear hard cross-sections can now be done as before, using the

EPS09s sets.
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Figure 3. Left: The spatially averaged nuclear modificationRA
g (x,Q

2) for a lead nucleus (A = 208)

from the NLO set EPS09NLO1 (dotted lines) and from the EPS09sNLO1 spatial fit presented here

(solid lines) at four different scales. Right: The same with the LO sets EKS98 and EPS09LO1

(dotted) and with the spatial fits EKS98s (dashed) for three different scales and EPS09sLO1 (solid)

for four different scales.
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(solid blue line). Right: The same but with the LO set EKS98 (circles) and the corresponding

spatial fit EKS98s (solid red) at Q2 = 2.25 GeV2. The small nuclei shown with gray markers in

both panels were not used in our spatial fits.

3.2 Spatial Dependence

After the consistency checks above, let us next discuss the spatial dependence obtained

for the nuclear modifications of the PDFs. In Fig. 5 we present the nuclear modification

rPbg (x,Q2, s) at the initial scale Q2 = 1.69 GeV2 as a function of x and s, as obtained from

the fitting to the sets EPS09 NLO and LO, as well as the LO set EKS98. The three main

observations are

• The overall x-shape of the nuclear modification away from the edge of the nucleus,

at |s| < RA, is similar as in the input distribution. This confirms that our fit does
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not generate any unwanted extra curvature.

• In the center of the nucleus, |s| ≈ 0, the nuclear modification is only slightly larger

than the input average modification. This also confirms the earlier similar findings

in [19, 20, 22].

• The nuclear modification dies out as expected, by construction, when |s| > RA. This

feature arises from the vanishing TA(s) at the edge of the nucleus.

The observations for the spatial dependence of the sea and valence quarks nuclear modifi-

cations are the same. Examples of these can be found in App. B.

3.3 Comparison with other approaches

Next, we compare our EPS09s and EKS98s fits with the 1-parameter approach described in

the end of Sec. 2.1. [20, 22].1 This model has been used to study the centrality dependence

of the J/Ψ suppression e.g. in Refs. [31, 33, 42, 43]2 and inclusive hadron production in

d+Au collisions at RHIC in Ref. [22]. We also compare with the leading-twist formulation

[23, 44] of nuclear shadowing which is based on the generalization of Gribov-Glauber theory,

QCD factorization and diffractive PDFs measured at HERA. For the spatially averaged

nuclear modifications, this model typically predicts a stronger smallest-x shadowing than

what is implemented in the parametrizations of EKS98 and EPS09 (see e.g. Ref. [23]). For

the comparison, we consider the FGS10 L set [23, 45], and choose the value of x not too

small, so that the spatially averaged FGS10 L nuclear gluon modification is close to that

in EPS09 or EKS98.

In Fig. 6 we plot the nuclear modification for gluons at fixed values of x and scale Q2 =

4 GeV2 for A = 208 as a function of |s| from our EPS09sNLO1, EPS09sLO1 and EKS98s

fits, from the 1-parameter approach using the averaged sets EPS09NLO1, EPS09LO1 and

EKS98, and from FGS10 L. Although numerically the differences are not very large, we

notice that while both the EPS09sNLO and EKS98s results are close to FGS10 L, the

1-parameter approach leads to a too steep transverse profile for the modifications in all

cases.

4 Applications

Next, we consider some concrete examples of computing the nuclear hard-process cross-

sections in different centrality classes using the spatially dependent nPDFs. First, we

discuss the centrality dependence of primary partonic-jet production in A+A collisions at

RHIC and LHC. Then, we consider neutral pion production in d+Au collisions at RHIC

and in p+Pb collisions at the LHC.

1In [20] the spatial dependence enters through the first nontrivial power of the nuclear density ρA(r) or

the thickness function TA(s). The latter scenario corresponds to what we refer to as ”1-parameter approach”

here.
2In [33] one studies also other types of spatial dependences.
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Figure 5. The spatially dependent modification of gluon distribution in a lead nucleus,

rPb
g (x,Q2, s), from EPS09sNLO1 (upper left), EPS09sLO1 (upper right) and EKS98s(lower plot)

as a function of x and s at the initial scale Q2 = 1.69(2.25) GeV2 of EPS09 (EKS98). For examples

of the corresponding plots of other parton flavors, see App. B.

4.1 Implementation of EKS98s and EPS09s

For defining the centrality classes we use the optical Glauber model specified in App. A.2.

In this case, each centrality class corresponds simply to a certain impact-parameter interval

|b| ∈ [b1, b2]. The generic average number distribution of a hard-process observable k in

this centrality class of an A+B collision is

〈

dNk
AB

〉

b1,b2
=

∫ b2
b1

d2bdNk
AB(b)

∫ b2
b1

d2b pinelAB (b)
, (4.1)
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Figure 6. Comparison of the spatial dependence of the gluon modification in a lead nucleus,

rPb
g (x,Q2, s), between FGS10 L (short-dashed blue curves), 1-parameter approach (long-dashed

green) and our spatial fits (solid red) EPS09sNLO1 (upper left), EPS09sLO1 (upper right) and

EKS98s (lower plot). The scale Q2 = 4 GeV2 for all plots but the values of x have been chosen so

that the spatially averaged RPb
g (x,Q2) (dotted horizontal red lines) approximately coincides with

FGS10 L (dotted blue).

where pinelAB (b) = 1 − exp[−TAB(b)σ
inel
NN ] from Eq. (A.23), and dNk

AB(b) is obtained from

Eq. (2.7). Using the expansion of rAi (x,Q
2, s) in powers of TA from Eq. (2.9), the integrals

over the impact parameter for the spatially dependent parts can be conveniently separated

from the spatially independent fit coefficients, free nucleon PDFs and pQCD parts as

follows:

b2
∫

b1

d2bdNk
AB(b) =

4
∑

n,m=0

T nm
AB (b1, b2)

∑

i,j,X′

1

AB

∑

NA,NB

cin(x1, Q
2)fNA

i (x1, Q
2)⊗

cjm(x2, Q
2)fNB

j (x2, Q
2)⊗ dσ̂ij→k+X′

(4.2)

where fNA,NB

i,j are the free nucleon PDFs, and we have defined ci,j0 (x,Q2) ≡ 1 and

T nm
AB (b1, b2) ≡

b2
∫

b1

d2b

∫

d2s [TA(s− b/2)]n+1 [TB(s+ b/2)]m+1 . (4.3)
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From Eq. (4.2) we see the most straightforward implementation of the spatially de-

pendent nPDFs. The purely geometric integrals, the T nm
AB (b1, b2) in Eq. (4.3) for each pair

of the powers n and m, can be computed independently of the kinematic variables x1,

x2, and Q2 and also independently of the parton flavors i, j. Thus, in total we have 25

different geometric integrals to do (or 15 if A = B) but we need to do them only once.

In comparison with the spatially averaged case, the fit parameters cin(x,Q
2) thus play the

role of the nuclear modifications Ri
A(x,Q

2) for each of the 25 pairs n,m. To arrive at

the final b-integrated result for the number distribution of k, we thus need to repeat the

computation of the kinematic parts 25 times, each with different sets of the coefficient

pairs {cin}, {cim} and a different geometric weight T nm
AB (b1, b2). The EKS98s and EPS09s

routines which we provide in [34], give in addition to the fit coefficients {cin(x,Q2)} also

the thickness functions TA(s) (used in the fits here) for the computation of T nm
AB (b1, b2), as

well as the combination TA(s)r
A
i (x,Q

2, s) for other possible implementations. Note also

that for the b integral in Eq. (4.3) the angular part is trivial, giving just 2π.

4.2 The Nuclear Modification Factors R1jet
AA and R1jet

CP

Let us now consider the centrality dependence of primary inclusive high-pT parton pro-

duction in A+A collisions at RHIC and LHC. Following the generic discussion above, we

define the nuclear modification ratio R1jet
AA (pT ) relative to the p+p case for each centrality

class as

R1jet
AA (pT , y; b1, b2) ≡

〈

d2N1jet
AA

dpTdy

〉

b1,b2

〈NAA
bin 〉b1,b2

1

σNN
inel

d2σ1jetpp

dpTdy

=

∫ b2
b1

d2b
d2N1jet

AA (b)

dpTdy

∫ b2
b1

d2bTAA(b)
d2σ1jetpp

dpTdy

, (4.4)

where 〈NAA
bin 〉b1,b2 is the average number of binary collisions in this centrality class given by

Eq. (A.27) and σNN
inel is the inelastic nucleon-nucleon cross section. Apart from the (small)

isospin effect, this ratio yields unity if there are no nuclear effects in the nPDFs. Thus, for

peripheral enough centrality bins, this ratio should approach unity. For the details of the

partonic cross sections, bookkeeping and kinematics, we refer to [46].

The nuclear mofication factor in the minimum-bias collisions is obtained from above

by setting b1 = 0 and b2 → ∞, in which case we have

〈

R1jet
AA (pT , y)

〉

=
1

A2

d2σ1jetAA,MB

dpTdy

/d2σ1jetpp

dpTdy
, (4.5)

where dσ1jetAA,MB, which contains only the spatially averaged nPDFs, is obtained from

Eq. (2.8) by setting B = A, and the p+p baseline dσ1jetpp from the same equation by

setting A = B = p.
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In addition to the centrality dependence of R1jet
AA , we are interested in the central-to-

peripheral ratios, defined as

R1jet
CP ≡

〈

d2N1jet
AA

dpTdy

〉

C

1

〈NAA
bin 〉C

〈

d2N1jet
AA

dpTdy

〉

P

1

〈NAA
bin 〉

P

=

∫ bC2
bC1

d2b
d2N1jet

AA (b)

dpTdy

/

∫ bC2
bC1

d2bTAA(b)

∫ bP2
bP1

d2b
d2N1jet

AA (b)

dpTdy

/

∫ bP2
bP1

d2bTAA(b)

, (4.6)

where C and P refer to the central and peripheral bins, correspondingly. The advantage

of this ratio (in the experiments) is that the information of the proton-proton baseline

is not required. In particular, we would like to see exactly how much R1jet
CP differs from

the modification R1jet
AA which is computed with the spatially averaged nPDFs. We perform

these example-calculations for both RHIC and LHC but for simplcity only to LO pQCD,

since without jet quenching these ratios do not directly correspond to observables. They

illustrate, however, the points we wish to make with the spatially dependent nPDFs, and

also serve as (LO) pQCD baselines for the observed suppression of high-pT particles.

The two different centrality classes we consider here for Au+Au collisions at RHIC

and Pb+Pb collisions at the LHC, are the central 0-5% and peripheral 60-80% bins. The

Glauber model input and the resulting impact parameter intervals and average numbers

of binary collisions in these centrality classes are summarized in Table 1.

Table 1. The centrality classes as impact parameter intervals, and average number of binary

collisions from the optical Glauber model in A+A collisions for RHIC and LHC.

√
sNN σNN

inel Central = 0-5 % Peripheral = 60-80 %

[GeV] [mb] b1 [fm] b2 [fm] 〈Nbin〉 b1 [fm] b2 [fm] 〈Nbin〉
Au+Au 200 42 0.0 3.355 1083 11.62 13.42 15.10

Pb+Pb 2760 64 0.0 3.478 1771 12.05 13.91 19.08

In Fig. 7 we plot the ratio R1jet
AA (pT , y = 0) for central, peripheral and minimum-bias

collisions, as well as R1jet
CP (pT ) in Au+Au collisions at RHIC. Figure 8 shows the same

quantities for the LHC Pb+Pb case. The central and peripheral R1jet
AA and R1jet

CP have been

obtained with the spatially dependent nPDFs EPS09sLO1 (left) and EKS98s (right), and

the average 〈R1jet
AA 〉 in minimum bias collisions with the spatially independent EPS09 and

EKS98 nuclear modifications. For the free proton PDFs we have used CTEQ6.1L [47].

The renormalization scale µ and factorization scale Q has been set to be the transverse

momentum, pT , of the parton.

The main observations from the figures are: (i) The central R1jet
AA is quite close to the

average R1jet
AA , which is expected since the nuclear modifications at small s are close to the

average modifications. (ii) The peripheral R1jet
AA is clearly not unity but there appear almost

10% antishadowing effects at mid-pT at RHIC and even more than 20% shadowing effects

at small pT at the LHC, and up to 10% EMC effects at large pT both at RHIC and LHC.

(iii) Consequently, the ratio R1jet
CP differs significantly from the average R1jet

AA . The results
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Figure 7. The LO nuclear modification R1jet
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Figure 8. The same as Fig. 7 but for Pb+Pb collisions at
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sNN = 2.76 TeV

.

suggest that in a precision theory-analysis of the centrality dependence of jet quenching,

one needs to account also for the spatial dependence of nPDFs. Finally, regarding the

differences between the different nPDF sets applied here, we observe in Figs. 7 and 8 how

the stronger shadowing in the EPS09 case (cf. Fig.3) translates into steeper pT slopes of

R1jet
AA at small pT than in the EKS98 case.

4.3 Centrality dependence of Rπ0

dAu(pT ) at RHIC – comparison with data

While the above ratios R1jet
AA and R1jet

CP mainly serve as theoretical pQCD baselines for jet

quenching studies, it is important to test our spatially-dependent nPDF framework against

some measured centrality-dependent observables. To avoid the complications of hot QCD

matter modeling, we turn to the highest-energy d+Au collisions at RHIC and p+Pb at the

LHC. For our purposes a promising published data set is the nuclear modification factor

Rπ0

dAu(pT ) for single inclusive neutral-pion production at mid-rapidity |η| < 0.35, measured
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by PHENIX [26] at different centrality classes in d+Au collisions at
√
sNN = 200 GeV.

Since the minimum-bias data precisely from this data set was among the constraints in the

global EPS09 fits, it is now very interesting to study, for the first time consistently with

EPS09, how well we can reproduce the measured centrality dependence of this ratio.

Analogously with Eq. (4.4), we define the centrality-dependent nuclear modification

factors as

Rπ0

dA(pT , y; b1, b2) ≡

〈

d2Nπ0

dA

dpTdy

〉

b1,b2

〈NdA
bin〉b1,b2

1

σNN
inel

d2σπ
0

pp

dpTdy

=

∫ b2
b1

d2b
d2Nπ0

dA(b)

dpTdy

∫ b2
b1

d2bTdA(b)
d2σπ

0

pp

dpTdy

, (4.7)

where the number distribution now involves a further folding over the fragmentation func-

tions,

dNπ0

dA(b) =
∑

k

dNk
dA(b)⊗Dπ0/k(z,Q

2
F ) (4.8)

and where dNk
dA(b) is obtained from Eq. (2.7) by setting A = d and B = A, and (as we do

not assign any nuclear effects for the deuterium PDFs) also rdi ≡ 1. For obtaining a realistic

thickness function for deuterium, we use the Hulthen wavefunction formulation [48] given

in App. A.1.2. The impact parameter ranges and average numbers of binary collisions at

the corresponding centrality classes are obtained again from the optical Glauber model.

4.3.1 Minimum-bias Rπ0

dAu(pT )

Setting the spatial integrals in Eq. (4.7) over the whole impact-parameter space gives again

the minimum-bias ratios,

〈

Rπ0

dA(pT , y)
〉

=
1

2A

d2σπ
0

dA,MB

dpTdy

/ d2σπ
0

pp

dpTdy
, (4.9)

where dσπ
0

dA,MB =
∑

k dσ
k
dA,MB ⊗ Dπ0/k(z,Q

2
F ) again contains only the spatially averaged

nPDFs in dσkdA,MB which is obtained from Eq. (2.8) by setting A = d, B = A. As noted

earlier, in the EKS98 and EPS09 frameworks there are no nuclear modifications to the

deuterium PDFs. The p+p baseline dσπ
0

pp is computed correspondingly, but without any

nuclear effects.

Figure 9 shows the PHENIX data [26] and our NLO (left) and LO (right) results

for the nuclear modification factor 〈Rπ0

dAu(pT , y = 0)〉 in minimum-bias collisions. For

the NLO calculation with EPS09sNLO1 (equivalently one may use EPS09NLO1, since

the spatial dependence is here irrelevant) we used the NLO fragmentation functions from

KKP [49]3, AKK [50] and fDSS [51]. For the free proton PDFs, we use CTEQ6M [47].

Correspondingly, the LO case was computed with EPS09sLO1 and EKS98s, using the KKP

and fDSS LO fragmentation functions and CTEQ6.1L PDFs [47]. The renormalization

scale µ, factorization scale Q and fragmentation scale µF are all fixed to pT , the transverse

momentum of the produced hadron. For details of the LO calculation, we again refer to

Ref. [46], while the NLO computation was performed by using the INCNLO code [52, 53].

3The KKP set was also used in the EPS09 global analysis.
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Figure 9. The nuclear modification factor Rπ0

dAu(pT ) for
√
sNN = 200 GeV at y = 0 for minimum

bias collisions. Calculations are for the NLO pQCD using EPS09NLO1 with three different frag-

mentation functions (left), and LO using EPS09LO1 and EKS98 with two different fragmentation

functions (right). The blue bands are computed using the EPS09 error sets and fDSS fragmentation

functions. The experimental PHENIX data [26] are shown by markers, and their error bars (boxes)

stand for the point-to-point statistical (systematic) errors. Notice that the data points and their

errors have been multiplied by a factor 1.039 (1.050) for the NLO (LO) case, which is well within

the 9.7 % overall normalization error quoted by the experiment (see text for details).

From Fig. 9, we notice the following: (i) The EPS09 uncertainty bands for the NLO

results are slightly smaller than in the LO case, reflecting the fact that the EPS09NLO glu-

ons are somewhat better constrained in the antishadowing region than those of EPS09LO.

(ii) In the small pT region there is a difference in the pT slopes between the EKS98 and

EPS09LO1 results. This is caused by the weaker shadowing in EKS98. However, also the

EKS98 results remain within the EPS09 error bars. (iii) The uncertainty caused by the

differences in the fragmentation functions remains conveniently small in all cases.

Regarding the data comparison in Fig. 9, we emphasize the following important point:

In addition to the the statistical uncertainties (error bars) and point-to-point systematic

errors (boxes), PHENIX quotes a 9.7 % overall uncertainty which originates from the p+p

reference and which is not included in the statistical error bars shown. Consequently,

allowing for a shift of the data points and their errors by less than 9.7 % and requiring the

best possible overall fit to the data (using the fDSS FFs and by minimizing the χ2 with the

point-to-point statistical and systematic errors added in quadrature), we have multiplied

the data by a factor 1.039 (NLO) and 1.050 (LO). Such a few-percent shift is well within

the uncertainty given by the experiment. As already noticed in the EPS09 analysis [15],

the resulting agreement with the data is quite good, both in LO and in NLO.

Figure 10 shows the ratio 〈Rπ0

dAu(pT , y = 3)〉 at the forward region in minimum-bias

collisions. Again, we show both the NLO (left) and LO (right) results with the same set-up

as in Fig. 9 above. Now the differences between the fragmentation functions start to be

visible, as one is probing their larger-z tails where the uncertainties are larger: for the same

pion pT , the differences in the large-z fragmentation functions map to different values of x

in the nPDFs. We also notice that the LO calculation gives a stronger small-pT suppression

than the NLO case, which is partly due to the different pace of the scale evolution with the
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NLO and LO nPDFs (cf. Fig. 3) and partly because the NLO computation probes slightly

higher values of x than the LO case. Like in Fig. 9, the EPS09 error band is smaller for

NLO than for LO.4
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Figure 10. The same as Fig. 9 but for neutral pions at a forward rapidity y = 3.

4.3.2 Centrality dependent Rπ0

dAu(pT )

Let us then look at the centrality dependence of the ratio Rπ0

dAu. Our NLO and LO results

for Rπ0

dAu in the centrality bins 0 − 20%, 20 − 40%, 40 − 60% and 60 − 88% are plotted

in Figs. 11 and 12, correspondingly, together with the PHENIX data. Table 2 lists the

impact parameter ranges and average number of binary collisions for each centrality class,

obtained from the optical Glauber model with σNN
inel = 42 mb.

Table 2. The centrality classes as impact parameter intervals, and average number of binary

collisions from optical Glauber model for d+Au collisions at
√
sNN = 200 GeV using σNN

inel = 42 mb.

b1 [fm] b2 [fm] 〈Nbin〉
0− 20% 0.0 3.798 15.57

20− 40% 3.798 5.371 10.95

40− 60% 5.371 6.583 6.013

60− 88% 6.583 8.336 2.353

Again, it is important to consider the different overall normalization errors in the

experimental data. For the centrality-dependent ratios plotted in Figs. 11 and 12 there still

is the 9.7 % overall systematic error due to the p+p baseline discussed above. In addition

to this, an overall normalization error of 6.6–9.6 % arising from the determination of the

average number of binary collisions, is quoted separately for each centrality bin. Following

again the same procedure as for Fig. 9, we multiply the data and their point-to-point errors

4We note that there exist experimental data for Rπ0

dAu at larger rapidities [54, 55] which suggest a more

substantial small-pT suppression than what the EPS09 and EKS98 predictions could accommodate. This

deviation calls for a more detailed investigation which, however, is clearly beyond the scope of the present

paper.
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by a factor which minimizes the difference to our calculation. Even the largest upwards

shift, 11.3 % for the centralmost bin in the LO case, is well within the acceptable total

overall normalization error quoted by the experiment. Note also the systematic decrease

of the multiplication factor from central to peripheral collisions, which we believe is due to

the difference in the experimental and Glauber-model definitions of the centrality classes.
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Figure 11. The nuclear modification factor Rπ0

dAu(pT ) for
√
sNN = 200 GeV at y = 0 for different

centrality classes. Calculations are in NLO pQCD using EPS09sNLO1 and three different fragmen-

tation functions. The blue error bands are computed with the error sets EPS09sNLOx (x=2,...,31)

and fDSS, and the data are from PHENIX [26]. The set-up and labeling are the same as in the

left panel of Fig. 9. Notice that the experimental data have been multiplied by a different factor

in each panel, which all are well within the total overall normalization uncertainties given by the

experiment (6.6, 6.7, 8.5, 9.6 % for the four centrality bins from the Glauberization and 9.7 % from

the p+p baseline.)

From Figs. 11 and 12 we observe that within the experimental and theoretical uncer-

tainties our calculations are consistent with the measurements. Especially the centrality

systematics obtained from our spatially-dependent nPDFs agrees quite well with the data:

the nuclear modifications are strongest in the most central collisions and systematically

weaken when going to more peripheral collisions. This is especially nicely reflected in the

region 1.3 ≤ pT ≤ 4 GeV, where the pT slopes (which are not affected by the overall mul-

tiplications) become steeper towards more central collisions. We also see that, like in the

minimum-bias case, the EPS09 error bands are slighty smaller for the NLO than for the

LO case, and that the uncertainties arising from the fragmentation functions remain small.

In Figs. 13 and 14 we plot also our NLO and LO results for Rπ0

dAu at
√
sNN = 200 GeV
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Figure 12. The same as in Fig. 11 but with LO calculations using EPS09sLO1 and EKS98s and for

two different fragmentation functions, and the blue error band is computed with the EPS09sLOx

(x=2,...,31) and fDSS. Notice again the overall multiplicative factors for the experimental data.

at a forward rapidity, y = 3, in the different centrality bins. In the forward region the nu-

clear modifications are larger since we now are probing smaller x values in the nPDFs than

in the mid-rapidity region. Like in the minimum-bias case, we notice that the difference

between the fragmentation function sets we use, becomes noticeable in the forward region.

Again the small-pT suppression is stronger and nPDF-orginating uncertainties are larger

for the LO case.

4.4 Predictions for p+Pb collisions at LHC

In the heavy-ion program of the LHC at CERN, there are now plans to collide protons

with lead nuclei. Such collisions would be very useful for testing the QCD factorization

and the universality of nPDFs, as well as for constraining the nuclear PDF modifications

further especially at small values of x. Also the centrality dependence of nPDFs could be

examined in these collisions via inclusive hadron production, similarly to the RHIC d+Au

collisions discussed above but without the theoretical uncertainties arising from modeling

the deuterium geometry. Thus, it is interesting to see what are the predictions from our

spatially dependent nPDFs for these collisions.

In Fig. 15 we plot our EPS09sNLO results for the nuclear modification factor Rπ0

pPb(pT )

for neutral pion production in p+Pb collisions at
√
sNN = 5.0 TeV at y = 0 in four different
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Figure 13. The nuclear modification factor Rπ0

dAu(pT ) for
√
sNN = 200 GeV at y = 3 in different

centrality classes. The computation is done in NLO pQCD using EPS09sNLO1 and three different

fragmentation functions. The error bands are computed with the EPS09sNLOx (x=2,...,31) and

fDSS.

centrality classes.5 We use again the KKP, AKK and fDSS fragmentation functions here.

The uncertainty bands arising from EPS09sNLO are computed using fDSS. The inelastic

cross section σNN
inel = 70 mb for this

√
sNN is obtained from Fig. 5 of Ref. [56]. This leads to

the impact parameter values and the average number of binary collisions for each centrality

class given in Table 3. For the projectile proton, we have not assumed any spatial size, so

that relative to the deuterium case above, in the collision geometry we replace the thickness

function Td(s) by δ(s) and the overlap function TdA(b) by the thickness function TPb(b).

As can be seen from Fig. 15, the nuclear modifications are strongest in the small-pT
region in all centrality classes. To see the behaviour of Rπ0

pPb in this region more clearly, we

plot the results also in logarithmic scale in Fig. 16. We again observe the general behavior

which follows from the spatial dependence of the nPDFs: the nuclear modifications are

stronger in the central collisions and weaker in the peripheral collisions. We also notice

that the three fragmentation function sets yield almost identical results.

Figure 17 shows the corresponding ratio in minimum bias p+Pb collisions, computed

both in NLO (left) and in LO (right). Like in the forward-rapidity case at RHIC, and for

5Very recently, the LHC moved up to collisions energies
√
spp = 8 TeV, hence we take

√
sNN =

√
spp

√

Z/A ≈ 5.0 TeV. Note also that y is the rapidity in the NN cms frame, i.e. we do not include

the rapidity shift due to the antisymmetric collision.
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Figure 14. The same as Fig. 13 but for LO pQCD using EPS09sLO1 and EKS98s with two

different fragmentation functions. The error bands are computed with the EPS09sLOx (x=2,...,31)

and fDSS.

Table 3. The centrality classes as impact parameter intervals, and average number of binary

collisions from optical Glauber model for p+Pb collisions at
√
s = 5.0 TeV, with σNN

inel = 70 mb.

b1 [fm] b2 [fm] 〈Nbin〉
0− 20% 0.0 3.471 14.24

20− 40% 3.471 4.908 11.41

40− 60% 4.908 6.012 7.663

60− 80% 6.012 6.986 3.680

the same reasons, the EPS09NLO leads to a weaker small-pT suppression than EPS09LO

and EKS98, and the uncertainty band is clearly smaller for the NLO case.

As a probe of nuclear gluons even deeper in the small-x shadowing region, we plot in

Fig. 18 our LO results6 for Rπ0

pPb at a forward rapidity, y = 3, for the four centrality classes.

Again the KKP and fDSS fragmentation functions are used, and we see that they yield very

similar results. We should also point out that the EPS09sLO error band for the peripheral

bin in Fig. 18 can be regarded as an underestimate in that it has been computed without

6For y = 3, we could not obtain reliable results with INCNLO at pT < 5 GeV for this
√
sNN , hence only

the LO results are shown here.
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Figure 15. The nuclear modification factor Rπ0

pPb(pT ) for
√
s = 5.0 TeV at y = 0 for four different

centrality classes, computed in NLO pQCD using EPS09sNLO1 and three different fragmentation

functions. The error bands have been obtained with EPS09sNLOx (x=2,...,31) and fDSS.

0.6

0.7

0.8

0.9

1.0

1.1

1.2
1 2 5 10 20 50 100 200

EPS09s KKP NLO
EPS09s AKK NLO

0-20%TeV

0.6

0.7

0.8

0.9

1.0

1.1

1.2
2 5 10 20 50 100 200

EPS09s fDSS NLO
EPS09s fDSS errors

20-40%

0.6

0.7

0.8

0.9

1.0

1.1

0.6

0.7

0.8

0.9

1.0

1.1

1 2 5 10 20 50 100 200

[GeV/c]
1 2 5 10 20 50 100 200

40-60%

0.6

0.7

0.8

0.9

1.0

1.1

2 5 10 20 50 100 200

[GeV/c]
2 5 10 20 50 100 200

60-80%

R
π

0

p
P

b
(p

T
)

√
s = 5.0

y = 0

R
π

0

p
P

b
(p

T
)

pT pT

Figure 16. The same as Fig. 15 but in a logarithmic scale to emphasize the small-pT region.
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Figure 17. Left: The nuclear modification factor Rπ0

pPb(pT ) for
√
sNN = 5.0 TeV at y = 0, com-

puted in NLO pQCD using EPS09sNLO1 (left panel) and three different fragmentation functions.

The error band is computed using EPS09sNLOx (x=2,...,31) and fDSS. Right: The same but in

LO pQCD with EKS98s and EPS09sLO1 with two different fragmentation functions, and the error

band is for EPS09sLOx (x=2,...,31) with fDSS.

the error set EPS09sLO7. The reason for this is that the error set EPS09LO7 gives in fact

antishadowing at smallest x for the lightest nuclei, and in the EPS09sLO this maps into an

antishadowing near the edges of a large nucleus. This unphysical feature can be cured only

by redoing the EPS09LO global fit with an improved A-dependence of the fit functions. In

the meantime, we suggest that a physically more meaningful upper limit for the LO error

band in the small-x region for the peripheral bin can thus be obtained without this LO

error set.

Finally, in Fig. 19 we show the minimum-bias Rπ0

pPb at y = 3 for the NLO case at

pT ≥ 5 GeV and for the LO case starting from pT = 1.3 GeV. Note the linear(logarithmic)

pT scale on the left (right). Again we notice the weaker suppression and smaller error

bands in the NLO case. Comparing the right panels of Figs. 19 and Fig. 17, we see that

the smallest-pT suppressions are of similar magnitude. This is because the ratio Rπ0

pPb in

the small-pT region at the LHC probes already at y = 0 the flat part of the shadowing

assumed as an input in EPS09 (cf. Fig. 4). Hence, a measurement of Rπ0

pPb both in the mid-

and forward-rapidities can be expected to serve as a relevant constraint for the smallest-x

shadowing region.

5 Summary and Conclusions

We have developed a framework to determine the spatial dependence of the nuclear modi-

fications of PDFs in such a way that the outcome is consistent with the globally analysed

EKS98 and EPS09 nPDFs which in turn are DGLAP-based fits to nuclear hard-process

data. Both the LO and NLO cases have been considered, and with EPS09 the spatial

dependence has been extracted also for all the 30 error sets. Correspondingly, we call the

obtained spatially dependent nPDF sets EPS09s and EKS98s.

The spatial dependence is introduced in terms of powers of the nuclear thickness func-
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Figure 18. The nuclear modification factor Rπ0

pPb(pT ) for
√
sNN = 5.0 TeV at y = 3 for four dif-

ferent centrality classes, computed in LO pQCD using EPS09sLO1 and two different fragmentation

functions. The error band is computed using EPS09sLOx (x=2,...,31) and fDSS.
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Figure 19. Same as Fig. 17 but for a forward rapidity y = 3; the NLO (LO) results are on the left

(right).

tions TA(s). Regarding the power series rAi (x,Q
2, s) = 1 +

n
∑

j=1
cij(x,Q

2) [TA(s)]
j , we have

shown that the 1-parameter approach (n = 1, used e.g. in [19, 22]) is not sufficient for

reproducing A systematics in the nPDFs, and that we obtain a good overall agreement with

the globally analysed averaged nPDFs when we include terms up to [TA]
4. The outcome

of the performed fits, the sets of coefficients {cij(x,Q2)} for each parton flavor i at each x

and Q2, are tabulated separately for each of the nPDF sets we considered. These tables
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along with a routine for interpolation and computing the needed thickness functions are

downloadable at [34].

As a concrete application of our framework, we calculated the nuclear modification

factor R1jet
AA for LO primary partonic jet production at different centralities in Au+Au col-

lisions at RHIC and in Pb+Pb at the LHC. We observed that while the central R1jet
AA is quite

close to the minimum-bias ratio 〈R1jet
AA 〉 and the peripheral R1jet

AA differs fairly significantly

from unity, the central-to-peripheral ratio R1jet
CP differs clearly from the ratio 〈R1jet

AA 〉.
We also compared our NLO and LO calculations of the nuclear modification factor of

neutral pion production in d+Au collisions, Rπ0

dAu, in different centrality classes at mid-

rapidity with the PHENIX data [26]. Within all the given errors in the experimental data,

the nPDF uncertainties, and the possible differences between the experimental and optical

Glauber model centrality classes, the EPS09s results are remarkably consistent with the

centrality systematics. To our knowledge, this is the first time this has been demonstrated.

Especially, our EPS09s results seem to reproduce the low pT slope of the data very well in

all centrality classes.

More constraints for the spatial dependence of the nuclear PDFs, and gluons in partic-

ular, could be obtained from the scheduled p+Pb collisions at the LHC. We demonstrated

this by calculating the NLO and LO predictions from our framework for the ratio Rπ0

pPb

in different centrality classes both at mid-rapidity y = 0 and forward rapidity y = 3 for√
sNN = 5.0 TeV, which corresponds to the recently achieved p+p cms-energy.

We believe that the nPDF development presented here is an important step forwards,

as now a user may for the first time compute the centrality-dependent hard cross-sections

more consistently with globally analysed nPDFs. Our spatially dependent nPDFs should

also be applicable in Monte Carlo simulations of nuclear collisions, where the analogues

of the thickness functions should be straightforwardly obtainable. In addition, our work

should also give an idea how the future global analyses of nPDFs could be constructed so

that the spatial dependence would be built in right from the start and not afterwards as

has been the case here.
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A Nuclear Collision Geometry

For clarity, we specify here the modeling and parameters of the nuclear collision geometry,

i.e. the nuclear thickness functions TA(s) and Td(s) (see Refs. [57, 58]) and Glauber mod-
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eling (see Refs. [59, 60]), applied in this study. The calculations of TA(s) and Td(s) are

included both in the EKS98s and EPS09s codes.

A.1 Nuclear Thickness Functions

A.1.1 Large nuclei

The total amount of nuclear matter in a colliding nucleus A in the beam direction z at a

transverse position s is given by the nuclear thickness function

TA(s) =

∞
∫

−∞

dz ρA(s, z), (A.1)

where ρ(s, z) is the nucleonic number-density of the nucleus, with a normalization conven-

tion

A =

∫

d2sTA(s). (A.2)

In this study we use the standard two parameter Woods-Saxon density profile for ρA,

ρA(s, z) =
n0

1 + exp
[√

s2+z2+RA

d

] , (A.3)

which is a good approximation for nuclei with A ≥ 4. The parameter values for the

Woods-Saxon distribution are

d = 0.54 fm (A.4)

RA = 1.12A1/3 − 0.86A−1/3 fm, (A.5)

and for large nuclei the normalization condition (A.2) fixes the constant n0 as

n0 =
3

4

A

πR3
A

1

(1 + ( πd
RA

)2)
. (A.6)

A.1.2 Deuterium

For the thickness function of a deuterium nucleus, the above Woods-Saxon density profile

is obviously not applicable anymore. Instead, one may formulate this with the deuteron

wavefunction which describes the probability amplitude for the proton and neutron to

be separated by a distance rpn. This can be written in terms of the 3S1- and
3D1-wave

components as (see e.g. Ref. [48, 61])

ψM (rpn) =
u(rpn)

rpn
YM
101(Ω) +

w(rpn)

rpn
YM
121(Ω), (A.7)

where the spin-spherical harmonics YM
JLS(Ω), with S = 1, consist of three components,

[

YM
101(Ω)

]

mS=±1,0

= 〈Ω,mS |LSJM〉 =
∑

ML,MS

〈LSMLMS |LSJM〉YLML
(Ω) δmSMS

. (A.8)
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For the radial parts we use the Hulthen form as in [48, 58],

u(rpn) =N
√

1− ǫ2
[

1− e−β(αrpn−xc)
]

eαrpnθ(αrpn − xc) (A.9)

w(rpn) =Nǫ
[

1− e−γ(αrpn−xc)
]2

e−αrpn (A.10)
[

1 +
3(1− e−γαrpn)

αrpn
+

3(1− e−γαrpn)2

(αrpn)2

]

θ(αrpn − xc),

where N2 =
2α

1− αρ
, in which α−1 = 4.316 fm is related to the experimentally measured

binding energy, and ρ is fixed by normalization,
∫

d3rpn|ψM (rpn)|2 = 1. For the other

parameters, obtained by fitting to experimental data, we use the ”set 1” quoted in [58]:

β = 4.680 γ = 2.494

ǫ = 0.03232 xc = 0
(A.11)

The angular-averaged radial probability distribution for the proton-neutron distance rpn
in deuteron is given by

Ppn(rpn) =
1

4π

∫

dΩ|ψ(rpn)|2 =
1

4π

u2(rpn) + w2(rpn)

r2pn
. (A.12)

For computing the thickness function Td(s) as in Eq. (A.1), we need the nucleon density

distribution ρd(r) at a distance r from the center of mass of the deuteron. Assuming

identical proton and neutron masses, we have r = rpn/2. In addition, we require the

normalization of Td to be in line with Eq. (A.2). We thus have

Td(s) =

∞
∫

−∞

dz ρd(s, z), ρd(s, z) = 16Ppn(2r),

∫

d2sTd(s) = 2. (A.13)

A.2 Optical Glauber Model

Let us then specify the optical Glauber modeling applied for nuclear collisions in this

study. For further discussion, see e.g. Refs. [59, 60]. Consider first a nucleon-nucleus

(N+A) collision at an impact parameter b. In the eikonal high collision-energy limit the

number of binary inelastic collisions is given by

NNA
bin (b) = TA(b)σ

NN
inel , (A.14)

where TA(b) is the thickness function defined in Eq. (A.1) and σNN
inel is the inelastic nucleon-

nucleon cross section. One may interpret NNA
bin (b)/A as the probability for an inelastic col-

lision to take place in the A NN collisions that are possible. Consequently, the probability

for having no inelastic collisions at all, is

p0(b) =

(

1− 1

A
TA(b)σ

NN
inel

)A
A≫1≈ e−TA(b)σNN

inel , (A.15)
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and the probabililty for at least one inelastic collision becomes

pNA
inel(b) = 1− p0(b) ≈ 1− e−TA(b)σNN

inel . (A.16)

The inelastic cross section for the N+A collision we then obtain as

σNA
inel =

∫

d2b pNA
inel(b) =

∫

d2b
(

1− e−TA(b)σNN
inel

)

. (A.17)

As the probability distribution above is expressable in terms of Poissonian probabilities for

n inelastic collisions,

1− e−NNA
bin

(b) =

∞
∑

n=1

e−NNA
bin

(b) [N
NA
bin (b)]n

n!
≡

∞
∑

n=1

P (n|NNA
bin (b)), (A.18)

at a fixed impact parameter we indeed have

〈n〉 ≡
∞
∑

n=1

nP (n|NNA
bin (b)) = NNA

bin (b). (A.19)

Let us then consider a nucleus-nucleus (A+B) collision with collision geometry as

in Fig. 20. A conveninent choice is to take the impact parameter b along the x axis

symmetrically around the origin. The transverse density of interacting matter at certain

b

s1 s2 sx

sy

A B

Figure 20. Collision geometry in the transverse plane of the two colliding nuclei.

impact parameter b can then be computed from the nuclear overlap function, defined as

TAB(b) =

∫

d2sTA(s1)TB(s2), (A.20)

where s1 = s+ b/2 and s2 = s− b/2. With the normalization for TA(s) in Eq. (A.2), we

have ∫

d2bTAB(b) = AB. (A.21)

The number of binary collisions at a given impact parameter b is now

NAB
bin (b) = TAB(b)σ

NN
inel . (A.22)
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Analogously to the N+A case above (see e.g. [60]), we may write the probability of an

inelastic interaction in an A+B collision at an impact parameter b as

pAB
inel(b) ≈ 1− e−TAB(b)σNN

inel , (A.23)

and the inelastic cross section becomes

σAB
inel =

∫

d2b pAB
inel(b) =

∫

d2b
(

1− e−TAB(b)σNN
inel

)

. (A.24)

Figure 21 shows an example of the probability distributions pNA
inel(b) of Eq. (A.16) for p+Pb

collisions, and pAB
inel(b) of Eq. (A.23) for Pb+Pb and d+Pb collisions for σNN

inel = 64 mb,

which corresponds to the cms-energy
√
sNN = 2.76 TeV at the LHC.
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Figure 21. The differential inelastic cross section dσAB
inel/db as a function of impact parameter b for

lead-lead (red solid), deuteron-lead (blue long-dashed), and proton-lead (green dashed) collisions

with σNN
inel = 64 mb.

The centrality classes in the optical Glauber model can be defined as impact-parameter

intervals. The ”0-c % central” A+B collisions correspond to the most central collisions,

0 ≤ b ≤ bc which yield c % of the total inelastic cross section,

c% =
1

σAB
inel

bc
∫

0

d2b pAB
inel(b) ≡

σAB
inel(0, bc)

σAB
inel

. (A.25)

The c1-c2 % centrality class then corresponds to an interval [b1, b2] for which

(c2 − c1)% =
1

σAB
inel

b2
∫

b1

d2b pAB
inel(b) =

σAB
inel(b1, b2)

σAB
inel

. (A.26)
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For the studies of different hard-process nuclear modification factors in Sec. 4, we also

define the average number of binary collisions in a c1-c2 % centrality class:

〈Nbin〉AB
b1,b2 ≡

∫ b2
b1
NAB

bin (b)

σAB
inel(b1, b2)

=

∫ b2
b1

d2bTAB(b)σ
NN
inel

∫ b2
b1

d2b
[

1− e−TAB(b)σNN
inel

] , (A.27)

where the denominator is simply (c2−c1)% of σAB
inel. For discussing the analogous centrality

classes in N+A collisions, we just replace AB by NA in Eqs. (A.25-A.27) above, and also

TAB by TA in Eq. (A.27).

B Nuclear modifications ruv and rus

For completeness, we plot here the nuclear modifications from our fits EPS09sNLO1,

EPS09sLO1 and EKS98s in a lead nucleus for the u valence quarks in Fig. 22 and u

sea quarks in Fig. 23. The corresponding modifications for gluons are shown in Fig. 5.
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Figure 22. The spatially dependent modification of the ū distribution in a lead nucleus,

rPb
g (x,Q2, s), from EPS09sNLO1 (upper left), EPS09sLO1 (upper right) and EKS98s(lower plot)

as a function of x and s at the initial scale Q2 = 1.69(2.25) GeV2 of EPS09 (EKS98).

– 30 –



0

0.166

0.332

0.498

0.664

0.83

0.996 0
2

4
6

8
10

0.2

0.4

0.6

0.8

1

1.2

1.4

10-6
10-5

10-4
10-3

10-2
10-1

1
x

s[f
m
]

r
P

b
u
v
(x

,Q
2
=

1.
69

G
eV

2
,s

)

0

0.166

0.332

0.498

0.664

0.83

0.996 0
2

4
6

8
10

0.2

0.4

0.6

0.8

1

1.2

1.4

10-6
10-5

10-4
10-3

10-2
10-1

1
x

s[f
m
]

r
P

b
u
v
(x

,Q
2
=

1.
69

G
eV

2
,s

)

0

0.166

0.332

0.498

0.664

0.83

0.996 0
2

4
6

8
10

0.2

0.4

0.6

0.8

1

1.2

1.4

10-6
10-5

10-4
10-3

10-2
10-1

1
x

s[f
m
]

r
P

b
u
v
(x

,Q
2
=

2.
25

G
eV

2
,s

)

Figure 23. The spatially dependent modification of the uV distribution in a lead nucleus,

rPb
g (x,Q2, s), from EPS09sNLO1 (upper left), EPS09sLO1 (upper right) and EKS98s(lower plot)

as a function of x and s at the initial scale Q2 = 1.69 (2.25) GeV2 of EPS09 (EKS98).
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