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Determining the spectrum of hadronic excitations from Mo@arlo simulations requires the
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In this talk, a procedure for constructing a set of multiHadinterpolators that project onto
the states of interest is described. To aid in the intergiogtadf simulation data, operators are
designed to transform irreducibly under the lattice symgngtoup. The identification of a set of
optimal single-hadron interpolators for states with n@mezmomenta is an essential intermediate
step in this analysis.
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I ntroduction

The elucidation of the spectrum of hadronic excitationgljmted by QCD is a long-term goal
of lattice field theory. While a number of low-lying stablesficle masses are readily accessible,
most of the low-lying spectrum has, until recently, lain beg reach. The evaluation of correlation
functions containing disconnected quark-line diagrantsctvarise in the isosinglet-meson sector,
is extremely challenging. Multi-particle correlators.eged to study states above threshold, are, in
general, even more problematic.

The stochastic LapH method, described in RHf. [1], is aniefftcalgorithm for evaluating
hadronic correlators involving same-timeslice quark ggtion. This algorithm facilitates the
accurate evaluation of hadronic correlation functionsigdar fewer quark-matrix inversions than
earlier methods. Moreover, using this approach, hadramiegoint functions factorize into source
and sink contributions, greatly simplifying the evaluatiof multi-hadron correlators in particular.

The next step towards understanding the experimentatigssible spectrum involves the cal-
culation of the lowest-lying stationary-state energiesraiitiple lattice volumes. In a given sym-
metry channel, multiple energy levels can be determineu fifee solutions of a generalized eigen-
value problem involving matrices of hadronic two-point étions [2]. However, the success of this
approach depends on the identification of appropriatepotaeting operators. Considerable effort
has already been invested in the construction of singlaefminterpolators[3[]4]. In this note, we
report on progress in constructing the multi-hadron imdators needed above threshold.

Although we are primarily interested in the spectrum of loadrat rest, two or more hadrons
in flight can combine to form a state with zero net momentumndée as an intermediate step
in our calculations, it is also necessary to construct pakating operators for states with non-
zero momenta. The analysis is further complicated by thetfed different flavor sectors become
intertwined once multi-particle states are taken into aotoFor example, an isovector two-meson
state might have one isosinglet constituent meson. To nealgef lattice data, it is essential to use
interpolating operators with well-defined lattice quantonombers. In particular, we use operators
that transform irreducibly under the spatial symmetry grai the lattice. Our simulations are
performed with 2+ 1 flavors of anisotropic clover fermions, and we are thus &bt®nstruct light-
hadron operators with definite isospin or G-parity. Due ® fihite temporal extent of the lattice,
it is also advantageous to use meson operators that aredibdel under time reversal. Here, we
focus on the spatial symmetries only. Incorporating theoflaand time-reversal symmetries is
straightforward, and will be described in full in a forthcomg journal publication.

Group theory

In simulations on a cubic spatial lattice, the energies of-reomentum states are commonly
classified according to the irreducible representatiomsfs) of the octahedral group, denoteg
in Schonflies notation. The zero-momentum irreducibleesentations are a subset of the irreps of
the space group of the cubic lattice, which is the semi-tipeaduct ofOy, and the group of lattice
translations7. The translation group is Abelian. Hence, all of its irreitiles representations are
one-dimensional. They are characterized by a lattice méumep. Moreover,.7 is invariant under
the full space group. Therefore, the method of induced sspr&tions is applicable, and the full
set of space-group irreps can be deduced from the irreducdipresentations of the little groups of
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the allowed lattice momenta. The little group of the lattisementurmp is the subgroup of lattice
rotations which leavep invariant. For mesons at rest, the relevant little grouph&s éctahedral
group. In the continuum, the little group of non-zero momaeistC..,. C,, being the symmetry
group of an n-sided regular pyramid. On the lattice, thé&eligroup depends on the orientation of
the momentum with respect to the lattice axes. Hence, tihe djitoup of momenta along a lattice
axis, (0,0,1), for example, 84y; for planar-diagonal momenta, in the direction (0,1,1), dshe
little group isC,y; and for momenta along a cubic diagonal, the little grousis

Periodic spatial boundary conditions are enforced in amusations, and irreps for all lattice
states with momenta satisfying| < 471/L can be induced from representations of the little groups
listed above. The relevant little group for higher-momentstates moving in th€0,1,2), (1,1,2)
and equivalent directions &, the two-fold cyclic group. For the remainder of this repare focus
on states with momenta satisfying| < 4r/L. While we expect multi-particle states involving
pions with higher momenta to play a role in the low-lying gpam in current lattice simulations,
the symmetry properties of these states are generallakttwideduce.

Cy4v has five single-valued irreducible representations, wkiehlabelA;, Ay, By, B, andE.
We follow the Mulliken naming convention, & and B denote one-dimensional representations,
andE is two-dimensionalCy, has single-valued irrep&;, Az, By, By, and the irreps o€, areAq,
A, andE. The double-valued little-group irreps are one- or two-eitsional. To be consistent with
the usual labeling convention for zero-momentum doublaed irreps [b], we usé to denote
two-dimensional representations, a@ado denote one-dimensional fermionic irreps

In the continuum and infinite-volume limits, non-zero motuen irreps are labeled by the
absolute value of the helicity. The continuum represemigtiare two-dimensional except for two
zero-helicity irreps. The relationship between the vasitattice little-group irreps and their con-
tinuum counterparts and the irreps®©f are determined by subduction. TabJe 1 contains the sub-
duction of the irreps oDy to Cyuy, Coy andCg,. The table tells us, for example, that a pion with
momentum along a lattice axis transforms according toAthkttle-group irrep, and a vector me-
son, in theTy, irrep at rest, can appear in tifg (scalar) orE irrep, depending on whether the
momentum is parallel or perpendicular to the direction dapeation.

Single-hadron operator construction

Each space-group irrep is characterized by a set of lattiomemta closed under the action
of Oy, and an irreducible representation of the corresponditlg fjroup. In practice, an operator
basis for a space-group irrep is found by choosing a referenocmentunp, and constructing a
set of basis operators for the little grouppmfThe complete space-group basis is then obtained by
applying a set of rotations which generate the star ofp, to this initial operator set.

To construct little-irrep bases, we first identify gaugeairiant elemental operators with defi-
nite momenta and flavor quantum numbers. The elementalspioicie different gauge-covariant
displacements, but their transformation properties uttattice rotations are straightforward to de-
duce. For example, the general expression for a meson elahagmihilation operator is

@2 t.p) =y e (FBM) () (BB 3 ) (x.b). (1)

1our labeling convention differs from the convention in P{E, for example
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A(On) | 1Cau 1Cyy 1 Csy
Agg Aq Aq AL
Ay Az Az Az
Agg B B2 A
Ay B2 By A

Eg | AA®B1 | A1©B; E

= A, d By A, ® By E

Tig ABE | APB1B; A E
T AiPE | AApB1BB; At E
Tog BodE | AAPAB B, At ®E
Toy BioE | AAPABB, A E
Gigu | G G G
Gogu | Go G G

Hyu | G1Gy 2G FeRhaG

Table 1: Subduction of the irreps ddy, onto the non-zero momentum little groups,, Coy, andCsy.

wherea(b) andA(B) are spin and flavor indices, agddenotes a smeared quark field. The action
of the gauge-covariant displacement operators is given by

B @ (x,t) = U (%,t) - U (x+ (n— D)k t) @ (x +nk 1) (2)
whereU is a (stout-)smeared link variable.

Under the action of the elemeRtof the little group ofp, @ (t,p) goes to

<

Urg (t,p)U Z (t,p)Wsa (R)". 3)

The subset oN elementals{¢} therefore generates a representation of the lattice Gitteip,
with matricesW, which is in general reducible. Basis operators for the tituent irreps are
formed from linear combinations of these elementals aevi@l First, given explicit representation
matrices for the irreg\, FY), we define thé\ x N projection matrix

d

A O ()

Pag = RZ rY (R\Wsq (R, 4)
p ReGD

where A labels a row of the\ irrep andda is the dimension of the |rrepnGD is the order of
the groqu the double cover of the little group @. If the irrep A appears in the elemental
representatioW, and the elements of row of PM are not all zero, the linear superposition of
elementals

N
O (t,p) = Y Pz o (t.p) (5)
f=1
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Figure 1. Representation of the spatial paths used in the meson elahogerators. All five displacement
types are used in the construction of zero-momentum basgatgs. Only single-site (SS) and singly-
displaced (SD) operators are used in the non-zero momerttarmels.

transforms according to the roivof the irrepA. The rank ofP is equal to the multiplicity of\
in W. Starting with the operator for row, the other operators in the little-irrep basis are given by
d
A\ A N *
Opr'(tp)= = 3 Ty (R)"UROR (t.p)Ug. (6)
Gp REGE

When constructing space-group operators, neither theereée momentuny, nor the rota-
tions used to generafg are specified uniquely. However, a different choice of fiee momen-
tum or star rotations simply amounts to a change of basisjsapitho physical consequence.

Single-hadron operator selection

In order to project onto different hadronic excitations,usner of spatial-displacement com-
binations are used in the operator sets. Fjg. 1 shows thef seeson-elemental displacements
currently in use. Of these, only the single-site and sirdigplaced paths have been used in the
non-zero momentum single-hadron operators to date. Haywareeare primarily interested in the
lightest finite-momentum states, so we expect the simpfabiealisplaced interpolators to suffice.

The operator-construction algorithm described aboveddilg automated, and one can easily
generate a large number (in some of the zero-momentum jrhepglreds or even thousands) of
irreducible operators. Itis therefore essential to apgiyusming procedure to the candidate operator
sets to identify manageable subsets of clean operatorsdbpte strongly to the lowest-lying states
in each symmetry channel. The pruning consists of lowsdted analyses of the spectrum in each
of the symmetry channels. First, the noisiest of the intiexjpoos are identified and discarded.
Cross-correlations between the remaining operators aamiged in order to identify a subset of
interpolators which couples well to a number of differertas.

Effective masses obtained from pruned operators in a nomim®mentum isoscalar meson
channel can be seen in Ff§. 2. These measurements werenpedfon approximately 100 config-
urations on g1.9fm)3 spatial lattice. These results correspond to the minimdowald on-axis
momenta.

Multi-hadron states

To form multi-hadron operators, representation matriagsttie space-group operator bases
are needed. Matrices for non-zero momentum irreps areraataas follows. Having chosen a
reference momentum, and explicit bases for the little-group irrepa} of p, with matricesi V),
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Figure 2: Lowest-lying effective masses in an isoscalar meson ir@gaining states with the minimum
on-axis lattice momenta. Effective masses were computied psuned single-meson operators on approx-
imately 100 configurations on @.9fm)3 spatial lattice. The pion mass on these configurations isoxpp
mately 400 MeV. Only single-site and singly-displaced apers were used. This particular lattice irrep is
relevant for they meson.

say, one identifies a subset of lattice rotations to gengratehich we labelR*. The components
of the induced representation matrices are

A — .
r0w) gy | Tap (R'RRY)S 2= Ry
(a,p1),(B,p2) 0: P2 # Rp1,

wherep; andp, are momenta ip*, andR; is the rotation inR* that takes the reference momentum
p to p;. Hence ifp, = Rp1, RglRRl is a rotation in the little group gb.

The procedure for constructing irreducible multi-hadrgrerators by combining irreducible
single-particle operators is similar to the method useddwstruct single-hadron operators de-
scribed previously. The direct products of single-pagticteps form (generally reducible) repre-
sentations of the space group. These representations carittes in block-diagonal form, each
block corresponding to a different relative orientationtloé constituent single-particle momenta.
To make two-particle operators for the rest spectrum, we edy consider the block with back-to-
back single-hadron momenta, which itself forms a reprediEm of Oy,. Here, we use the notation
[A1,/\2; p*] to denote this representation, whexe and/\; are irreps of the little group gb*, the
star of the single-particle momenta. The dimension of this-particle representation is given by
the product of the dimensions 6f and/\,, times the dimension qf*.

Explicitly, the matrices corresponding to the zero-moraenblock of the direct-product rep-
resentations are

(A1,A2;p*) _ [ (Asp?) (A23p")
MGB (R)_ r(01,P)~(31~p')(R)] [r(azﬁp)a(ﬁzﬁp/)(R) ’ (7)
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where, on the left-hand side, we usef3 to denote the composite row and column indices a2, p)
and (B, Bz, p’). In analogy to Eq[]4, we can define a projection matrix

d sk

A YA N (NA2PY) B+

P‘a‘B = n—OD z FM (R) Mﬁal 2 (R)". (8)
h ReOP

Hence, ifA appears in the decomposition [@,/A\; p*|, and given the single-particle irreducible
bases{O\1}, {0"2)}, the composite operator

Pa3OR” (1,90 (t,—p') (©)

(summation ovep, i.e., B1, B> andp’, implied) has zero net momentum, and transforms according
to the rowA of the octahedral-group irrefs. The multiplicity of the irrep/ in the decomposition
of [A1,/A\2;p*] is given by the rank of the projection mati¥*}, which is simply the trace dP™.
Averaging over all rows im\ gives the multiplicity in terms of the characters A&fand the little-
group irreps:

1 (A)(R) y (P2) (R)y (M)

m=— 3 {X™RXRx" R} (10)

Gp ReGR
Using this formula, one finds, for example, that the six-disienal representatidi, Az; (0,0,1)*],
relevant for two pions with on-axis momenta, decomposes Aqf ® Eg @ Ty, and the twelve-
dimensional pion-nucleon representatiég, Gy; (0,0,1)*] contains thés1g, G1y, Hg, Hy irreps of
Or.

Work in progress

To date, we have pruned single-hadron operators for ak-liginyon, isovector-meson, isoscalar-
meson, and kaon zero-momentum and non-zero momentum.iffesparticle coefficients for all
zero-momentum irreps have been computed, and measureonfahts single-hadron constituent
components have been performed on lattices with estim@a)3 and (4fm)3 spatial volumes
and a pion mass of approximately 240 MeV. Results for théostaty-state spectra on these lat-
tices will be presented in the near future.
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