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Abstract

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of
charged hadrons produced in semi-inclusive deep inelasticscattering using a 160 GeVµ+ beam and
a transversely polarised NH3 target. The Sivers asymmetry of the proton has been extracted in the
Bjorkenx range 0.003< x < 0.7. The new measurements have small statistical and systematic un-
certainties of a few percent and confirm with considerably better accuracy the previous COMPASS
measurement. The Sivers asymmetry is found to be compatiblewith zero for negative hadrons and
positive for positive hadrons, a clear indication of a spin-orbit coupling of quarks in a transversely
polarised proton. As compared to measurements at lower energy, a smaller Sivers asymmetry for
positive hadrons is found in the regionx > 0.03. The asymmetry is different from zero and positive
also in the lowx region, where sea–quarks dominate. The kinematic dependence of the asymmetry
has also been investigated and results are given for variousintervals of hadron and virtual photon
fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymme-
try suggest a strong dependence on the four-momentum transfer to the nucleon, in agreement with
the most recent calculations.
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C. Heß2, F. Hinterberger3, N. Horikawa18,b, Ch. Höppner17, N. d’Hose22, S. Ishimoto32,c, O. Ivanov7,
Yu. Ivanshin7, T. Iwata32, R. Jahn3, V. Jary20, P. Jasinski13, R. Joosten3, E. Kabuß13, D. Kang13,
B. Ketzer17, G.V. Khaustov21, Yu.A. Khokhlov21, Yu. Kisselev2, F. Klein4, K. Klimaszewski30,
S. Koblitz13, J.H. Koivuniemi2, V.N. Kolosov21, K. Kondo32, K. Königsmann9, I. Konorov15,17,
V.F. Konstantinov21, A. Korzenev22,d, A.M. Kotzinian27, O. Kouznetsov7,22, M. Krämer17,
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In the late 60’s a simple and powerful description was proposed for the nucleon as a stream of partons
each carrying a fractionx of the nucleon momentum in a frame where the nucleon momentum is infinitely
large. From the dependence of the deep inelastic lepton-nucleon scattering (DIS) cross section on the
energy and momentum transfered to the nucleon it was possible to identify charged partons with the
earlier postulated quarks, and assess the existence of gluons as carriers of half of the proton momentum.

Since the 90’s it is well known that in order to fully specify the quark structure of the nucleon at twist-
two level in quantum chromodynamics (QCD) three types of parton distributionfunctions (PDFs) are
required: the momentum distributionsq(x) (or f q

1 (x)), the helicity distributions∆q(x) (or gq
1(x)) and the

transversity distributions∆T q(x) (or hq
1(x)), wherex is the Bjorken variable. For a given quark flavourq,

q(x) is the number density,∆q(x) is the difference between the number densities of quarks with helicity
equal or opposite to that of the nucleon for a nucleon polarised longitudinally, i.e. along its direction
of motion, and the transversity distribution∆T q(x) is the corresponding quantity for a transversely po-
larised nucleon. If the quarks are assumed to be collinear with the parent nucleon, i.e. neglecting the
intrinsic quark transverse momentum~kT , or after integration over~kT , the three distributionsq(x), ∆q(x)
and∆T q(x) exhaust the information on the internal dynamics of the nucleon. On the otherhand, from
the measured azimuthal asymmetries of hadrons produced in unpolarised semi-inclusive deep inelastic
scattering (SIDIS) and Drell-Yan (DY) processes a sizeable transverse momentum of quarks was derived.
Taking into account a finite intrinsic transverse momentum~kT , in total eight transverse momentum de-
pendent (TMD) distribution functions are required to fully describe the nucleon at leading twist [1].
Presently, PDFs that describe non–perturbative properties of hadrons are not yet calculable in QCD from
first principles, but they can already be computed in lattice QCD. In the SIDIS cross section they appear
convoluted with fragmentation functions (FFs) [2, 3], so that they can be extracted from the data.

A TMD PDF of particular interest is the Sivers function∆T
0 q (or f⊥q

1T ), which arises from a correlation
between the transverse momentum~kT of an unpolarised quark in a transversely polarised nucleon and
the nucleon polarisation vector [4]. In SIDIS this~kT dependence gives rise to the “Sivers asymmetry”
ASiv which is the amplitude of the sinΦS modulation in the distribution of the produced hadrons. Here
the azimuthal angleΦS is defined asΦS = φh − φs with φh andφs respectively the azimuthal angles of
hadron transverse momentum and nucleon spin vector, in a reference system in which the z axis is the
virtual photon direction and the xz plane is the lepton scattering plane. Neglecting the hadron transverse
momentum with respect to the direction of the fragmenting quark, the Sivers asymmetry can be written
as

ASiv =
∑q e2

q ·∆T
0 q⊗Dh

q

∑q e2
q ·q⊗Dh

q
, (1)

where⊗ indicates the convolutions over transverse momenta,eq is the quark charge andDh
q describes

the fragmentation of a quarkq into a hadronh.

In the very recent years, much attention has been devoted to the Sivers function, which was originally
proposed to explain the large single-spin asymmetries observed in hadron-hadron scattering. The Sivers
function is T–odd, namely it changes sign under naive time reversal, whichis defined as usual time
reversal but without interchange of initial and final state. For a long time theSivers function and the
corresponding asymmetry were believed to vanish [5] due to T–invariancearguments. However Brodsky
et al. [6] showed by an explicit model calculation that final-state interactionsin SIDIS arising from gluon
exchange between the struck quark and the nucleon remnant (or initial state in DY) produce a non-zero
asymmetry. One of the main theoretical achievements of the recent years wasthe discovery that the
Wilson-line structure of parton distributions, which is necessary to enforce gauge invariance of QCD,
provides the possibility for non-zero T–odd transverse momentum dependent (TMD) PDFs. According
to factorisation the T–odd PDFs are not universal. The Sivers functioncan be different from zero but
must have opposite sign in SIDIS and DY [7]. A lot of interest in the Siversfunction arises also from
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its relation with orbital motion of quarks inside a transversely polarised nucleon. In particular it was
shown [6] that orbital angular momentum must exist if the Sivers function doesn’t vanish. Even though
no exact relation between Sivers function and orbital angular momentum was derived yet, work is going
on, also because the importance of assessing the role of the orbital angular momentum in the nucleon
spin sum rule has grown in time (see e.g. [8, 9, 10, 11]).

Presently, the measurement of the Sivers asymmetry in SIDIS is the only direct way to assess the Sivers
function. It became an important part of the experimental programs of the HERMES and COMPASS
experiments, and it will be an important part of future SIDIS experiments atJLab12 [12]. Furthermore,
in the near future several experiments using the DY process will addressthe Sivers function, in particular
its sign, in order to establish the prediction of restricted universality [13, 14].

Using a 160 GeV longitudinally polarisedµ+ beam COMPASS measured SIDIS on a transversely po-
larised deuteron (6LiD) target in 2002, 2003 and 2004. In those data no sizeable Sivers asymmetry was
observed within the accuracy of the measurements [15, 16, 17], a fact which is understood in terms of a
cancellation between the contributions of u- and d-quarks. By scattering the e− and e+ beams at HERA
off a transversely polarised proton target, HERMES measured in 2004 a non-zero Sivers asymmetry for
positively charged hadrons [18]. A combined analysis of the COMPASS and HERMES data allowed
for a first extraction of the Sivers function for u- and d-quarks [19,20, 21]. Still, as in the case of
the Collins asymmetry, measurements on protons at higher beam energies were needed to disentangle
possible higher twist effects.

In 2007 COMPASS measured for the first time SIDIS on a transversely polarised proton (NH3) target.
The results [22] on the Sivers asymmetry for positive hadrons were found to be different from zero and
turned out to be somewhat smaller than the final HERMES data [23]. However the COMPASS results
had larger statistical errors and a non-negligible overall scale uncertainty of ±0.01. A more precise
measurement was thus mandatory and the entire 2010 data taking period was dedicated to this purpose.

In this Letter, the results of the 2010 run are presented. They confirm withconsiderably smaller un-
certainties the observation of the 2007 measurements. The higher statistics allow for first studies of the
kinematic dependence of the asymmetry in a domain larger than the usual COMPASS DIS phase space.

The COMPASS spectrometer is in operation in the SPS North Area of CERN since 2002. The principle
of the measurement and the data analysis were already described in refs.[15, 16, 17, 22, 24]. The
information on the 2010 run, the amount of data collected, the event reconstruction and selection, the
statistics of the final samples, are given in a parallel paper on the Collins asymmetry [25] that was
measured using the same data. In order to ensure a DIS regime, only eventswith photon virtuality
Q2 > 1 (GeV/c)2, fractional energy of the virtual photon 0.1 < y < 0.9, and mass of the hadronic final
state systemW > 5 GeV/c2 are considered. A charged hadron is required to have at least 0.1 GeV/c
transverse momentumph

T with respect to the virtual–photon direction and a fraction of the available
energyz > 0.2. This is refered to as “standard sample” in the following.

The Collins and Sivers asymmetries are the amplitudes of 2 of the 8 azimuthal modulations, which are
theoretically expected to be present in the SIDIS cross section for a transversely polarised target. They
are extracted simultaneously from the same data as explained in ref. [25]. The measured amplitude of
the modulation in sinΦS is εS = f PT ASiv, where f is the dilution factor of the NH3 material, andPT

the magnitude of the proton polarisation. In order to extractASiv, the measured amplitudesεS in each
period are divided byf andPT . The dilution factor of the ammonia target is calculated for semi-inclusive
reactions [26] and is evaluated in eachx bin; it increases withx from 0.14 to 0.17, and it is assumed
constant inz andph

T . The proton target polarisation (∼ 0.8) was measured individually for each cell and
each period. The results forASiv from all periods of data taking are found to be statistically compatible
and the final asymmetries are obtained by averaging the results from the fullavailable statistics. Extensive
studies were performed in order to assess the systematic uncertainties of themeasured asymmetries, and
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it was found that the largest contribution is due to residual acceptance variations within the data taking
periods. In order to quantify these effects, various types of false asymmetries are calculated from the final
data sample assuming wrong sign polarisation for the target cells. Moreover, the physical asymmetries
are extracted splitting the events according to the detection of the scattered muon in the spectrometer (top
vs bottom, left vs right). The differences between these physical asymmetries and the false asymmetries
are used to quantify the overall systematic point-to-point uncertainties, which are evaluated to be 0.5
times the statistical uncertainties. The only relevant systematic scale uncertainty, which arises from the
measurement of the target polarisation, is evaluated to be 3% of the target polarisation.

Figure 1 shows the Sivers asymmetries for positive and negative hadrons extracted from the 2010 proton
data as a function ofx, z andph

T , where the other two variables are integrated over. For negative hadrons
the asymmetry is compatible with zero, while for positive hadrons it is definitely positive and stays
positive down tox ≃ 10−3, in the region of the quark sea. There is good agreement with the published
results from the COMPASS 2007 run [22] but with a considerable reduction of more than a factor of
two in the statistical and in the point-to-point systematic uncertainties. Also, the asymmetry for positive
hadrons is clearly smaller than the corresponding one measured by HERMES [23]. This fact persists
even when considering only events withx > 0.032, in the samex range as the HERMES experiment.
The asymmetries in this restrictedx range are shown as open points in fig. 2.

The correlation between the Collins and the Sivers azimuthal modulations introduced by the non-uniform
azimuthal acceptance of the apparatus as well as the correlations betweenthe Sivers asymmetries mea-
sured when binning the same data alternatively inx, z or ph

T were already given in ref. [25]. All correla-
tion coefficients are found to be smaller than 0.2 and are relevant only in case of simultaneous fits of the
various asymmetries.

In order to further investigate the kinematic dependence of the Sivers asymmetry and to understand
the reason of the difference with HERMES, the kinematic domain is enlarged to examine the events
with smallery values (in the interval 0.05< y < 0.1), which correspond to smallerQ2 andW values.
Additionally, the standard data sample is divided into two parts, corresponding to 0.1 < y < 0.2 and
0.2 < y < 0.9. Since at smally there are no low-x data, only events withx > 0.032 are used. Figure 3
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Fig. 1: Sivers asymmetry as a function ofx, z andph
T for positive (top) and negative (bottom) hadrons.
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open points (◦ , slightly shifted horizontally) are the values obtained in the range 0.032< x < 0.70. The
closed points (•) refer to the fullx range and are the same as in fig. 1.
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T for positive (top) and negative (bottom) hadrons

for x > 0.032 in they bins 0.05< y < 0.1 (closed squares,�), 0.1 < y < 0.2 (open triangles,▽, slightly
shifted horizontally) and 0.2 < y < 0.9 (open squares,�) .

shows the Sivers asymmetries measured in these three bins ofy as a function ofx, z, andph
T respectively.

No particular trend is observed in the case of the asymmetries for negative hadrons (bottom plots), which
stay compatible with zero as for the standard sample. A clear increase of the Sivers asymmetry for
positive hadrons is visible for the low-y data. This strong effect can not be due to the slightly different
mean values ofx, since the Sivers asymmetry does not exhibit anx dependence forx > 0.032. On
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Fig. 5: Comparison between the measured and calculated Sivers asymmetriesfor positive hadrons as a
function ofz for 0.1 < y < 0.9. The closed points (•) refer to the fullx range and the open points (◦) to
the 0.032< x < 0.70 range. The curves are from ref. [29].

the contrary, it could be associated with the smaller values ofQ2 and/or with the smaller values of the
invariant mass of the hadronic systemW . A similar dependence of the asymmetries ony was already
noticed in the published results from the 2007 data. As can be seen from fig. 4 (left panel), there is a
strong correlation between they andW mean values: the mean values ofW in the highx bins are about
3 GeV/c2 for the sample 0.05< y < 0.1 and larger than 5 GeV/c2 for the standard sample 0.1 < y < 0.9
(middle panel of fig. 4). On the other hand, as can be seen in the right panel of fig. 4, bins at smaller
y have smaller values of〈Q2〉. In particular, in eachx bin the Q2 mean value decreases by about a
factor of 3 for the sample 0.05< y < 0.1 with respect to the standard sample. Although the situation
might be different in the target fragmentation region [27], in the current fragmentation region the Sivers
asymmetry is not expected to depend ony (or onW ), while someQ2 dependence should exist due to the
Q2 evolution of both the FFs and the TMD PDFs.

Very recently first attempts to estimate the impact of theQ2 evolution of the Sivers function [28] led
to encouraging results. In ref. [29] the Sivers asymmetry was evaluatedfor the HERMES kinematic
region using the Sivers functions of ref. [30] and then evolved to the COMPASS kinematic region. The
measuredz dependence of the Sivers asymmetries for 0.1 < y < 0.9 is compared with the calculated
one in fig. 5, for the entirex region and forx > 0.032. The linear trend of the data up toz ≃ 0.75 is
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0.032< x < 0.70 in 3 differentz bins: 0.1 < z < 0.2 (closed squares,�), 0.2 < z < 0.35 (open triangles,
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well reproduced, as well as the small increase of the slope for the highx sample. A very recent fit [31]
of the HERMES asymmetries [23] and the COMPASS deuteron [17] and proton [32] results given here
was performed taking into account theQ2 evolution in allx bins. It reproduces all the data well and
provides strong support to the current TMD approach, which foresees a strongQ2–dependence of the
Sivers function.

We have also investigated the behaviour of the Sivers asymmetries at lowz. Our standard hadron selection
requiresz > 0.2 to stay well separated from the target fragmentation region. In the range0.1 < z < 0.2
no effect onASiv is visible for negative hadrons, but one observes a clear decrease of the asymmetry for
positive hadrons. In fig. 6 the data are plotted in 3 differentz regions: 0.10< z < 0.20, 0.20< z < 0.35,
and 0.35< z < 1.00. While the shape of the asymmetry as a function ofx stays the same, the size of
the asymmetry shows a clear proportionality withz, in qualitative agreement with the expected linear
behaviour (see, e.g. [33]).

All the results given in this Letter are available on HEPDATA [34]. The asymmetries for the standard
sample as functions ofx, z andph

T have also been combined with the already published results from the
2007 run [22] and are also available on HEPDATA.

In summary, COMPASS has obtained precise results on the Sivers asymmetryin SIDIS using a polarised
proton target. A first investigation of its dependence on various kinematic variables shows significant
dependences onz andy. By now, the Sivers asymmetry for positive hadrons is shown to be different
from zero in a broad kinematic range and to exhibit strong kinematic dependences. After two decades
of speculations, this is an important new insight into the partonic structure of the nucleon. In the light
of the most recent theoretical advances refined combined analyses to evaluate the Sivers function and
its dependence on the SIDIS variables are required in order to understand the role of the Sivers function
in the various transverse spin phenomena observed in hadron-hadroncollisions and in future Drell-Yan
measurements.
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